

Enforcing Multiple Security Policies for Android System*

Tao Guo
China Information Technology Security Evaluation Center

Beijing, China
guotao@itsec.gov.cn

Puhan Zhang
China Information Technology Security Evaluation Center

Beijing, China
zhangph2008@gmail.com

Hongliang Liang
Beijing University of Posts and Telecommunications

Beijing, China
hliang@bupt.edu.cn

Shuai Shao
China Information Technology Security Evaluation Center

Beijing, China
shaoshuaib@163.com

Abstract—The popularity of Android makes it the prime target
of the latest surge in mobile malware. Protecting privacy and
integrity of information is helpful for Android users. Currently,
malicious software often achieve the purpose of privacy theft
and malicious chargeback by sending short messages, making
phone calls or connecting Internet surreptitiously. We develop
a novel solution that supports multiple security policies to
provide much of the integrity and privacy that users desire.
We present and implement a security framework for Android
which consists of both mandatory access control in the kernel
layer and role-based access control in the framework layer. It
allows users to define their own security policy and provides
fine-grained access control to (untrusted) applications. We
implemented a prototype system MPdroid for Android 4.0
platform. Experiments show that we can apply this solution to
really help users control applications, block malicious software
without significant performance overhead.

Keywords-security policy; access control; permission;
Android

I. INTRODUCTION
As an open source operating system and associated

software stack for smartphones, Google’s Android gains
increasing popularity recent years. Mcafee’s report[1]
showed that Android is being targeted by hackers more than
any other platform. Android accounts for nearly all mobile
malware and more than 14,000 threats have been discovered
in the first three months of 2013 alone. Mobile malware is
expected to increase in 2013, with some calling it “the year
of mobile malware” for Android users. Targeted marwares
that steal personal information and make malicious
chargeback made up a majority of these attacks[2,3].

Android security depends heavily on discretionary
access control(DAC) protection for Linux file system and
Java APIs permissions check in Android framework layer.
DAC can be easily compromised by malwares. Android
uses its permission model to protect sensitive resources and
functions. However, it has the following shortcomings: there
is no way of granting some permissions and denying
others[4]; the permission assignment can only happen
during the installation of applications; the permissions

cannot be changed or restricted after installation. Moreover,
malwares can exploit the vulnerabilities of Android system
or call Linux APIs to bypass Android’s permissions
checking. To address these problems, we propose an
security framework for Android which consists of both
mandatory access control (MAC) in the kernel layer and
role-based access control (RBAC[5]) in the framework layer.
It allows users to define their own security policy and
provides fine-grained access control to (untrusted)
applications. MAC mechanism allows administrators
enforcing fine-grained access control to confine applications
or process to a tight environment in which they can perform
only specific actions according the security policy. Thus,
untrusted applications are limited and cannot damage the
system. Role-based policies can help users to regulate
applications’ access to the resources on the basis of the
activities that applications execute in the system. A role can
be defined as a set of actions and responsibilities associated
with a particular activity. Then, instead of specifying the
permissions requested by an application, the applications on
Android platform are given authorization in terms of roles.
Furthermore, RBAC allows for a more comprehensive way
of permitting or blocking security relevant actions, because
applications are now associated with roles defined by users.
Thus, RBAC can allow users to confine applications with
the least privilege and separations of duties principles.

Our main contributions are that
(1) A novel solution that supports multiple security

policies for Android platform to provide much of the
integrity and privacy that users desire is proposed.

(2) We implemented a prototype system MPdroid for
Android 4.0 platform. Its effectiveness and performance is
tested with real world applications. We shows that privacy
theft and malicious chargeback is mitigated by our solution
and MPdroid. Our research results can be useful for other
related work in Android security area.

The paper is organized as follows. Section 2 describes the
security mechanism in Android. Our solution to enforce
security policies in Android is given in Section 3. Section 4
describes the implementation of MPdroid system. The
features and performance evaluation are discussed in section

2nd International Symposium on Computer, Communication, Control and Automation (3CA 2013)

© 2013. The authors - Published by Atlantis Press 165

5. Related works are discussed in Section 6. We conclude in
Section 7.

II. SECURITY MECHANISM IN ANDROID
Android system uses two levels security mechanisms --

Linux DAC and Android permissions checking. In Android
kernel layer, each file is associated with an owner user and
group IDs and three tuples of read, write and execute. The
kernel enforces the first tuple on the owner, the second on
users belonging to the group, and the third on the other users.
Generally speaking, an application can not access files
created by other applications. In Android framework layer,
permission checking for Java APIs is the main security
mechanism. Android users can install third-part applications
through the Android Market or other application stores,
Android treats all applica-tions as potentially buggy or
malicious, No application should have default permissions
to affect either other applications or the underlying
operating system. Each application runs in a single process
with a low-privilege Linux user ID, and only can access its
own files by default according to the DAC in Android
kernel. If an application needs to access sensitive resource,
it has to request the corresponding permissions specified in
the Androidmanifest.xml file at install-time. To enforce
permissions, different parts of Android system components
or services invoke the permission checking mechanism to
verify whether a given application has a valid permission.
Android permissions checking is placed in the API
implementation of the system components, not in
applications them-selves.

These above security mechanisms are insufficient and
coarse-grained to defend increasing kinds of security threats.
Linux Security Modules (LSM[6]) is an effective security
solution for Linux system. LSM had been developed as
lightweight and general-purpose access control framework
for Linux kernel. It supports various access control models
which are implemented as loadable kernel modules,
including SELinux[7], Smack[8] and so on. LSM framework
and certain a mandatory access control will be helpful if they
are introduced in Android..

III. SECURITY FRAMEWORK ENFORCING MULTIPLE
POLICIES FOR ANDROID

We propose an security framework for Android system,
which supports multiple security policies and provides
mobile phone users fine-grained access control[9] on the
level of Android applications. The security framework is
shown in figure 1. In the application layer, applications
process are running and requesting some permissions,
RBAC policy tool is used by uses to define and manage the
policies. In Android framework layer, for each permission
request form applications, RBAC engine makes access
decision according to the information of RBAC database. In
Android runtime, init process and zygote process will
read/write them into RBAC database and load the MAC
policy rules into memory.

We implement the framework by leveraging Smack in
the Android kernel and implementing RBAC in the Android

framework layer. The role-based policy management tool is
placed on the Android application layer through which
mobile phone users can create/edit/assign/delete roles for
specific applications, in addition, this tool can also generate
automatically smack rules in terms of roles. For example,
when a user defines “contact” role which have the
permissions of making phone calls, sending text messages
or accessing contact files, the smack rule will be formed that
permit the application process to communicate with the
radio process and contact process. RBAC database contains
roles information, associated permissions information and
smack rules for specified applications, which was developed
as SQLite database. RBAC engine decides if an application
can access a resource according to the RBAC database.
Linux kernel with Smack uses LSM infrastructure to attach
labels to kernel data structures, including tasks, inode and so
on. Smack Labels are stored as extended attributes (xattrs)
on files. The only operation that is carried out on the labels
is comparison for equality. A task can access an object only
if their labels match or there are explicit smack rules to
allow it. For example, a process A wants to send a packet to
another process B, if the smack labels of the two process are
not the same, then, a smack rule must be designed that the
smack label of A process have “write” permission to the
smack label of B process. A smack rule consists of a subject
label, an object label and the access mode desired, this triple
is written to “/smack/load” file, which installs the rule in
Linux kernel. The smack rule is executed by smack kernel
module which can control the behaviors of Linux process.
When Android system runs, the init process or zygote
process will read the RBAC database and load/write smack
rules.

The idea underlying our security framework is to enforce
the fine-grained access policy after dynamic permission
checking. We implement the idea by hooking the permission
checking function. Permission checking occurs in
“checkUidPermission” method of the “Package Manager
Service”. Hence, we insert a hook in “checkUidPermission”
method, When an application invokes a system service or
compon-ent, Android checks the access permission with the
method “checkUidPermission” of the class Package
ManagerService. After the Android permission checking,
From RBAC database, our framework locate the permissions
set “permset” with the uid and judge whether the permissions
requested by the appli-cation with such uid can be granted.
By introducing different roles, important permissions such as
“Android.permi-ssion.CALL_PHONE”,
“Android.permission.INTERNET”, can be restricted to some
specific roles. For example, if a user wish to install a game
application, meanwhile he does not want the game
application access network or send SMS messages, firstly, he
can create a role (for example named as “game”) without the
permissions of SEND_SMS or INTERNET, then he can
assign the “game” role to the game application, thus, anytime
the behavior of sending SMS or accessing internet from the
game application will be denied by the access control
framework.

166

IV. IMPLEMENTATION OF MPDROID
When implementing MPdroid, we built the modules

shown in figure1, improved the smack LSM module, and
created some specific smack rules for Android system. We
encountered several challenges as follows.

Fig. 1. The architecture of access control system for Android

1. Android does not support smack: we need to reconfig
and recompile the Android4.0 goldfish kernel, and let
goldfish kernel support ext4 file system.

2. Android bionic library does not support extended
attributes: In order to label smack labels for Linux files and
tasks, we need to use the Linux system call--“setxattr”,
“getxattr”. We modified bionic and regenerate these system
calls.

3. Android cannot load smack policy: The
straightforward solution is to develop an external tool kit to
load smack rules and label smack labels for tasks and files.
we developed a library “libsmack” which provides core
functions such as “setsmackrule”, “setfilelabel”,
“settasklabel” and so on. Then, we cross-compiled
“libsmack” as dynamic and static link library.

4. It is difficult to create a custom smack policy for
Android: Although smack rule is simple, it is not easy to
find the subject and object and create smack rules to provide
integrity and privacy protection for Android. We observed
that many important services such as sending SMS or phone
calling are achieved on the basis of binder driver. For
example, radio process whose uid is 1001 and which is
forked by Zygote exchanges IPC binder data with the radio
process forked by Init, in order to access contact, processes
have to exchange IPC binder data with contact process
whose uid is 10000 and which is forked by Zygote. So we
added a hook in smack LSM and modified the binder driver
in the kernel.

If two tasks want to exchange IPC binder data in binder
driver, they must have “write” permission to each other.
Malwares can bypass the permission checking, but they
cannot bypass IPC checking. Furthermore, we modified Init

code so that Init process will load smack policy early.
Meanwhile, we modified Zygote code, when a privileged
process is forked by Zygote, it can read or write smack
policy from RBAC database and load smack rules into
“/smack/load” file.

V. EVALUATION
To evaluate the effectiveness of our solution and

MPdroid prototype system, we selected Baidu contact,
Kugou music, DroidDream[10] applications as testing cases.
We created “contact” role for Baidu contact, “mediaplayer”
role for Kugou music and “malware” role with some specific
permissions for DroidDream. Only “contact” role can send
SMS, make phone calls and access contact, when roles are
created, the smack rules are automatically generated by our
system(see fig. 2). The uid of an application is used as either
subject label or object label, “sms” is defined as the smack
label of SMS database file, “contact” as the smack label of
contact database file. In order to make sure that any app can
start normally, it should communicate with tasks or files
whose smack labels are “_”. When we tried to send SMS
with Baidu contact, the result showed that SMS sending
failed shown as fig.3.

Fig. 3. Testing Baidu contact application

Baidu contact process whose uid is 10017 really
exchanged IPC binder data with “1001” radio, the hook in
the binder driver stopped Baidu contact from sending SMS
because of a rule “10017 1001 -”. Fig.4 shows, Advanced
File Manager and Super Ringtone Marker which are two
variants of DroidDream malware cannot access SDcard or
Internet.

APP. RBAC Policy Tool

RBAC Database

Zygote

Request permission

Framework
Layer

Read/Write

Init

Read smack rules Read /Write smack rules

/smack/load

Load smack rules Load smack rules

Linux kernel

Read smack

IPC
binder

IPC control

Android
kernel

Android
Runtime

RBAC Engine

Application
Layer

_ 1001 rwxa
1001 _ rwxa
_ 10000 rwxa
10000 _ rwxa
1001 sms rwxa
10017 sms rwxa
1001 10017 rwxa
10017 1001 _
10017 _ rwxa
10037 _ rwxa
10037 sms rwxa
10000 10037 rwxa
10037 10000 rwxa
10017 10037 rwxa
10037 10017 rwxa
1001 10037 rwxa
10037 1001 rwxa
10000 contact rwxa
……

Fig. 2. smack policy rules

JavaBinder(615): Failed binder transaction!

167

Fig. 4. Blocking DroidDream malware from SDcard and Internet access

To test the performance of MPdroid, we modified
LmBench3 and cross-compiled it to make it run in
Android4.0, then we ran LmBench3 independently 100
times to compare the performance overhead without and
with our framework on Android system. The comparison
results shown in Table 1 show that MPdroid causes little
performance loss.

TABLE 1. PERFORMANCE COMPARISON

Measure Item Android MPdroid Overhead
Simple syscall(ms) 0.2118 0.2126 -0.38%

Simple read(ms) 0.3032 0.3033 -0.03%
Simple write(ms) 0.2627 0.2692 -0.03%
Simple stat(ms) 1.2076 1.2170 -0.78%

Simple open/close(ms) 2.0931 2.1253 -0.02%
Single handler installation 0.4317 0.4313 +0.09%
Single handler overhead 1.0362 1.0239 +1.1%

Protection fault(ms) 0.3620 0.3692 -2%
Pipe latency(ms) 8.6882 8.7909 -1.2%

AF_UNIX_sock_stream
latency(ms) 11.1714 11.3212 -1.3%

Process fork+exit(ms) 100.7778 100.7925 0%
Process fork+execve(ms) 350.1285 350.1333 0%

VI. RELATED WORK
Several security extensions have recently been

developed to enhance Android security[11] in different
ways. CRePE[12] takes the mobile devices context into
account when making security related decision, however its
access control ability is not mandatory and can be bypassed.
Our security solution does not take context into account,
which is considered in our future work. Apex[13] is a policy
enforcement framework for Android that allows a user to
selectively deny or grant Android permissions for
applications at installation time. However, a previously
rejected permissions will never be granted again, effectively
crippling the application. Our solution allows a more
flexible way of grouping permissions into different roles
which can be changed depending on the current activity and
user. So users can grant or deny permissions for an
application in terms of role when the application is running.

Many other security solutions try to prevent the so-
called permission re-delegation attack, which let malwares
without certain a permission to misuse another application
with that permission to act on behalf of the malicious
application. IPC inspection[14] could prevent the attack by
reducing the overall permission set of a calling and a called
application to their intersection of permissions. Our system
can also do this by IPC checking occurred in kernel. In

essence, the above research work is based on the Android
permissions checking, while our system not only give a
fine-grained Android permissions checking mechanism, but
also improve smack module to control Linux process in
Android kernel. Ongtang[15] introduced a security
framework called Saint that governs fine-grained access
control at run-time by analyzing and restricting the
communication channels between applications. Saint’s
policy does not consider single application and therefore
does not provide the type of access control we propose in
this paper. SEAndroid[16] is an on-going project to identify
and address critical gaps in the security of Android,
however, our system enforces the RBAC besides of MAC,
is more light-weighted and need not add/modify excessive
codes to Android.

VII. CONCLUSION
We develop a novel solution that supports multiple

security policies to provide integrity and privacy for users.
We present and implement a security framework for
Android which consists of both mandatory access control in
the kernel layer and role-based access control in the
framework layer. It allows users to define their own security
policy and provides fine-grained access control to (untrusted)
applications. We implemented a prototype system MPdroid
for Android 4.0 platform. Experiments show that we can
apply this solution to really help users control applications,
block malicious software according their self-defined policy,
without significant performance overhead.

ACKNOWLEDGMENT
The paper is supported by the National Natural Science

Foundation of China (61272493), the National High
Technology Research and Development Program of China
(2012AA012903).

REFERENCES
[1] Mcafee report, http://www.mcafee.com/us/resources/reports/rp-

quarterly-threat-q1-2013.pdf.
[2] Yajin Zhou, Xuxian Jiang, “Dissecting android malware:

characterization and evolution”, IEEE Symposium on Security and
Privacy 10.1109/SP. 2012.

[3] J. Cheng, S. H. Wong, H, Yang, “Virus detection and alert for
Smartphones”, In Proc. of MobiSys’07, pp. 258–271, June 2007.

[4] Android Reference: http://developer.Android.com/guide/ topics
[5] Ravi S.Sandhu, Pierangela Samarati, “Access control: principle and

practice”, IEEE Communication Magazine 0163-6804/94.
[6] Marshall D. Abrams, Leonard J. LaPadula, Kenneth W. Eggers,

Ingrid M. Olson., “A generalized framework for access control, An
informal description”. Proc. of the 13th National Computer Security
Conference, pp135–143, October. 1990.

[7] P. Loscocco and S. Smalley. “Meeting critical security objectives
with security-enhanced linux”. Proceedings of the 2001 Ottawa Linux
Symposium, July 2001.

[8] Casey Schaufler, “Smack in embedded computing”, Proceedings of
the Linux Symposium Volume Two 2008.

[9] D.F.Ferraiolo, D.M.Gibert, N.Lynch. “An examination of federal and
commercial access control policy needs”, 6th NIST-NCSC National
Computer Security Conference, pp. 107-116, Baltimore, MD, 1993.

[10] http://virus.netqin.com/Android/a.spread.DroidDream .z/.

168

[11] Enck William, Machgar ongatang, Patrick mcdaniel, “Understanding
android security”, IEEE computer society 1540-7993/09 2009.

[12] Mauro Conti, Vu Thien Nga, Nguyen, and Bruno Crispo, “CRePE:
context-related policy enforcement for android”. ISC 2010, LNCS
6531, pp. 331–345, 2011.

[13] Mohammad Nauman, Sohail Khan, Xinwen Zhang, “Apex: extending
android permission model and enforcement with user-defined runtime
constraints”, ACM 978-1-60558-936-7/10/04.

[14] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk,
“Permission re-delegation: attacks and defenses”, USENIX, 2011.

[15] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel.
“Semantically rich application-centric security in Android”. Journal
of Security and Communication Network, 2011.

[16] Stephen Smalley and Robert Craig, “Security Enhanced (SE) Android:
Bringing Flexible MAC to Android”, 20th Annual Network and
Distributed System Security Symposium (NDSS '13), Feb 2013.

169

