
3D Skeleton Extraction Method using Potential Field on OpenCL

Lu Lu

Department of Computer Science and Engineering

South China University of Technology

Guangzhou, People’s Republic of China

lul@scut.edu.cn

Xuewen Wang

Department of Computer Science and Engineering

South China University of Technology

Guangzhou, People’s Republic of China

xuewen.wang@foxmail.com

Abstract—For 3D skeleton extraction, the algorithm

based on generalized potential fields, known as the

outstandingly flexible and robust method, is suffering from

seriously heavy computational burden. In this paper, we

put forward a parallel algorithm based on OpenCL

heterogeneous parallel framework, which can make full use

of the great computing power provided by heterogeneous

model of CPU+GPU. This algorithm focuses on computing

the potential field of each interior point in parallel, with the

goal of cutting down the time of potential field calculation to

relieve the whole computational burden of this extraction

algorithm. The proposed parallel algorithm was evaluated

by using several large 3D object volumes. From the tests, we

can find that the whole calculation time can be reduced up to

5 to 10 times, without affecting the extraction’s accuracy.

Keywords: parallel computation, OpenCL,

heterogeneous parallel framework, 3D curve

skeleton.

I. INTRODUCTION

Skeleton of 3D object is its representation in one

dimension. For a more formal definition, it’s the locus of

centers of interior maximal circles (2D) or spheres (3D).

Skeleton of 3D object is widely used in many fields such

as computer animation, visual navigating, model

recognition, Collision detection, Motion planning and so

on. Therefore, for the last years, researchers have paid

high attention to it , and a series of mature methods are

found out for this problem. Some of them are based on the

extension of methods for 2D objects and some are born

for 3D objects.

Generally speaking, several various approaches are as

following:
(1) Based on Topology thinning. Intend to constantly cut

so-called simple points without changing the topology

of model in order to realize the skeleton extraction.

Gong proposed the parallel thinning algorithm and

reduced the original cost [1].

(2) Distance field based method uses the distance of each

interior volume with the boundary volume to obtain the

ridge points of model. Sundar designed an approach to

calculate the minimal distance and build up a model

retrieval system [2].

(3) Cornea proposed the skeleton extraction algorithm

based on the potential field between volumes, which

applies the concept of potential field in physics to get

the balance points of model and finally extracts

skeleton according these key points [3].

(4) Geometric methods deal with those 3D objects

described as triangular or polygonal meshes. They

usually generate the Voronoi graph of the 3D object at

the beginning, and then draw the medial surface

according to the graph. Finally get the skeleton in 1D

after the clip of medial surface [4].

(5) Based on model decomposition. Lien [5] notices that

the decomposition of model without destroying its

connectivity is just like so-called skeleton extraction.

Therefore he puts forward the algorithm based on

decomposition of approximate convex body of model.

Get sag sex of each vertex trough calculating the

surface bridge and recognizing surface concave ground

and iteratively do the decomposition according the sag

sex to create the skeleton.

These approaches are mostly implemented serially in

CPU, some of which are suffering from high computing

burden and consuming lots of resources. Besides, some

methods are designed for parallel execution with multi-

core CPU, but they don’t bring out large improvements in

execution consumption. For those 3D objects represented

by discrete data, the algorithm based on potential field

works well, but still, suffers high computational burden.

Several improved extraction algorithms based on potential

field are presented in [6-8], however, there still has large

space to improve since this kind of algorithm has its

potential parallelism. If the execution time decreases to be

acceptable, it will become a better choice than others for

skeleton extraction, along with its perfect extraction result.

Parallel computing with GPU [9] makes it possible.

GPU is born as a fixed-function special-purpose

processor and has turned into a full-fledged parallel

programmable processor with additional fixed-function

special-purpose functionality, along with its rapid

development in computing. GPU has the features such as

flow processing, high dense parallel computing,

programmable line etc. In addition, its ability of floating-

point calculations is more powerful than that of CPU. As

a result, more and more people pay attention to general-

purpose GPU. General-purpose GPU [10] applies the

heterogeneous model of CPU+GPU, where CPU is

responsible for complex logic processing such as branch

judgment and affairs management, those not suitable for

parallel computing, and GPU is in charge of handling

intensive large-scale data parallel computing. This

International Conference on Computer Science and Service System (CSSS 2014)

© 2014. The authors - Published by Atlantis Press 305

mailto:lul@scut.edu.cn
mailto:xuewen.wang@foxmail.com

computing model, making full use of GPU’s powerful

processing ability and high storage bandwidth to make up

for the shortage of CPU performance, has great advantage

in achieving high performance by exploring potential

computing ability of computer and controlling the cost.

Researchers have done some studies on GPU such as

Local Search [11], Large Graph algorithm [12], simulate

the Mush-room Cloud [13], bringing out perfect

improvements

This paper centers on two important points, one is

making full use of GPU’s ability in high-dense data

parallel computing. The other one is digging out its

potential market and discussing how to map applications

from CPU to GPU. So we put forward a parallel method

for potential field algorithm implemented based on

OpenCL heterogeneous framework [14-15]. It tries to

solve the problem about consuming too much computing

resources along with enormous calculation load by

making the most of CPU+GPU heterogeneous model. In

this model, CPU cares about logic control and GPU

provides its powerful parallel computing ability. This type

of computing model overcomes the limit of CPU cores for

multi-thread, since GPU has hundreds of cores and is able

to meet the need of large scale of data parallel. 3D

skeleton extraction for large objects requires great

computing power and costs a lot, this paper wants to cut

down the computing burden through a parallel algorithm

implemented using OpenCL framework. It’s a new try to

combine parallel computing with CPU+GPU heterogene-

ous model.

II. SKELETON EXTRACTION BASED ON POTENTIAL

FIELD

In physics, we all know that an electrical charge

generates a potential field, and whenever another charged

object approaches, there will be a force between them [7].

The force can be identified by the formula: F=kq1q2/d
2
,

where k is a constant, q1, q2 is the charge and d is the

distance between them. When we apply the theory to

application of computer graphic, k will be ignored. For

expression in 3D format, it’s described as:

 Fx =
x2−x1

|d12 |α +1Fy =
y2−y1

|d12 |α +1Fz =
z2−z1

|d12 |α +1

Where 𝛼 is the force strength, 𝑥1, 𝑥2 are the positions

where the charges are placed. In addition,

 d12 = x2 − x1
2 + y2 − y1

2 + z2 − z1
2.

The algorithm is under such assumption: there are

electrical charges distributed upon the outer surface of 3D

objects uniformly. And the core of this algorithm is to

calculate the potential field force of each interior point,

and then do the skeleton extraction on the basis of force

data. For an interior point I, and a set of boundary points S,

the total force vector generated by points in S is:

F I = Fx I, P × iP∈S + Fy I, P × jP∈S + Fz I, P ×P∈S

k .  

Where i, j, k represent the unit vectors in three

coordinates. Furthermore, only P that is visible to I should

be calculated, and visibility can be identified in

mathematics as the following:

P is visible to I 𝝀I+(1−𝝀)P is internal, for ∀𝟎 < 𝝀 ≤ 𝟏.

Considering visibility can reduce the count of points

in set S calculated for point I, algorithms based on the

above formula require high realization complexity.

There’re some easy methods: setting up suitable range

domain for three directions [3] , setting up a fit radius

with using sphere model , considering neighbors’ type

and then use special distance r for each type, such as

1, 2, 3 [16].

The core of PF (potential field) algorithm is:
a. boundary points of object are represented by set S

(P1, P2, …, Pn),

b. interior points are in set T (I1, I2, …, Im),

c. vectors for interior points are described as set Force

(F1, F2, …, Fm),

d. 𝐹𝑚 = 𝐹𝑥 𝐼𝑚, 𝑃 × 𝑖𝑃∈𝑆 + 𝐹𝑦 𝐼𝑚, 𝑃 × 𝑗𝑃∈𝑆 +
 𝐹𝑧 𝐼𝑚, 𝑃 × 𝑘𝑃∈𝑆 .

III. PARALLEL ALGORITHM USING OPENCL

Time consumption of calculating potential field

vectors for interior points composes the main part of the

whole extraction time, thus if it can be reduced effectively,

the whole time will be reduced effectively. The process of

serial implementation on CPU is shown in Fig.1.

Figure 1. The process of serial implementation

There are two for loops which can be made for

parallel execution. At the beginning, our original idea is

trying adopting the advantage of OpenCL so as to amplify

the power of parallelization as much as possible, where

PEs (processing elements) will execute the same kernel

for each interior voxel, and the kernel is responsible for

calculating the vector obtained by outer voxels. But to our

make up set T,S;

for I in T

for P in S

if (I – limit < P < I + limit)

calculate distance between I and P;

calculate Fpx, Fpy, Fpz;

sum to Fx, Fy, Fz;

end if

end for
end for

306

disappoint, since all the workitems for each interior voxel

should sum up their personal result, this method needs

support for atom operations which are not provided for

double data type by GPU. As with such a reason, the final

solution is about just cutting one loop down to parallel

execution. Process of the final adopted parallel realization

on heterogeneous model of CPU+GPU is shown in Fig. 2,

as a result of the consideration that interior voxels are

much more than the outer voxel.

Figure 2. Parallel execution process diagram

For the programming of parallel implementation on

GPU, firstly, allocate memory objects identified for

interior and outer voxels. Since GPU don’t provide

support for allocating memory dynamically, it needs to

define data objects storing information in CPU memory

and then copy them to memory object defined in GPU.

This time, we deal with 3D data and need to use self-

define data type which is supported by GPU. Array

Interior, Outer, Force were used for storing information

about interior, outer voxels and potential field vectors,

parameter limit is used to reduce the amount of outer

voxels that are active in the calculation, numOuter stands

for the size of array Outer and the power strength is

identified by parameter segma.

Secondly, assign the potential field vector calculation

of each interior voxel into a PE on GPU, where each PE

will execute the same kernel responsible for obtaining

total vectors. In this step, it needs to allocate a one-

dimension index space with numInterior work-items,

where numInterior is the count of interior voxels. What

calls for special attention is the design about how the

kernel works, which is shown in Fig. 3. It describes how

the algorithm is redesigned to be suitable for GPU. By

the way, GPU needs to support double data type by

adding such code: #pragma OPENCL EXTENSION

cl_khr_fp64: enable.

Kernel CalPotentialField (Outer, Interior, Force, sigma,

numOuter, limit)

1: id←get_global_id(0)

2: Force[id] . xd ← 0, Force[id] . yd ← 0,
 Force[id]. zd ← 0

3: for all voxels para in Outer do

4: if para is far away from Interior[id] with limit

distance

5: v1← Interior id . x − Outer para .x

6: v2← Interior id . y − Outer para .y

7: v3← Interior id . z − Outer para .z

8: temp ←sqrt(v1 * v1 + v2 * v2 + v3 * v3)

9: r← tempsigma+1

10: Force[id].xd←Force[id].xd+v1 / r

11: Force[id].yd←Force[id].yd+v2 / r

12: Force[id].zd←Force[id].zd+v3/ r

13: end if

14: end for

Figure 3. Kernel code of potential field algorithm on GPU

IV. EXPERIMENT RESULTS

 This paper focuses on improving the execution of
skeleton extraction algorithm through adopting the new
computing method: heterogeneous parallel computing with
OpenCL. To validate the parallel algorithm, we compare
its implementation using OpenCL with serial realization of
the original algorithm on CPU. Both of them are
implemented in C and C++ language, and the extracted
skeletons are shown by OpenGL, rendering obtained key
points.

The experiment is designed based on the open
procedure provided by Cornea from Rutgers University
[17]. With limit of time and technology, this pager just
cares about reducing time of calculating the potential field
vectors. Several tests have been made to prove the
algorithm feasible and effective. The details information of
the extracted skeleton is showed in Fig. 4 and Fig. 5. And
the most suitable value for parameter strength is ∂=5 found
from many tests, and the divergence threshold used in tests
is 25%.

Figure 4. Core skeleton of cow

GPU

each PE executes the

same kernel concurrently

CPU

make up set S, T

GPU

for all I form T, calculate total vector

Fm obtained by points from S

CPU

Copy back results data array F from

GPU memory

CPU

Extract skeleton with obtained data

307

Figure 5. Skeleton of cow（divergence threshold is 25%）

As is shown in Table I and Fig. 6, while the size of 3D
object is within certain range, potential field (PF)
calculation composes the main part of the whole algorithm
(Knight and Cow indicate this case). What’s more
important to be mentioned is that, the proposed method
makes PF calculation time rise linearly and slowly, even
though there is a highly increase in object’s size. Pay
attention again to Fig. 6, you can find the parallel method
factually decreases the influence caused by interior points.
If the size is too large, it will increase the count of
boundary points along with that of interior points largely,
but the effect of interior points is cut down by our
algorithm, then the main time consumption will be the left
processing about extracting skeleton. Just as shown by the
object colon and m112, the whole time is much longer
than that of PF calculation.

Table II shows the execution information on CPU and
GPU. The exciting results shown in Fig. 7 prove, for large
3D objects, this proposed parallel algorithm based on
OpenCL framework really reduces the computational load
and improves efficiency of potential field method with a
speedup factor of 5-10. At the same time, it guarantees the
accuracy, not like the method applied in article [7].

TABLE I. EXECUTION TIME FOR PARALLEL IMPLEMENTATION

TABLE II. TIME FOR SERIAL AND PARALLEL IMPLEMENTATION

WITH THE SPEEDUP

3D
objects

serial time (ms)
parallel

time(ms)
speedup

PF Total PF Total PF Total

Knight 14586 16302 921 1622 15.8 10.1

Cow 15662 17457 1280 2247 12.2 7.77

Colon 29765 41434 2902 16676 10.2 2.48

Figure 6. Execution time for PF and total calculatio

Figure 7. Execution time for CPU and GPU implementation

V. CONCLUSION

In this paper, we propose a parallel algorithm for 3D

skeleton extraction using OpenCL and prove its validity

and efficiency through simulation experiments.

Experiments show that efficiency of the GPU parallel

implementation of the skeleton extraction algorithm based

on the generalized potential field, compared to that of

traditional CPU serial implementation, has been greatly

improved, and the speedup is basically 5 ~ 10 times.

We concern on the implement calculating internal

force vectors in parallel. But the number of boundary

point is also very large, if we can continue to reduce the

number of boundary points participated in the calculation,

3D
object

volume size
outer

points

inter

points

PF

cal-time

（ms）

total

time

(ms) L M N

Knigh

t
40 39 87 6444 29246 921 1622

Cow 85 31 54 6555 28357 1280 2247

m112 130 300 32 30110
14453

1
3089 11123

Colon 204 132
10
0

28023
16550

0
2902 16676

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

135720 142290 2692800

E
x
ec

u
ti

o
n

 t
im

e
(m

s)

object voxels

PF cpu

PF gpu

cpu

gpu

308

the efficiency of the whole algorithm will continue to gain

more improvement. Therefore, our next step could be to

take into the visibility issues, going on reducing the cost

of time and resources. On the other hand, some steps can’t

be executed concurrently with the considering that GPU’s

processing ability in logic is much worse than CPU. In

addition, GPU has some limits itself, such as limited

video memory and register etc physical properties,

besides, the number of concurrent threads is also

restricted. All of these restrictions have led to the fact that

the algorithm fits for 3D objects having certain restriction

in its size. Considering how to use multi-GPU in parallel

computing is our future work.

VI. ACKNOWLEDGMENT

This paper is supported by Guangdong Production,

Education & Research Project (2011B090400139),

Guangzhou Production, Education & Research Project

(2011Y5-0004).

 REFERENCES

[1] G. WeiXin, B. Gilles, “A Simple parallel 3D Thinning Algorithm”,
In ICPR, ICS Press, ed. 1990, pp. 188-190.

[2] H. Sundar, D. Silver, N. Gagvani, S. Dickinson. ,“Skeleton Based
Shape Matching and Retrieval”, Proc. Conf. Shape Modeling
International 2003.

[3] N.D. Cornea, D. Silver, X. Yuan, R. Balasubramanian,
“Computing hierarchical curve-skeletons of 3D objects”, The
Visual Computer 21, 2005, pp. 945–955 .

[4] T. K. Dey, “Approximating the Medial Axis from the Voronoi
Diagram with a Convergence Guarantee”, Algorithmica, 2001, 38,
(1), pp. 179-200.

[5] L. Jyh-Ming, M. A. Nancy,“Simultaneous Shape Decomposition
and Skeletonization Using Approximate Convex Decomposition”,
Proc. Int. Conf. ACM Solid and Physical Modeling, Cardiff, Wales,
UK, Jun 2006, pp. 219-228.

[6] B. Yunna, S. Xiaodong, Zh. Hongbin, “A semantic segmentation
algorithm of 3D model”, Proc. Int. Conf. Networked Computing
and Advanced Information Management (NCM), 2011, pp. 222-
225.

[7] L´aszl´o Szil´agyi, S´andor Mikl´os Szil´agyi, David Icl˘anzan,
Lehel Szab ó., “Efficient 3D Curve Skeleton Extraction from
Large Object”, Proc. Int. Conf., Springer-Verlag, Berlin,
Heidelberg, 2011, pp. 133-140.

[8] J.Chuang, C.Tsai , M.C.Ko, “Skeletonization of three-dimensional
objects using generalized potential field”, IEEE transactions on
pattern analysis and machine intelligence, 2000, 22, (11), pp.
1241-1251.

[9] D. O. John, H. Mike, L. David, G Simon., E. S. John, C. P.James,
“GPU computing”, Proc. Int. Conf. IEEE, 2008, 96, (5), pp. 879-
886.

[10] http://en.wikipedia.org/wiki/GPGPU, GPGPU.

[11] Th ́e Van Luong, M. Nouredine, Talbi E.G., “GPU-Based Multi-
start Local Search Algorithms”, Proc. Int. Conf. Springer-Verlag,
Berlin, Heidelberg, 2011, pp. 321–335.

[12] H.Pawan, P.J. Narayanan, “Accelerating Large Graph Algorithms
on the GPU Using CUDA”, Proc. Int. Conf. Springer-Verlag,
Berlin, Heidelberg 2007, pp. 197-208

[13] C. Xingquan, L. Jinhong, S. Zhitong, “Effcient Mushroom Cloud
Simulation on GPU”, Proc. Int. Conf. Springer-Verlag Berlin
Heidelberg 2008, pp. 695–706

[14] A. Munshi , “The OpenCL Specification Version 1.1”

[15] t R.G. Benedic, L. Howes, K.David , M. Perhaad, S. Dana, Hetero
-geneous Computing with OpenCL, Published by Elsevier, 2012,
2nd .

[16] MaRi, TieRu, Wu, “Hierarchy Skeleton of 3D object Based on the
generalized force field”, Journal of Computer Application, 2011,
31, (1), pp. 17-18

[17] http://coewww.rutgers.edu/www2/vizlab/NicuCornea/Nicu%20D.
%20Cornea%20-%20home%20page.html , Nicu Daniel Cornea
homepage

309

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5955406
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5955406
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5955406
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5955406
http://en.wikipedia.org/wiki/GPGPU
http://coewww.rutgers.edu/www2/vizlab/NicuCornea/Nicu%20D.%20Cornea%20-%20home%20page.html
http://coewww.rutgers.edu/www2/vizlab/NicuCornea/Nicu%20D.%20Cornea%20-%20home%20page.html

