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Abstract 
In electricity industry, accurate load forecasting 
plays a key role in assuring the stability of power 
network and society. By far, there are many 
methods and models proposed to enhance the 
accuracy of forecasting results. On the basis of 
analyzing the performance of particle swarm 
algorithm (PSA) and SVM, the paper proposed a 
new forecasting model which is proved to be able to 
enhance the accuracy, improve the convergence 
ability and reduce operation time by numerical 
experiment. The proposed model is expected to 
offer a valid alternative for application in the load 
forecasting field. 

Keywords: Particle swarm algorithm, Support 
vector machines, Load forecasting 

1. Introduction  
With the rapid development of electricity industry, 
accurate forecasting of short-term electricity load 
has received growing attention. Hence, during 
recent decades, many researchers in load forecasting 
field tried their best to study load forecasting 
techniques and models.  

One such method is a weather insensitive 
approach that uses historical load data to forecast 
future electricity load. Generally, it is known as the 
Box–Jenkins autoregressive integrated moving 
average (ARIMA) [1-3]. Christianse [4] and Park et 
al. [5] designed exponential smoothing models by 
Fourier series transformation for electricity load 
forecasting. Mbamalu and El-Hawary [6] proposed 
multiplicative auto-regressive(AR) models that 
considered seasonal factors in load forecasting. The 
analytical results showed that the forecasting 
accuracy of the proposed models outperformed the 
univariate AR model. Douglas et al. [7] considered 
verifying the impacts of temperature on the 
forecasting model. The authors combined Bayesian 
estimation with a dynamic linear model for load 
forecasting. The experimental results demonstrated 
that the presented model is suitable for forecasting 
load under imperfect weather information. 
Sadownik and Barbosa [8] proposed dynamic 
nonlinear models for load forecasting. The main 

disadvantage of these methods is that they become 
time consuming to compute as the number of 
variables increases. To achieve accurate load 
forecasting, the load forecasting model employed 
state space and Kalman filtering technology, which 
were developed to reduce the difference between the 
actual and predicted loads. Moghram and Rahman 
[9] devised a model based on the state space and 
Kalman filtering technology, and verified that the 
proposed model outperformed four other forecasting 
methods. The disadvantage of these methods is the 
difficulty of avoiding observation noise in the 
forecasting. 
    The regression approach is another popular 
model for forecasting electricity load. Regression 
models construct the cause–effect relationships 
between electricity load and the independent 
variables. The most popular models are linear 
regression, proposed by Asbury[10], which 
considers the ‘‘weather’’ variable in the forecasting 
model. Meanwhile, Papalexopoulos and Hesterberg 
[11] added ‘‘holiday’’ and ‘‘temperature’’ to the 
model. Furthermore,  Solimanetal. [12] designed a 
multivariate linear regression model in load 
forecasting. These models were assumed to be linear 
and are computationally intensive. However, these 
independent variables were not justified for use 
because the terms are known to be nonlinear.  
     With the development of artificial intelligence, 
the artificial neural network was introduced into 
load forecasting field to enhance the forecasting 
performance. Rahman and Bhatnagar [13] presented 
a knowledge based expert system (KBES) approach 
for electricity load forecasting. Park et al. [14] 
established a three layer back propagation neural 
network to implement daily load forecasting 
problems. Moreover,  Hoetal. [15] developed an 
adaptive learning algorithm for forecasting the 
electricity load in Taiwan. Novak [16] applied radial 
basis function (RBF) neural networks to forecast 
electricity load. However, these models cannot solve 
the same problems of minimizing the expected risk 
and determining network structure scientifically. 
     Recently, support vector machine (SVM) 
proposed by Vapnik, which achieves the structure  
risk and experience risk minimization, and also 
minimizes the boundary of vapnik chervonenks(VC) 
dimension, was applied to electricity load 



forecasting. Cao [17] used the SVMs experts for 
time series forecasting. The generalized SVMs 
experts contained a two stage neural network 
architecture. The numerical results indicated that the 
SVMs experts are capable of outperforming the 
single SVMs models in terms of generalization 
comparison. Cao and Gu [18] proposed a dynamic 
SVMs model to deal with non-stationary time series 
problems. Experimental results showed that the 
dynamic SVMs model outperform standard SVMs 
in forecasting non-stationary time series. Meanwhile, 
Tay andCao [19] presented C-ascending SVMs to 
model non-stationary financial time series. 
Experimental results showed that the C-ascending 
SVMs with actually ordered sample data 
consistently perform better than standard SVMs. 
Tay and Cao [20] used SVMs in forecasting 
financial time series. The numerical results indicated 
that theSVMs are superior to the multi-layer back 
propagation neural network in financial time series 
forecasting. Lu et al.[21]applied SVMs in predicting 
air quality parameters with different time series.The 
experimental results indicated that SVMs 
outperform the conventional radial basis function 
(RBF)networks. However, how to reduce input 
parameters of SVM and select key influencing 
factors is still a problem for SVM-based load 
forecasting. 
   This paper attempts to introduce particle swarm 
algorithm into SVM-based load forecasting to 
overcome the shortcomings of above load 
forecasting methods. The experimental results 
reveal that proposed model outperforms SVMSA 
model proposed by other researchers. 

2. New model  

2.1. Particle swarm algorithm  
Particle swarm algorithm (PSA), as a kind of global 
search algorithm, was proposed by Kennedy and 
Eberhart in 1995[22]. It searches for the optimal 
value by sharing historical information and social 
information between the particle individuals. Many 
examples have showed that this algorithm has many 
advantages, such as simple concept and good 
convergence capacity, and can be applied in some 
optimization fields. PSA is based on swarm 
behavior, which can move the individuals to the best 
positions according to their fitness to the 
environment. Every individual in the swarm is 
regarded as a particle that has no volume and can fly 
in a D-dimensional search space at a fixed velocity, 
which is regulated by the flight experience of the 
particle itself and those of other particles.   
   Suppose that m particles form themselves into a 
swarm in a D-dimensional search space. iX  
represents the position of the ith  particle, which is 
marked as ）（ iDiii xxxX ,,, 21 ⋅⋅⋅= ； iV  is the 

velocity of the ith  particle, which is marked as 
）（ iDiii vvvV ,,, 21 ⋅⋅⋅= ; the best position of some 

particle is ）（ iDiii pppp ,,, 21 ⋅⋅⋅= , and the best 
position of the swarm is ）（ gDggg pppp ,,, 21 ⋅⋅⋅= .  
Hence, the position and velocity of the particles can 
be expressed with the Eq.1 and Eq.2 

 

（1） 
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where ω  is an inertial weight which represents the 
influence of the previous velocity of a particle upon 
its current velocity. The bigger theω , the bigger the 
velocity idv ，the bigger the search space for the 
particles, which helps find new solution spaces. The 
smaller the ω , the smaller the idv , which helps 
find a better solution in the current space. 1c  and 

2c  are acceleration constants. ),0( 1crand  and 
),0( 2crand  are the random numbers evenly 

distributed, respectively, in ],0[ 1c  and ],0[ 2c . If 
1c =0，then the particle only has ‘self-experience’,  

its convergence rate may be fast, and it is easy to 
fall into the local optimum. If 2c =0, then the 
particle only has ‘social experience’, all particles 
become moving by themselves without interaction, 
and the probability of finding a solution is little. If 

021 == cc , then the particle has no any 
‘experience’, and all particles become disorderly 
and unsystematic. Generally, idv  is conditioned by 

],[ maxmax vvvid −∈  to stop the particles from 
flying out of the solution area. 
   The basic steps for PSA: 
Step1: Initializing all particles. Set the initial 
position ip  and the initial velocity idv  of all 
particles randomly, and optimal initial position is 
regarded as the best position gp of swarm; 
Step2: Calculating the fitness value of all particles; 
Step3: Comparing the current fitness value of each 
particle with its own historical best position ip , if 
its own historical best position ip is smaller, then it 
is replaced with the current fitness; 
Step4: Comparing the best current position of all 
particles with the historical best position gp  of the 
swarm, if gp is smaller, then it is replaced with the 
best current position of all particles; 
Step5: Refreshing the positions and velocities of all 
particles according to the Eq.1 and Eq.2; 
Step6: Judging whether the termination criterion is 
satisfied, if ‘Yes’, then stopping the iteration 
operation; if ‘No’, then going back to Step 2. The 
termination criterion could be a given iteration steps, 
or a given fitness of the particles, or the standstill of 
the optimal solution. 
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2.2. SVM regression  

Following the introduction of the ε  insensitive 
loss function, SVMs have been used to solve 
Non-linear regression problems. The basic concept 
of the SVM regression is to map nonlinearly the 
original data x into a higher dimensional feature 
space. Hence, given a set of data N

iii axG 1},{ == ）（  
(where ix  is the input vector; ia  is the actual 
value and N is the total number of data patterns), the 
SVM regression function is 

    bxxfy ii +== ）（ϕω)(              (3) 

   Where ）（xiϕ  is called the feature that is 
nonlinearly mapped from the input space x. The 

iω and b are coefficients that are estimated by 
minimizing the regularized risk function 
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 and C and ε  are prescribed parameters. In Eq. 

(4), ）（ yd ,εΘ  is called the ε  insensitive loss 

function. The loss equals zero if the forecasted value 
is within the ε tube (Eq. (5) and Fig. 1). The 

second term, 2||||
2
1 ω , measures the flatness of the 

function. Therefore, C is considered to specify the 
trade off between the empirical risk and the model 
flatness. Both C and ε  are user determined 

parameters. Two positive slack variables ξ  and *ξ , 

which represent the distance from the actual values 
to the corresponding boundary values of ε  tube 
(Fig. 1), are introduced. Then, Eq. (4) is transformed 
into the following constrained form: Minimize             
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   With the constraints, 

Nidbx iiiii ,,2,1,)( * ⋅⋅⋅=+≤−+ ξεϕω     (7) 

Nibxd iiiii ,,2,1,)( ⋅⋅⋅=+≤−− ξεϕω     (8) 

       Niii ,,2,1,0, * ⋅⋅⋅=≥ξξ  

This constrained optimization problem is solved 
using the following primal Lagrangian form: 
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Fig.1: Parameters used in SVM regression. 
 

  Eq. (9) is minimized with respect to the primal 
variable iω , b, ξ  and *ξ , and maximized with 
respect to the non-negative Lagrangian 
multipliers iα , *

iα , iβ  and *
iβ . Finally, the 

Karush-Kuhn-Tucker conditions, which is applied to 
obtain an optimal solution of Eq. (9), are applied to 
the regression, and Eq. (6), thus, yields the dual 
Lagrangian,  

Subject to the constrainsts, 
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  The Lagrange multipliers in Eq. (10) satisfy the 
equality 0** =iiαα . The Lagrange multipliers and 

*
iα  are calculated and an optimal desired weight 

vector of the regression hyperplane is  
),(
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Hence, the regression function is 
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  Where ),( ixxK  is called the kernel function. 
The value of the kernel is equal to the inner product 
of the two vectors x  and ix  in the feature space 

)(xϕ  and )( ixϕ , i.e. )()(),( ii xxxxK ϕϕ ∗= . 
Any function that satisfies Mercer’s condition can 
be used as the kernel function. The matrix K, 

N
jjxxKK 1)),(( == , satisfies Mercer’s condition 

when all its eigenvalues are greater than or equal to 
zero. In this work, the Gaussian function, 

)
||||

*
2
1exp( 2）（

σ
ji xx −

− , is used in the SVM. 

2.3. Optimization algorithm of  

input variables based on PSA 

For an input variables set },,,{ 21 NfffF ⋅⋅⋅= ，
where N is the size of the variables set, if  
represents an input variable. The following binary 
vector is introduced to stand for the feature selection: 

},,,{ 21 NsssS ⋅⋅⋅= , ]1,0[∈is , Ni ,,2,1 ⋅⋅⋅= . 
The value 0 and 1 for is  respectively, stand for 
whether the if  in set is selected or not. The SVM 
performance E is regarded as the target function. 
Hence, the Optimization of input variables selection 
of SVM can be expressed as 

           )(max
S

SE  

 s.t. 
Nis

sssS

i

N

,,2,1],1,0[
},,,,{ 21

⋅⋅⋅=∈
⋅⋅⋅=

          (13) 

   This optimization problem can be solved by 
PSA, in which the variable selection S serves as the 
individual set whose fitness is the SVM 
performance E.  

The basic steps as follows: 
Step1: Initializing all particles. The parameters such 
as σ , ε  and C should be involved in every 
particle. The parameters are encoded in this way: In 

PSA, the swarm has m particles, each particle is a 
3-dimensional vector that contains the SVM 
parameters such asσ , ε  and C. The coding of 
ith  particle is defined as ),,( 321 iiii xxxX = , 
where 321 ,, iii xxx  respectively denotes σ , ε  
and C. Each parameter is randomly valued in its 
limited area at the Initialisation of the particle 
swarm. 
Step2: Calculating the fitness value of all particles; 
Step3: Comparing the current fitness value of each 
particle with its own historical best position ip , if 
its own historical best position ip is smaller, then it 
is replaced with the current fitness; 
Step4: Comparing the best current position of all 
particles with the historical best position gp  of the 
swarm, if gp is smaller, then it is replaced with the 
best current position of all particles; 
Step5: Refreshing the positions and velocities of all 
particles according to the Eq.1 and Eq.2; 
Step6: Judging whether the termination criterion is 
satisfied, if ‘Yes’, then stopping the iteration 
operation; if ‘No’, then going back to Step 2. The 
termination criterion could be a given number of the 
iteration times, or an operating time for the 
computer, or a data accuracy attained by the 
iteration. In this paper, the termination criterion 
stands for iteration times that is 60, and that the 
fitness must be obviously raised in any 20 
successive iterative steps. 
   If the preset iteration times is reached, or the 
fitness is not obviously raised in any 20 successive 
iterative steps, the termination criterion is 
considered satisfied, and the iteration procedure 
halts. 

2.4. Forecasting using new model  
Step 1: optimizing and selecting input variables of 
SVM based on algorithm in Section 2.3  
   According to the characteristic of load change in 
a day, we select the temperature information of 
forecasted day 、 the past three days and the 
corresponding days of past two weeks as 
temperature genes, marked as 

)}14(),7(),3(),2(),1t(,{ −−−−− tdtdtdtdddt , 
and the historical load data of the corresponding 
time point and 3 hours before that of past three days, 
the corresponding time point and 3 hours before that 
of the corresponding day of past two weeks, marked 
as ),( jiL , where d and t respectively represent 
forecasted day and forecasting time, 

}14,7,3,2,1{ −−−−−= dddddi ， },1,2,3{ ttttj −−−= .  
Therefore, the total number of input variables 

of SVM is 68.  
    Because the data processed by PSA should be 
discrete, we should disperse the sequential data 
before optimization. There are many methods to 
disperse sequential data. In this paper, we adopt the 
dispersing minimal information entropy algorithm.  



    After this process, we can mine the effective 
data to get the optimized input variables set, which 
is marked as ),1( tdL − 、 )1,1( −− tdL 、

),2( tdL − 、 )1,2( −− tdL 、 ),7( tdL − 、

dTmin, 、 dT ,avg 、 1,avg −dT 、 dH and 1−dH , where 
),( tdL  is load of time point t of forecasted day, 

dTmin,  is the minimal temperature of forecasted day, 
dT ,avg  is the average temperature of forecasted day, 

and dH  is the humidity of forecasted day.  
    Step 2: SVM and load forecasting 
    According to the type of day load, we classify 
the load into two classes, work time load and 
weekend load. 24 SVM models are built for every 
kind of load to forecast the load value of 24 hours in 
forecasted day. The optimized input variables got in 
Step1 is used as final input variables of SVM, and 
LIBSVM is adopted as training software. The 
training results of SVM are used to forecast the 
short-term electricity load.                                                                                   

3. Numerical example  
This example used load data of some area in 
Shanghai from 7, 1, 2004 to 9, 1, 2004, which can 
gotten from Reference 23, to forecast the day load 
from 8, 1, 2004 to 8, 10, 2004 so as to demonstrate 
the forecasting effect and compare the forecasting 
performance of the new model and SVMSA model 
proposed in Reference 24.  
   The mean absolute percent error (MAPE) of 
forecasting result is  

∑
=

−
=

N

i iR
iFiR

N
E

1 )(
|)()(|1
           (14) 

   Where )(iR  and )(iF  respectively 
represent the actual value and forecasted value of 
load, and N=24. 
   The MAPE values of forecasting results by new 
model and SVMSA model are showed in Table 1. 

  It is obvious that the new model presented has 
higher accuracy than the SVMSA model. Moreover, 
the forecasting processes of these two models reveal 
that the new model has better convergence ability 
and consume less time than the other two models. 

To demonstrate accuracy and good 
convergence ability of new model, we respectively 
adopt these two models to forecast load values of 24 
time points on 08, 08, 2004. The forecasting results 
and relative error are showed in Table 2. The load 
curves gotten by these two models are plotted in Fig. 
2. 

4. Conclusions 
In electricity industry, accurate load forecasting 
plays a key role in assuring the stability of power 
network and society. On the basis of analyzing the 

New Model SVMSA Model 
Day 

MAPE/% MAPE/% 

08,01,2004 1.8318 2.0652 

08,02,2004 1.2451 1.3843 

08,03,2004 1.3648 1.6528 

08,04,2004 1.0653 1.0549 

08,05,2004 1.9828 2.0682 

08,06,2004 2.1874 2.6619 

08,07,2004 1.2845 1.9533 

08,08,2004 1.0998 1.2562 

08,09,2004 1.5284 1.9968 

08,10,2004 1.3524 1.5624 

Average value 1.4942 1.7656 

  Table 1: Comparison of load forecasting results. 

New Model SVMSA Model 
Time 

Point 
Forecasted

result/MW

Relative 

Error/%  

Forecasted 

result/MW 

Relative 

Error/%  

Actual 

Load 

/MW 

00:00 557.1985 0.3563 558.3842 0.5699 555.22

01:00 508.4877 0.6468 510.6525 1.0753 505.22

02:00 462.2445 -0.393 471.6853 1.641 464.07

03:00 438.2548 0.5587 437.9685 0.493 435.82

04:00 417.8325 0.5686 418.5560 0.7428 415.47

05:00 403.6997 0.5554 398.8474 -0.653 401.47

06:00 409.8234 -0.752 415.8895 0.7167 412.93

07:00 448.3784 0.5761 463.2896 3.9209 445.81

08:00 535.6455 1.4865 538.6651 2.0586 527.80

09:00 638.9413 0.8223 640.8553 1.1243 633.73

10:00 716.5421 0.1582 713.5426 -0.261 715.41

11:00 768.4993 0.4154 772.3315 0.9162 765.32

12:00 808.7852 0.8624 810.6524 1.0952 801.87

13:00 835.4866 0.313 840.6645 0.9346 832.88

14:00 826.9983 0.4895 829.7844 0.828 822.97

15:00 814.8782 0.5749 815.9986 0.7132 810.22

16:00 818.6651 0.9813 816.4579 0.709 810.71

17:00 808.1154 0.6859 809.8775 0.9055 802.61

18:00 794.9282 0.8818 796.5237 1.0843 787.98

19:00 817.7558 -0.178 810.3526 -1.081 819.21

20:00 826.6425 1.3477 828.9748 1.6336 815.65

21:00 803.3597 1.5022 809.5586 2.2854 791.47

22:00 704.2674 0.6686 695.6298 -0.566 699.59

23:00 627.8865 1.6146 628.5536 1.7225 617.91

MAPE 0.7246% 1.1555%  

Table 2: Comparison of load forecasting result. 

 



 

Fig.2: The load curves. 
 
performance of particle swarm algorithm (PSA) and 
SVM, the paper proposed a new forecasting model 
which is proved to be able to enhance the accuracy, 
improve the convergence ability and reduce 
operation time by numerical experiment. The results 
of numerical experiment also indicate that the new 
model outperformed the other model proposed by 
some researchers. There are many causes for new 
model to have so superior performance. Firstly, PSA 
can reduce the input variables of SVM. Secondly, 
this new model can select the effective variables in a 
shorter time, improve the performance of the SVM 
classifier, and has fewer errors and a better real-time 
capacity than the SVMSA model. 

This work is the first to apply the SVM model 
with PSA to short-term electricity load forecasting. 
The experimental results showed that the proposed 
model can offer a valid alternative for application in 
the load forecasting field. 

References 
[1] B. Gep and J. Gm, Time series analysis, 

Forecasting and Control, San Francisco, 
Holden Day, 1970.  

[2] S. Vemuri, D. Hill and R.Balasubramanian, 
Load forecasting using stochastic models. 
Proceeding of the 8th Power Industrial 
Computing Application Conference, 1:31–37, 
1973. 

[3] J.F. Chen, W.M. Wang and C.M. Huang, 
Analysis of an adaptive time-series 
autoregressive moving-average(ARMA) 
model for short-term load forecasting. Electric 
Power Syst, 34: 187–196, 1995. 

[4] W.R. Christianse, Short term load forecasting 
using general exponential smoothing. IEEE 
Trans Power Apparatus Syst, 90: 900–911, 
1971. 

[5] J.H. Park, Y.M. Park and K.Y. Lee, Composite 
modeling for adaptive short-term load 

forecasting. IEEE Trans Power Syst, 6: 
450–457, 1991. 

[6] M. Gan and E. Me, Load forecasting via 
suboptimal seasonal autoregressive models 
and iteratively reweighted least squares 
estimation. IEEE Trans Power Syst, 
8:343–348, 1993. 

[7] A.P. Douglas, A.M. Breipohl, FN. Lee and R. 
Adapa, The impact of temperature forecast 
uncertainty on Bayesian load forecasting.  
IEEE Trans Power Syst, 13: 507–1513, 1998. 

[8] R. Sadownik and E.P. Barbosa, Short-term 
forecasting of industrial electricity 
consumption in Brazil. J Forecast, 18: 
215–224, 1999. 

[9] I. Moghram and S. Rahman, Analysis and 
evaluation of five short-term load forecasting 
techniques. IEEE Trans Power Syst, 4: 
1484–1491, 1989. 

[10] C. Asbury, Weather load model for electric 
demand energy forecasting.  IEEE Trans 
Power Apparatus Syst, 94: 1111–1116, 1975. 

[11] A.D. Papalexopoulos and TC. Hesterberg,  
Aregression based approach to short-term 
systerm load forecasting, IEEE Trans Power 
Syst, 5:1535–1547, 1990. 

[12] S.A. Soliman, S. Persaud, K. El-Nagar, ME. 
El-Hawary, Application of least absolute value 
parameter estimation based on linear 
programming to short-term load forecasting.  
Electrical Power Energy Syst, 19: 209–216, 
1997. 

[13] S. Rahman and R. Bhatnagar, An expert 
system based algorithm for short-term load 
forecasting. IEEE Trans Power Syst, 3: 
292–299, 1988. 

[14] D.C. Park, M.A. El-Sharkawi, RJ. Marks II, 
LE.Atlas and MJ.Damborg, Electric load 
forecasting using an artificial neural network. 
IEEE Trans Power Syst, 6: 442–449, 1991. 

[15] K.L. Ho, Y.Y. Hsu and C.C. Yang, Short-term 
load forecasting using a multilayer neural 
network with an adaptive learning algorithm. 
IEEE Trans Power Syst, 7: 141–149, 1992. 

[16] B. Novak, Super fast auto-configuring 
artificial neural networks and their application 
to power systems. Electric Power Syst Res, 35: 
11–16, 1995. 

[17] L. Cao, Support vector machines experts for 
time series forecasting. Neurocomputing, 51: 
321–339, 2003. 

[18] L. Cao and Q. Gu, Dynamic support vector 
machines for non-stationary time series 
forecasting. Intell Data Anal, 6:67–83, 2002. 

[19] F.E.H. Tay, L. Cao, Modified support vector 
machines in financial time series forecasting. 
Neurocomputing, 48: 847–861, 2002. 



[20] F.E.H. Tay and L. Cao, Application of support 
vector machines in financial time series 
forecasting. Omega, 29: 309–317, 2001. 

[21] W. Lu., W. Wang., AYT. Leung., SM. Lo, 
RKK. Yuen., Z. Xu and H. Fan., Air pollutant 
parameter forecasting using support vector 
machines.  Proceedings of 2002 International 
Joint Conference, 1:12–17, 2002. 

[22] S.F. Yuan. and FL.Chu, Fault diagnostics 
based on particle swarm optimization and 
support vector machines. Mechanical Systems 
and Signal Processing, 21:1787-1798, 2007 

[23] Q.B. Zhang, HZ. Cheng, QS. Liu, JW.Zheng 
and DH.Ni, Short-term load forecasting based 
on attribute reduction algorithm of rough sets 
and support vector machine. Power System 
Technology, 8:56-58, 2003. 

[24] P.F. Pai and WC. Hong, Support vector 
machines with simulated annealing algorithms 
in electricity load forecasting. Taiwan. Energy 
Conversion and Management, 2:2669–2688, 
2005. 

 


