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Abstract

In this paper we discuss a theoretical model for both the free-surface and interfacial
profiles of progressive nonlinear waves which result from introducing an obstacle of
finite height, in the form of a ramp of gentle slope, attached to the bottom below the
flow of a stratified, ideal, two-layer fluid. The derived equations are solved by using a
nonlinear perturbation method. The effect of the height of the ramp, also some flow
parameters, such as the ratios of depths and densities of the two fluids, have been
studied and illustrated.

1 Introduction

Over the past decades there has been a great deal of interest in the study of finite-amplitude
effects in internal wave systems. Recently, Kevorkian and Yu [1], in 1989, studied the
behaviour of shallow water waves excited by a small amplitude bottom disturbance in
the presence of a uniform incoming flow. This paper describes a theoretical model to
investigate the behaviour of nonlinear free-surface and interfacial waves when passing over
an obstacle in the form of a ramp of gentle slope. Our primary motivation for the present
investigation is to calculate the share of both the free-surface and interfacial profiles, and
to discuss the influence of both geometrical and flow parameters of the profiles. In section
2 we extended the mathematical technique applied by Helal & Molines [2] in determining
the nonlinear free-surface and interfacial waves in a tank with the flat horizontal bottom
and generalized the problem applied by Boutros et al. [3] in determining the interfacial
waves with the rigid upper boundary over irregular topography. Nonlinear pertrubation
method is used, leading, in sections 3 and 4, to two expressions for both free-surface and
interfacial waves that are derived in the form of expansions in powers of €2, where ¢ is a
small parameter that provides a measure of weakness of the dispersion.
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Finally, in section 5 we have illustrated and discussed the effect of the density ratio,
R, the thickness ratio, H, and the ramp height, L. A comparison has been made between
the second and fourth order approximations for the free-surface and interfacial profiles
showing that the error, difference between them, is of order 10~7 and 1079, respectively.

2 Formulation of the problem

Two-dimensional irrotational motion is considered of a stably stratified two-layer inviscid,
incompressible, fluid with the bottom surface in the form of a ramp inclined by a small
angle a. We assume that the flow field due to the wave motion remains irrotational. A

23 y=(tana)x+a

Figure 1. Geometrical configuration of gravity waves over a ramp in nondimensional
variables

The fluid flows into the channel in the region left of the bottom slope region with uni-
form velocity U* and a gravity wave is created on the interface of the two fluids. The
Y* coordinate is measured vertically upwards and X* perpendicular to this direction to
the right. The heights of the undistrubed lower and upper surfaces are Hy and H3 + HY,
respectively. The lower and upper surfaces disturbances from uniform conditions are given
by Y* = h* (X*, 7%) and Y* = f* (X*, "), respectively. The component of gravity, ver-
tically downwards, is g, and Y* = W* (X*) is the bed of the channel. The equations of
motion are thus the Euler equations together with the continuty equation. All variables

are nondimensionalized by using the characteristic length Hj and time (g/H%)~/?, and
accordingly
U=U*/[gH3)"* and ¢ = ¢/ (H; [gH)'/?) (2.1)

where velocity potentials of upper and lower layers are denoted by ¢*(1>, (]5*<2>, respectively,

7* is the time, p(l) and p(2) are densities of the upper and lower fluids, respectively.
Moreover, assuming that the fluids are in the undisturbed uniform state up/down

stream at infinity, we impose the following boundary conditions with respect to X*

p—Ur (i=1,2) as X*— doo. (2.2)
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An essential step which makes our problem easier in handling is to define an appropriate
stretching of the horizontal coordinate while leaving the vertical coordinate unchanged
due to the fact that the horizontal dimensions are much greater that the vertical ones,
thus we define

r=¢eX, y=Y, t=er, (2.3)
where ¢ is a small parameter. Thus the basic equations for this system can be written as

ngb;lg + gzﬁ?(j/) =0, h<y<f, —o0o<z<o0, (2.4.1)

202+ =0, W<y<h, -oo<z<oo (2.4.2)

with conditions

oM =cf, + 2V f,

at y=f, (2.4.3)
26+ 31 (08 + (0] + f — H — 1 =
o) = chy + 20D, (i=1,2)
Rieg”) + 12 (04))2 + (6§ +h—1} = | at y=h, (2.4.4)
{eot? + 12 ()2 + (6§))%] + h — 1}
o2 =2pPW, at y=W (2), (2.4.5)
epl) =1 (i=1,2) as z — oo, (2.4.6)

where the density ratio R = p(!)/p(®) (less that unity) and the thickness ratio H are two
characteristic parameters of the system, and W (z) has the form

W (z) = ax + a, (2.5)
where
(0, 0) z <z
(a, a) = ¢ (—azp, a) xo<x <z (2.6)
(L, 0) T >y

and L is the ramp height.

Since we consider weakly nonlinear waves, we expand the dependent variables as power
series in the same parameter ¢ around the undisturbed uniform state, following Helal and
Molines [2], we get

o) = ¥ 2 HGY) (z,y,t)  (i=1,2)

n=0

f= go 2" fon (2, y, t) (2.7)

h = Z 52nh2n(x7y’t)

n=0
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with fo =1+ H, hg=1.

The scale parameter €, which is assumed to be small, provides a measure of weakness
of the dispersion.

The boundary conditions on the free surface, equations (2.4.3), and on the interface,
equations (2.4.4), are expanded as a Taylor expansion of the type

(£24)°

o Vil - (28)

[V]y:yo+52A = [V]yo + 52A [V;/]yo +

When (2.3), (2.5), using the expansion (2.6), are inserted into equations (2.4) and powers of
€ are sorted out, a sequence of ”cell” problems emerges, from which the unknown profiles,
f and h, can be determined.

3 Orders of approximations

3.1 The first-order approximation:
Equations of the first-order approximation finally give, for i = 1,2,

G\ = BO (2,1), (3.1.1)
where B(") (x,t) are unknown functions to be determined.

3.2 The second-order approximation.:

From the equations obtained from the second-order approximation, we conclude that

BW =0 (i=1,2) as x— oo, (3.2.1)

fa(a,t) = —BY (3.2.2)
and

ho (x, 1) = ﬁ (RBY — B, (3.2.3)

3.8 The third- and fourth order approrimations:

Equations of the third- and fourth order approximations, finally give, for ¢ = 1,2,

; 1 ) . ,
Gz(a) =5 y?BY +yC (2,t) + D (2,1) (3.3.1)

where C) (z,t) and D@ (x,t) are arbitrary functions that satisfy the following boundary
conditions:

CW=0 (i=1,2) as z — oo, (3.3.2)

C? (z,t) = (WB?), at y=W (z), (3.3.3)

DY =0 (i=1,2) as  — +oo. (3.3.4)
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Substituting equation (3.3.1) in the boundary conditions obtained from the third- and
fourth-order approximations we obtain

(H+1)BY) - W - B =0, (3.3.5)
and for i = 1,2

B - + ﬁ (RBY — B) =0. (3.3.6)
From equations (3.3.3), (3.3.5), and (3.3.6) we get

0, BY = By, (3.3.7)

0, B® = RBY, (3.3.8)

where 07, Oy are the differential operators

0?07

0, =-H (1 — R) W + @7 (339)
0 0? ow o0

From equations (3.3.7)—(3.3.10) we can get, after getting rid of B() and substituting for
W (z), the following differential equation for the unknown function B(%)

~H(1—R) (1—a—az)B? +(H+1 —a—ax)sz)tt—Bt(i)t—

Trre

aB® 4 3Ha(1-R)B® =0 (3.3.11)

rxrxr

and for fy(x,t) and hy(x,t) we can get the following relations

2
fawty = IV B0 eV - D - L B0y (3312)
and
ha (2,1) = —— {R B0 ey pM L gy Lpe)
’ 1—R 9 zxt t t 9 T 2 xxt
1
c® - p® — 5 (BP)2}. (3.3.13)

3.4 The fifth- and sixzth order approrimations:

Equations of the fifth- and sixth order approximations lead to, for i = 1,2,

. 4 3 2. A A
G = 2B, — %O (@,6) = 5 D) (@,6) + yEO (2,0) + FO (a,),  (3.4.1)

- ﬁ TTTT

where E) (z,t) and F (z,t) are arbitrary functions that satisfy the following conditions:

Eg(cl) =0 as x — to00, (3.4.2)
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w3 w?
E® (z,t) = (—? BR), + o

C® (z,t) + WD§?>) , (3.4.3)

FO=0 (i=1,2) as & — +oo. (3.4.4)

Introducing equations (3.2.2.)—(3.4.1) in the boundary conditions, we have the following
relations:

(H +1)?

H+1)3
% B — o ch) — (H +1) Dzz® + EO + M pl)
H +1)?
G0 5 e eff + D v2B B <0
and for i =1,2
B, — 208~ DO+ BO + L [(B — RBY) Bl)+
3] TXrrxr 2' xrxr xrxr 1 _ R t ¢ P

, 1
(B — RBY) B9 - L B2, + 0 + DY -

xxtt

R (—% BGs+ ) + ) + BP BY - RBV BY| =0 (3.4.6)
As it will be seen later on, there is no need to calculate fg(x,t) and hg (x,t) due to
the fact that the error, difference between the second- and fourth-order approximations is
of order 1079 for the interfacial wave profile and 10~ for the free-surface profile.
Thus, the problem is now reduced to solving equations (3.3.3), (3.4.5), and (3.4.6) for
BW, B@ ™M and C® and next equations (3.4.3), (3.4.5) and (3.4.6) for DY), D),
EW and E®@.

4 Case of a progressive wave

It must be remarked that our procedure is valid as long as a > &2, otherwise a two-
parameter analysis has to be carried out. Moreover, we shall invoke the smallness of a and
write perturbation expansions for B®, ¢ =1,2, in the form

B® = BY) + aB + a?B{ + .. (4.1)

Substituting (4.1) in (3.3.11) and equating coefficients of a/), j = 0,1,2,... we get the
following system of differential equations

08P = B, B~ (42)
where O, A are two differential operators defined as

0? 0? 0? 0?
)

0= (1#0% + 515) (1/10% + 52& (4.3)
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and
o =2H(a—1)(1 — R), (4.4)
Br=(H+1—a)+[(H+1—-a)?+20]"/? (4.5)
By = (H+1—a)— [(H+1—a)? + 20]/2, (4.6)
B o o 0? 0?
Equation (4.2), for j = 0, has the following general solution
2 -
By” =) Ti(¢) (4.8)
i=1
with
Si=x—uyt; =x+uyit; §3=x —yot; 4= + yal, (4.9)
and
yf:—%; i=1,2 (4.10)

and T; (i = 1,2,3 and 4) are arbitrary functions of the variable .
Let us choose a pure progressive wave, i.e., B@ = B() (&) with & = x — yt, where y
may take the two possible values y; and y, as defined in (4.10). Thus,

B9(z,t) = BD(z —yt) = BO()  (i=1,2). (4.11)
From equations (2.5), (3.3.5), and (4.1) we get

CO = uB{), + apBl), + -+ (4.12)
with

p=H+1-1y% (4.13)
Substituting (2.5) and (4.1) in (3.3.3), we get

C® = aB), + olaBY, + (@BE)a] + o?[aBE), + (@B)).] + - (4.14)

Again substituting equations (4.1), (4.12) in equation (3.3.6), we get after equating coef-

ficients of o, al,a?, ....

B’) = B, (4.15)

BY) = %332 +AB{Y, (4.16)
where

A= L= H (4.17)
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The elimination of E() in equations (3.4.5) and (3.4.6) gives, for a, the following system
of differential equations

2 2
gl (1) gl ) _ pBY (1)
('YQR )0+ (1- —7—2)1)() PyB e + Q2Bl B, (4.19)
1_R/)"¢ G= 1) e T 2Pogeee T2 0,6€7 :
where
H(H? +3H +3 H 2
po= HUCESHES) w gy o) 1 (1 1 1)@u— H - 1)+
(4.20)
YA\ — 2a) + R(2pu — 1)
21— R)
Q1= L (A2 + 21— 3), (4.21)
Ir
P = 5(1—3a+2a3)+742[(2a—1)A—R(2 —1)] (4.22)
276 2(1 - R) e '
Qo = ﬁ[}z(zx +1) - 322, (4.23)

For the nontrivial solution of Dé? and Dé?, the following differential equation for Bél)

should be satisfied:

MiB{eee + MaB B, = 0, (4.24)
where
7 7
M, = (1—a— 1_R>P1— (m)Pg, (4.25)
,YQ 2
M, = (1—a— 1_R)Q1—( R)QQ. (4.26)
Define
I = BfY. (4.27)

Thus equation (4.26), by virtue of equation (4.29), will be transformed to the Boussi-
nesq equation

erggg + Mgrrg = 0. (4.28)

Helal & Molines [2] mentioned that the general solution of equation (4.28) was found
by Byrd and Friedmann [4] to be, in terms of the Jacobi elliptic function sn (u, k), as

s == gty o) (20
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where Y7 is the greatest of the roots of the polynomial resulting from integrating equation
(4.27) twice and k is the modulus of the Jacobian elliptic function.

For small values of k, the above elliptic function could be calculated in terms of circular
functions, see Milne-Thomson [5], thus we have

B = wifi- k;”’f A+ k)] + (E ) cos 206
(%—ﬁ) cos46€ — % cos 60€ — 55{(%2 + %4) sin 20&+ (4.30)

fisinaac) + 22l + i con2ae]].

where

= 1( 34Y) )1/2 (4.31)

T2\ k241
Substituting in equation (4.3) for B(()?:r): and B(()?t) , we get the following fourth-order
linear partial differential equation

3
LBY = 3 (A,zsin2nd€ + A,4q cos 2n6€)+

n=1
2
56 S (Apysx cos 2n6€ + Apirosin 2n8¢)+ (4.32)
n=1
§2€2(Agw sin 26€ + Aq3 cos 26€) + Aqo,

where the coefficients Aq, Ao, ..., A13 are given at the end of the paper, as Appendix 1.

Solving equation (4.34) for the unknown B§2), following Miller [6], and calculating Bft)

we get

Bﬁ) = Béi) + 17183 + (rg 4 1322 + ryxt + r5t2) sin 26€ + (16 + rra 4

rgxt + rot?) sin 40€ + 719 sin 60€ + (ri1x + riot + r1zr3+
(4.33)
r142°t + ri5at? + ri6t3) cos 20€ + (ri7x + rigt) cos 466+

(r19x + raot) cos 66&.

where the coefficients 71,72, ..., 729 are also given at the end of the paper, as Appendix 2.

Taking into consideration the value of B[()}J): from equation (4.31), we can get Bé? and

thus, using (4.34) for Bft), we can get Bglt)

1 1 2 T 2
By = (B - —ByY)- (4.34)

In order to account for the nonlinear effects, the O(e*) equations have to be considered
as well. Thus bearing in mind the linear system of equations (4.21), the principial and
secondary determinants of this system, we come to the result that

DY =0  (i=1,2). (4.35)
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Hence, fy(x,t) and hy(x,t) may be rewritten in the simplified form

1 1 2
S, t) = {SOH + D + 1= 20} {Bil + aBlL,, } - 5 (B +aBLl) (4.36)
and
ha(z,t) = ﬁ (%(A — R)+ puR — Nazx +a) + %) B(g’l;xt—k

27 (R - 5+ A5 —a) B+
1 2 az)’(az + 2) (My2 , @ (R—a) ()2
31-R) (R M=) (Boa)" + 2(1 - R) (B12)"+
ala (1) e} 2 ax\’ (1) p
TR PoutT-R <R—>\ —1_a> By 2 B1
Hence, h and f will take the form

pat) = 14 2RGS0t ) N B}
etha(z,t) + O(£%) (4.38)
and
fla,t) =1+ H — (B + aBY)) + & fa(w, 1) + O(e9), (4.39)

where f4(z,t) and hg(z,t) are given by (4.36) and (4.37), respectively, and B((th) and Bft)
are given by (4.30) and (4.34), respectively.

5 Presentation of results and discussion

A number of terms which have been obtained seems to be a good measure for the purpose
of illustrating the effect of the parameters R, H, and L. The error, difference between
the fourth and second order approximations, in both the interfacial profile and the free
surface for the two approximations is of order 107 for the interfacial wave, while that in
calculating the free surface profile is of order 10~7. Thus, we limit our calculations up to
the second-order approximation.

In figure 2, we illustrate the effect of the density ratio, R, on the wave profiles at the
interfacial and free surfaces. As it is clear, for both waves the less the density ratio, the
higher will be the wave. An important remark needed to be mentioned is that for both
waves, especially in the downstream region, the period of oscillation is much longer for
the case when the two fluids are of very nearly equal density than that of significantly
different densities. This is due to the fact that the presence of the upper fluid has the
effect of decreasing the velocity of propagation of the wave, which consequently causes
the decrease of the potential energy of a given deformation of the interface as well as the
increase of inertia. This result comes in good agreement with Lamb [7].

Figure 3 shows different wave profiles h(x,t) and f(z,t) for different values of the
thickness ratio, H. For the interfacial wave profile, and for the free surface as H increases,
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x~axis

Figure 2. Effect of the density ratio, R, on the interfacial and free surfaces for
L =0.25H =0.6, « =0.015625 rad, t =50, zg = 10 and =z = 31
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Figure 3. Effect of the thickness ratio, H, on the interfacial and free surfaces for
L =0.25, R=0.8, a =0.015625 rad, t = 50.0 and zg = 10 and z; = 31
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Figure 4. Effect of the ramp height, L, on the interfacial and free surfaces for
H=0.6, R=0.8, a =0.015625 rad, t = 50, £y = 10 and z = 31
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there will be a significant drop in the wave profile, and an increase in the amplitude of the
wave along the ramp interval will take place.

In figure 4, we study the effect of changing the ramp height, L. For the interfacial
wave, as L increases, a kind of violent disturbance in the wave profile appears, starting
by a sudden increase in the profile and ending by a steep decrease at the beginning of the
downstream interval. This phenomenon is also true for the free wave.

Appendix 1

Ay = Wi (—4 + 6k? + 0.0625k%), Ay = W1 (2k* — 8k?),
Az = Wy (—1.685k%), Ay = Wy (4k% — 2k%),
As = AWk, Ag = Wh1k?,

A7 = Wo(2 — 2k% — 0.563k%), Ag = Wo(2k? — 0.25k%),
Ag = 0.563Wsk*, Ao = 0.25Wok?,

Aqp = Wa(2k? — 0.5k%), Ay = Wak?,

A1z = —0.25Wak?, Ay =H(1 - R)(a—1),
where

W) = (42 — H(1 — R))(=3Vik26%) (k2 + 1) and
Wy = (y2 — H(l — R))(—3Y1k252)(k2 + 1)_1,

Ais=H+1—a, Ag = (4y0) 1 (241 — Ag — Ag),
Az = (2y)~ 10 A1, Arg = (2y) 1A — Asg),

A = (16y6) 1 (44, — As), Aoy = (46)7 1 Ay,

Ag = (6?/6)_11437 Agy = (4y5)’1(A13 —2A7 — AH),
Apz = —(6y) "1 (Ag + Ag), Agy = —(2y) 15 A3,

Ags = —(16y6) "1 (4As + Aya), Agg = —(4y)As,

Agr = _(63/6)711497 Agg = (A5 — 2y2)_1,

Agg = =2y~ T A14Ags, Asp = —2Ag,

A31 = A15A287 A32 = —y_1A15A28,

Asz = yAi15Ass, Azy = (2y) T A4 Ao,

Ass = 3yA28, Az = (29)_1141514287

Azr = (SyH(a - 1)(1 - R)_1A287 Asg = (y2A15 + 2A14)A28’
Aszg = (2y) (6414 + y*Ai5) Ass, Ao = 2A15A95,

Ay = (4y8)71(2A1 — Ay — Ag + 26[A11 — A13), Ay = —6As,

Ayz = 0.5y0 Ag, Aygg = 0.5(A13 — AH),

Ay = (16y6) 1 (445 — A5 + 46 A1), Agg = —0.25A15,

Agr = —(2y) 1 (As + Ag + 0A13), Agg = 0.25(Ag + Ag + 26A13),
Agg = —0.25y0 Ay, Asg = 0.25A5,

Asy = 3(Aszs)* Ass, Asg = (Asg)? Ay,

As3 = 6A38(A30A439 + A32A40), Asy = 6A33A30A35,

Ass = 6A38(Az0A440 + A32435), Asg = —3(As5)? Asg,

A57 = _31438(("41210 + 2A39A35>, A58 - 2A35A40A387



170 M. ABD-EL-MALEK and A. TEWFICK

Asg = Agg + 2431 Ags — 2439 Aso + 3(Ass)? Az + Asr,

Ago = Ago — (Ass)?,

Ag1 = Az1 +2A35Asg — (Ago)? — 2435 Ao + 3A30(As8)* + Ass,

Agy = Agza + 2A33A3g — 2(Aszs) Aso + Ase,

Apz = 2(AzgAse + AzoAso + AzpAsg) — Aso — 6A39A35A40 + As3,

Aps = Asg + 2(As1Ass + AsoAso) — 3As5(As5As9A40)% + Ass,

Ags = 2(Ag0 A0 + AspAgs) + Asy — 3A40(Ass)?,

Age = Aszg + 2A38A40 + As1, Agr = Ao + 2A35A35,

Agg = 2A38A39 + Aso,
Agg = Ags + (160) "1 (2461 Aog + AgaAso),

Ao = Asg + 2A33 Agg, A71 = 0.5A38(As0 + 2426 A3g),

A7y = (46)w ™! (A35As50 + 2426 Ag7), A7s = (46)1(2A26 Ags + As0Ae7),

Ay = Ao + (26%) 1 (Agg Ao + AarAs1 + 2A45As2),

A7y = Ays + 2A38Ayr, Are = Agg + 0.5A35(Asg + 2A33 A37),
A7y = (26) 71 (As5 Aus + 2467 Asr), Azg = 01 (A35A49 + 2A67 Aus + Age Aar),

Azg = (46) 71 (As5 Aus + AsrAur),
Ago = Aq1 + (26%) 71 (As3As0 + 3A17 461 + As2As2),
As1 = Ag2 + 3AssAur, Agy = Ayz + AsgAgp + 3A17(Ass)?,

Ass = Aus + AsgAar + (26%) 1 (AsoAg1 + AszAg2),

Ass = 0.333(Asg Aag + Az (Ass)?) + Ar17(Ass)?,

Ags = (46%) 71 (3A17Ag3 + AsAss + AszAgs) + (28) 1 (Ass Aus + An Agr),
Asg = 0" (3417466 + Ass Asz + Asz Asr),

As7 = (20) " (As2Ags + AasAer + 3A17Ags), Ags = (26)~1(Asgs Aus + 3417 Agr).

Appendix 2

—(24H(a —1)(1 — R))"tA4yp
= (853)71%137(2?;5(1474 — Ags) — A7z — Ags)
(86%) 71 Ag7(2yd(Asy — Asg) — As1)
(46%) 7t As7 (y6(Azs — Asgs) — As2)
r5 = (86%) "1 Ag7(2y6(Are — Agr) — 3As4)
= (646%) 1 As7(4yd(Agg — Azg) — Arg — Asg — AsgAus)
rr = (160%y) "t As7Ass 15 = (1662) "1y Asr Aqo
rg = (165%) 'y Azr An
= (2166%) T Az7(y(66 Azr — Ag7) — AsgAz1)
(85°%) 7' Az7(2yd A7r + Azs — Ags) + (46%) " Azr Ago
12 = (46°)7 1‘437(95(1478 + As3) + Az — Asr)
= (46%)~ yA37A88
= (46%)71
= (46%)71
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