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Abstract—A series of branched styryl derivatives based on 1, 3, 
5-triazine have been studied by time-resolved fluorescence 
anisotropy method to study the intramolecules interferaction 
between branches. The obtained results further confirmed the 
TPA enhancement mechanism, the anisotropy of trimer shows 
faster decay and small residual value indicates there are strong 
intramolecules interactions among branches, this maybe the 
enhancement mechanism of TPA properties for the trimer. 
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I. INTRODUCTION 

Materials with large two-photon absorption (TPA) 
properties are of great interest in many fields [1-3], such as 
optical limiting, three-dimensional microfabrication, optical 
storage, and so on. Design and synthesis of the organic and/or 
polymeric functional materials with excellent TPA performance 
have thus stimulated extensive research activities across the 
world in recent years [4]. 

Although there already are a large number of papers and 
patents concerning preparation of TPA materials, including 
one-dimensional dipolar [5], quadrupolar [6], and 
multibranched chromophores [7], development of the molecular 
materials with large TPA cross section still draws much 
attention and presents an ongoing challenge. 

To design and synthesize more excellent molecules with 
outstanding TPA properties, a proper understanding of the 
dynamics of two-photon excitation process in the materials is of 
great importance. Femtosecond (fs) pump-probe experiment and 
time-resolved fluorescence and time-resolved fluorescence 
anisotropy are very useful technique to obtain the information of 
the relaxation processes of the excited states. Theodore Goodson, 

III, Varnavski and co-workers et al. employed pump-probe, 
time-resolved photoluminescence, and three-pulse photon echo 
measurements to measure dynamics of some molecules 
including multibranched chromophores and organic conjugated 
dendrimers [8-9]. Anisotropy study is a powerful tool to give 
additional information about the energy redistribution and the 
dynamics of electronic coupling in multi-branched molecules. It 
has been widely used in experiments on photosynthetic reaction 
center. Goodson et al. reported plenty of significant results 
based on time-resolved fluorescence up-conversion 
measurement on optical dendrimers[10-11]. Dynamics of 
molecules with two-photon absorption properties are, however, 
still inadequate especially for the conjugated molecules.  In our 
previous work, we reported the TPA character and excited state 
dynamics of several molecules and polymers with both linear 
and tri-branched structure [12-14]. Recently, we investigated a 
tri-branched materials, by using time-resolved fluorescence 
anisotropy methods, The tri-branched materials displays very 
good two photon absorption ability and nonlinear enhancement 
according to monomer case. The time-resolved 
photoluminescence anisotropy results indicate the enhancement 
mechanism of TPA properties. 

II. MATERIALS AND EXPERIMENTAL METHODS 

The structures of T01, T02 and T03 are shown in Figure 1. 
The synthesis method, UV-visible absorption spectra, 
fluorescence as well as TPF/TPA properties have been reported 
elsewhere in detail [15]. Two-photon absorption (2PA) 
cross-sections measured by the open aperture Z-scan technique 
were determined to be 77, 90 and 410 GM for T01, T02 and T03, 
respectively. 
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FIGURE I. THE STRUCTURE OF T01, T02 AND T03. 

The ultrafast responses of the polymer were investigated by 
fs time-resolved photoluminescence (TRPL) experiments. The 
setup is shown in Figure 2. Briefly, the pump beam at 800 nm 
after passing an optical delay line was used as a gate beam to 
open “Kerr gate” through photo-induced birefringence of Kerr 
Material (CS2), while the second part of 800 nm beam was 
frequency doubled by using a BBO crystal to act as the probe 
beam. The second harmonic pulses with vertical polarization 
were used to pump samples efficiently and the collected 
fluorescence was set either parallel or perpendicular to that of 
incident beam by a polarizer (P1). Another polarizer with 
orthogonal polarization to P1 was placed after sample to study 
the polarization effect. Dispersed by a monochromator, the 
signal was detected by a photomultiplier (Hamamatsu R1104) 
connected to a lock-in amplifier (SR830, Stanford Research 
Systems). The polarization of the gate beam was set at 45°with 
respect to that of SHG. In doing so, we can get TRFL signals 
under different configuration for anisotropy study. 

BBO

Sample

AMP

Lock-in

PMT

Optical Delay

P1 P2

Monochrometer

Kerr 
material

R1

R2
PL

 
FIGURE II. EXPERIMENTAL SETUP FOR THE OKG METHOD. R1: 

BEAM SPLITTER; R2: HIGH REFLECTIVE MIRROR AT 800 NM; P1 AND 
P2: POLARIZERS (CROSS-POLARIZATION); KERR MATERIAL: CS2 IN 

5 MM CELL; PMT: PHOTOMULTIPLIER TUBE. 

The fs pulses employed in ultrafast dynamics measurements 
were generated by amplification stage of the used fs laser system 
(Spitfire, Spectra-Physics). The average output power from the 
Spitfire was about 300 mW. The pulse duration was 140 fs, the 
wavelength was 800 nm and the repetition rate was 1kHz. In the 
experimental investigation, the solvent CHCl3 has been used 

without further distillation. All the experiments were carried out 
at room temperature. 

III. RESULTS AND DISCUSSIONS 

As we all know, anisotropy can be decided by 
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Where / /I
  (

I ) denote the fluorescence intensity whose 
polarization is parallel (perpendicular) to that of excited beam. 
However, analyzing TRPL experimental data based on OKG 
technique is a great challenge because it is more complicated 
than the analysis of transient absorption and fluorescence 
up-conversion experimental data. In the latter, the system 
response can be simply considered as Gaussian which is 
convenient for deconvolution treatment. In our experiment, the 
system response should be the response profile of CS2, which is 
nearly exponential type. Thus we used the following two 
formulas to calculate: 

31 2
// 1 2 3 0 1 1( )[ ][1 2{( ) }]rtt t tI t A e A e A e r r e r dt             



31 2
1 2 3 0 1 1( )[ ][1 {( ) }]rtt t tI t Ae A e A e r r e r dt      

        


Where r  is the time constant of anisotropy decay, 0r and 

1r  represent initial value and residual value, respectively. 

Figure 3 shows the TRFL anisotropy experimental results of 
T01, T02, and T03 in THF solution at 510 nm and 550 nm, 
respectively. The fitting results are summarized in Table I. It can 
be seen from the results that, there is a fast anisotropy decay 
process at wavelength of 510 nm for all the three compounds. 
The lifetimes of the process are ~500fs, 415fs, 350fs for 
monomer, dimmer and trimer, respectively. The initial 
anisotropy value and resistant value is 0.65 and 0.46 for 
monomer T01. For dimmer T02, the initial anisotropy value and 
residual value is 0.57 and 0.43. Trimer T03 hold the smallest 
initial anisotropy value and residual value (0.52/0.36), the more 
branches, the smaller two values. When the probe wavelength 
tuned to 550 nm, no obvious anisotropy decay process was 
observed for all three compounds. The two values remain at 
some value. The value is also decrease with increase of number 
of branches. Usually, large initial anisotropy value as well as fast 
decay indicates strong intramolecular interactions which directly 
affect energy redistributions and bring large nonlinear optical 
effect [10]. This may be a reason why TPA cross section of 
trimer T03 is is about 5.32-fold larger than that of monomer T01, 
the anisotropy decay time is shorter than that of  monomer T01. 
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TABLE I. THE TIME-RESOLVED FLUORESCENCE ANISOTROPY 
RESULTS OF MONOMER, DIMER AND TRIMER T01, T02 AND T03. 

 T(fs) R1 R0 R 550nm 
T01 ≈500 0.65 0.46 0.4 
T02 ≈415 0.57 0.43 0.38 
T03 ≈350 0.52 0.36 0.2 
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FIGURE III. EXPERIMENTAL SETUP FOR THE OKG METHOD. R1: 
BEAM SPLITTER; R2: HIGH REFLECTIVE MIRROR AT 800 NM; P1 AND 
P2: POLARIZERS (CROSS-POLARIZATION); KERR MATERIAL: CS2 IN 

5 MM CELL; PMT: PHOTOMULTIPLIER TUBE. 

IV. SUMMARY 

In this study, the anisotropy of monomer T01, dimer T02 and 
trimer T03, are investigated by time-resolved fluorescence 
anisotropy technique. Obvious different between monomer, 
dimer and trimer are observed. It was found that, dimer and 
trimer show shorter depolarization time and less residual values 
in comparison with monomer. The anisotropy of trimer shows 
faster decay and small residual value indicates there are strong 
intramolecules interactions among branches, this maybe the 
enhancement mechanism of TPA properties for the trimer. 
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