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Abstract  
Complex industrial processes such as nuclear power 
plants, chemical plants and petroleum refineries are 
usually equipped with alarm systems capable of 
monitoring thousands of process variables and 
generating tens of thousands of alarms which are used 
as mechanisms for alerting operators to take actions to 
alleviate or prevent an abnormal situation. Over-
alarming and a lack of configuration management 
practices have often led to the degradation of these 
alarm systems, resulting in operational problems such 
as the Three-Mile Island accident. In order to aid 
alarm rationalization, this paper proposed an approach 
that incorporates a context-based segmentation 
approach with a data mining technique to find a set of 
correlated alarms from historical alarm event logs. 
Before the set of extracted results from this automated 
technique are used they can be evaluated by a process 
engineer with process understanding. The proposed 
approach is evaluated initially using simulation data 
from a Vinyl Acetate model.  The approach is cost 
effective as any manual alarm analysis of the event 
logs for identifying primary and consequential alarms 
could be very time and labour intensive.   

Keywords: Chemical plants, Data mining, Frequent 
episodes, Alarm logs 

1. Introduction 
Alarms are used as mechanisms for alerting operators 
to take actions that would alleviate or prevent an 
abnormal situation. Chemical plants such as 
petrochemical plants produce huge volumes of alarm 
data on a daily basis. As such industrial processes 
increase in size and complexity, the distributed control 
systems (DCS) that automate and monitor these 
processes have increased in complexity and have 
resulted in an ever increasing number of alarms being 
presented to the operators.  In addition, a view of 
many process engineers has been one of adding alarm 
points to monitor anything that they have some doubts 
about since the addition has no actual dollar cost to the 

company. All it involves is adding alarm points to the 
existing DCS. This practice has undoubtedly resulted 
in the most common complaint – too many 
inappropriate alarms are generated in an emergency, 
thus making the alarm system very difficult to use in 
situations where it is most urgently needed. As an 
example, the alarm system during the 1994 incident at 
the Texaco Refinery, Milford Haven loaded the 
operators with one alarm every 2-3 seconds (20 – 30 
alarms per minute) for a 5 hour duration leading to the 
explosion [1]. 

Although a chemical plant is “data rich”, few of 
them have the time, expertise or the appropriate tools 
to analyze and see how all the process variables as 
well as all the alarm tags are interrelated and whether 
there is a consistent pattern to what is happening. The 
use of statistics in the refining and petrochemical 
industries is a relatively new approach although it has 
been widely used in other areas such as product 
development, parts manufacturing and in research and 
development [2]. In the past, performing a manual 
analysis of such quantities of data would have been a 
very time consuming and intensive process. However,  
the availability of powerful computers nowadays 
means that these alarm events can be stored in a 
database, and off-line data analysis performed to assist 
not only in analysis of past plant alarm system 
performance, but also to predict future alarm system 
behaviour. The nature of process data (i.e. dynamic, 
multidimensional and voluminous) makes it very 
difficult for manual analysis as humans are weak in 
dynamic multi-dimensional analysis. This paper 
proposes a strategy that combines the processing 
powers of computers, domain heuristics and data 
mining algorithms to discover relationships and 
patterns hidden among the vast amounts of data. 
Unlike other approaches, the proposed technique uses 
a context-based data segmentation strategy which aids 
in producing results that address questions like “What 
is the group of alarm tags that were activated after 
TAG Q (alarm tag of interest) went into activation?” 

It is important to detect the alarm groupings from 
chemical process data as they can then be used for 
alarm rationalization to remove redundant alarms, 



identify bad actors and most importantly to re-
establish an effective alarm system. The process data 
of a chemical plant has its life history; the idea is to 
extract information with minimal human interaction. 
The proposed approach is very cost effective as reams 
and reams of alarm data can be analyzed, and a set of 
grouped tags that are related in some manner is the 
output. The cost of computer time is very cheap 
compared to that of a process engineer. The process 
engineer will evaluate the results, consisting of 
groupings of related alarm tags - a very small set 
compared to the original data set. The re-alignment of 
the alarm system using the extracted information will 
reduce alarm floods in an abnormal situation. The 
main contribution of this paper is as follows:  

1) A context-based segmentation technique that 
takes advantage of local event based segmentation and 
thus dramatically reduces the search space. In contrast 
to approaches like WINEPI [3] and MINEPI [4] that 
used fixed sized segmentation windows, the size of the 
windows used here are constructed adaptively.   

2) A heuristic-based preprocessing strategy that 
incorporates domain specific concepts to remove 
spurious data points in a chemical process sense 
before the discovery of frequent itemset takes place.  
Since the number of co-related patterns extracted by 
frequent episode mining can be huge, the size of the 
resulting data set is reduced by this heuristic-based 
preprocessing strategy which reduces the total number 
of events within each transaction.  

The rest of this paper is organized as follows: 
Section 2 describes related work and Section 3 
introduces the proposed technique for finding groups 
of correlated alarm tags. The Vinyl Acetate process, 
experiments and relevant results are presented in 
Section 4 and lastly the conclusion is found in Section 
5.   

2. Related work 
A related research area is alarm pattern discovery in 
telecommunications networks. Hatonen et al. [5] have 
used frequently occurring episodes for discovering 
patterns in alarm databases to predict faults. Their 
subsequent work TASA (Telecommunication Alarm 
Sequence Analyzer) [6] was a system for mining 
knowledge from telecommunications networks in 
terms of ‘episode rules’.  An episode [7] is defined as 
a partially ordered collection of events that occur 
together within a time window. While a serial episode 
occurs in a fixed order, a parallel episode is an 
unordered collection of events (i.e. trivial partial 
order). TASA used WINEPI and MINEPI for 
discovery of episode rules - WINEPI from a given 
class of episodes by sliding a fixed size window over 

the input sequence, and MINEPI according to minimal 
occurrences of episodes. One of the main difficulties 
when analysing alarm sequences in WINEPI was to 
specify the window size within which an episode must 
occur. If the window is too small alarm information 
will be lost, or if the window is too big, then the 
efficient mining of large numbers of distinct alarm 
types will be an increasingly difficult process. 
WINEPI decomposes each sliding window to 
elementary episodes in the episode recognition phase, 
so clearly this approach will not be useful for mining 
very large numbers of alarm tags, unless the window 
width is very short. In contrast, MINEPI does not rely 
on the sliding window strategy, instead, it counts 
minimal occurrences of episodes within the given time 
bounds. Accordingly, for practical mining purposes, 
relatively small time intervals need to be given in 
order to reduce the search space, otherwise, the total 
number of both candidate and frequent episodes could 
grow dramatically. Not surprisingly since both 
WINEPI and MINEPI employ the candidate 
generation method (i.e. an Apriori-like algorithm) to 
find frequent episodes, they could encounter 
difficulties when mining long sequential patterns with 
many distinct alarm types.  

Another approach for mining such patterns is to 
use the frequent pattern growth technique [8] which 
mines frequent patterns without candidate generation. 
The method is based on the FP-Tree data structure.  
However, when a database is too large or has many 
diverse alarm types it will be difficult to store in a 
main memory or to construct an FP-tree. To solve this 
problem, PrefixSpan [9] uses prefix-based projections 
to reduce the size of sequential databases. CloSpan [10] 
reduces the number of possible frequent patterns by 
mining closed sequential patterns in large datasets and 
more recently, BIDE [11] mines frequent closed 
sequences avoiding a candidate generation procedure. 
Others like SPADE [12] use equivalence prefix classes 
to decompose the search space and incorporate lattice-
based search strategies. However, most of the existing 
sequential data mining approaches for handling 
telecommunications data (e.g. GSP [13]) have their 
historical origin in the Apriori technique and thus 
suffer from candidate generation related problems as 
well as generating an enormous number of candidate 
frequent episodes or episode rules from very high 
dimensional alarm data, usually consisting of several 
hundreds or even thousands of distinct alarm tags. 
Klemettinen et al. [14] introduced the concept of 
templates in an attempt to address the large number of 
mined rules and Devitt and Duffin [15] used network 
topology to evaluate mined alarm sequence 
plausibility and reduce the set of mined sequences by 
eliminating those that violated the network topology.   



Approaches to address the issue of alarm 
management in industrial processes such as 
petrochemical, pulp industries and steel mills include 
the concept of alarm sanitation [16], alarm cleanup 
toolbox [17], the application of alarm handling 
algorithms which are applied to Multilevel Flow 
Models (MFM) [18] and techniques related to Fault 
Detection and Isolation (FDI). FDI approaches 
involved using specifically designed models based on 
laws of physics which are obtained through a 
linearization process. The development of such models 
is very time consuming and any subsequent changes to 
the process require modifications to the existing 
models.  Neural networks are increasingly used in this 
approach to obtain a model from the data which can be 
used to carry out fault diagnosis. Similarly the MFM 
models representing the intended functionality of a 
chemical process must also be constructed first before 
any application of alarm handling algorithms and thus 
suffer from the same limitations as FDI approaches. In 
addition, both of these approaches do not use the 
historical process data. Alarm sanitation and the alarm 
cleanup are related approaches that detect badly tuned 
alarm points automatically and help process engineers 
in re-tuning the alarm limits. The alarm cleanup 
toolbox incorporates the use of signal processing 
techniques and LARA, a rule-based expert system 
classifier which classifies continuous process data 
based on their statistics. The aim of the approach is to 
examine historical process data off-line and to suggest 
changes to existing alarm settings for those alarm tags 
identified as being badly tuned. Being a rule-based 
system makes this approach very much dependent 
upon the expertise and knowledge of the human 
experts as well as the labour involved in coding up the 
rules.  

3. Proposed approach 
The overall algorithm involving four phases is shown 
below. It is based on a context-based segmentation 
strategy (i.e. a transaction has a clear contextual 
meaning as the whole data set can be segmented into n 
transactions while n is the activation number of an 
alarm tag), and incorporates some associative mining 
techniques. 
Algorithm: 
Input: sequence of historical alarm event logs. An alarm 
sequence is a collection of alarm events which includes 
alarm activation and alarm return types. 
Extract the relevant information associated with alarm 
tags from event log-file and put into an appropriate format.  
(Phase 1) 
For all alarm tags in the event log file 

  Extract the WA-R(i) and the  WR-A/TW(i)  sets of 
transactions for each alarm tag (Phase 2) 
 For each alarm tag 
 Do the filtering based on Return-point (R-p) 

strategy or Activation-point (A-p) strategy 
(Phase 3) 

 Using the R-p data or the A-p data, 
do “frequent maximal itemset 
mining” to obtain a set of co-
occurring alarm tags associated with 
each tag of interest (Phase 4) 

3.1. Phase 1: data preparation 
As different vendors of modern control systems 
generate their own format for messages, the format of 
alarm data is both software and hardware dependent. 
This phase extracts a sequence of alarm events from 
an alarm event log file. As a minimum requirement, 
the alarm event log consists of records with fields that 
store information for a unique identifier for each alarm 
tag, time/date, alarm priorities, alarm settings and the 
possible states of an alarm tag [ACTIVATION, 
RETURN]. When an alarm tag is in ACTIVATION 
state, it implies that the value of the associated process 
variable is outside its normal operational setting, and 
when this value returns to the normal operational 
settings, the alarm tag is then in a RETURN state. 
Each extracted event has only three attributes – alarm 
tag identifier, its state and time of the event occurrence. 

Using a simple algorithm, the event log file is 
processed to produce formatted alarm data as shown in 
Table 1.  The symbol A stands for activated and R for 
returned. The approach captures the first time instance 
an alarm tag goes into activation and the time instance 
the alarm tag has been returned. For example, in the 
column associated with TAG 1 in Table 1, it shows 
that TAG 1 was activated at 9:32 and it returned at 
9:35, the duration of this tag being in an activation 
state was 3 minutes. TAG 1 is re-activated at 9:37. 
Similarly, TAG 6 was activated at 9:32 and it returned 
at 9:36. The collection of alarm activations/returns  
and time-stamps associated with a defined set of alarm 
tag identifiers as shown  in Table 1 forms an alarm 
sequence. 
 

Time TAG 
Interval  
(every 1 min) 

(1) (2) (3) (4) (5) (6) (7) 

1  
9:32 

A   
1     A  

6 
A  
7 

2  
9:33    A 

4   R   
-7 

3   
9:34  A  

2      

4   R        



9:35 -1 
5   
9:36  R  

-2    R  
-6  

6   
9:37 

A  
1        

7  
9:38   A  

-3 
R  
-4 

R  
-5  A   

7 
8  
9:39 

A 
-1 

      

Table 1: An example of alarm sequence. 

3.2. Phase 2: extracting context-
based transactions 

Instead of using a fixed sized sliding window (as in 
WINEPI), two types of windows are used here. The 
size of the first type of window used in this phase is 
adaptively defined as the duration of the tag of interest 
in activation state (denoted as WA-R). The starting 
point of the window is defined as the time for the tag 
of interest going into activation and the ending point is 
where it goes into the corresponding return state. For 
example, if the tag of interest is TAG 1 in Table 1, the 
windows are defined as WA-R(1), from 9:32 to 9:35 and 
WA-R(2)  from 9:37 to 9:39.  In the case of TAG 6, its 
WA-R(1) window is defined from 9:32 to 9:36. A second 
type of window (denoted as WR-A/TW) used here is 
defined by a fixed user-defined duration after a tag of 
interest moves back into a return state (after being 
activated). This user-defined duration may be 
shortened if the tag of interest is reactivated. Again, 
using a user-defined window (Wud) of 3 minutes and 
TAG 1 as an example, its WR-A/TW(1)  should start from 
9:35 and end 3 minutes later at 9:38 but as TAG 1 is 
re-activated again at 9:37 this window will terminate 
at the point TAG 1 is re-activated (i.e. a duration of 2 
minutes instead of 3 minutes). The value of Wud is 
related to the process lag found in a chemical process 
and thus is a value that is provided by the domain 
experts (in this case the process engineer). In the case 
of a very fast process this value may be in seconds, 
otherwise in a slow process it may be in the order of 
minutes or hours. 

At each point in time, the window is shifted along 
to the next activation instance of the tag of interest. 
Thus if the total number of activations of a specified 
alarm tag is n, then the whole alarm sequence can be 
segmented into n windows of WA-R. Similarly the 
whole alarm sequence can be also segmented into m 
windows of typed WR-A/TW if there are m returns 
associated with the tag of interest. Obviously, this 
segmentation is an event-based extraction with a clear 
contextual meaning. Each of the n windows of WA-R 
captures data that indicates which other alarm tags 
also went into activation while the alarm tag of interest 
is in activation. For example, the transaction data in 

the WA-R(1) for TAG 1 would be [1 2 4 6 7] as TAG 2, 
4, 6 and 7 also went into activation while TAG 1 is in 
an activation state. On the other hand each of the m 
windows of WR-A/TW captures data that showed which 
other alarm tags also return within a user-defined 
window after the tag of interest returned. Using TAG 
1 as an example, the transaction data in its WR-A/TW(1)  
is [-1 -2 -6] as TAG 2 and 6 also returned in that 
window. At the end of this phase, the alarm sequence 
is processed for all alarm tags of interest and for each 
alarm tag, there are two sets of transactions each 
associated with the two types of defined windows 
respectively (e.g. Column 1 and 2 of Table 2).  

3.3. Phase 3: transaction filtering 
Two strategies, incorporating chemical process related 
heuristics, were used in this phase for filtering 
transaction data from Phase 2. These are: 
• Return-point strategy (R-p) – This strategy 

makes use of the cause-effect relationships found 
in phenomena such as chemical processes. The 
rationale used here is that a dependent variable 
(alarm tag) should return after the independent 
variable (i.e. a cause alarm) has returned. If the 
cause of the problem is resolved then all 
subsequent alarm tags related to the problem 
should return some time after the initial alarm tag 
associated with the cause has returned. 

• Activation-point strategy (A-p) – The heuristic 
used here relates to activations of alarm tags after 
the cause of the problem has been resolved. The 
rationale is that dependant variables (consequence 
alarms) once returned, should not re-activate after 
the independent variable is returned (i.e. a cause 
alarm is eliminated).  

The two sets of transactions associated with each 
alarm tag are processed using one of the above 
strategies to produce a set of filtered transactions. 
Table 2 shows an example of processing transactions 
associated with TAG 3 using the Return-point strategy 
and a Wud of 30 minutes. The resulting transactions in 
column 3 of Table 2 showed alarms tags found in the 
transaction from a WA-R(i) window which also returned 
after the tag of interest returned. 

 
WA-R(i) of 
TAG 3 
 

WR-A/TW(i)  of TAG 3   
 time window = 30 
min 

Co-occurring Tags found 
in WA-R(i)  and  WR-A/TW(i)  
of TAG 3   

 3 7 6 9 11  -3 -7 -9 3 7 9  
 3 7 6 9 11  -3 3 
 3 5 7 9  -3 -7  3 7  
 3 7 6 9 11  -3 -7 -11 3 7 11 
Table 2: An example of processing transactions associated 

with TAG 3 using the Return-point strategy and a Wud of 30 
minutes. 



 
Table 3 shows an example of processing 

transactions associated with TAG 3 using the 
Activation-point strategy and a Wud of 30 minutes. As 
can be seen from Column 2 of this table, the strategy 
looked at tags which were activated after the tag of 
interest (i.e. TAG 3) returned. Alarm tags found in the 
transactions from a WR-A/TW(i) window  are then 
eliminated from the corresponding transaction from a 
WA-R(i)  to generate the resulting transactions shown in 
Column 3 of Table 3.  

 
WA-R(i) of 
TAG 3 
 

WR-A/TW(i)  of TAG 3   
 time window = 30 
min 

Tags found in WA-R(i)  
but NOT in WR-A/TW(i)  of 
TAG 3   

 3 7 6 9 11  -3 9 3 7 6 11   
 3 7 6 9 11  -3 3 7 6 9 11 
 3 5 7 9  -3 8 4  3 5 7 9 
 3 7 6 9 11  -3 9 11 3 7 6  

Table 3: An example of processing transactions 
associated with TAG 3 using the Activation-point strategy 

and a Wud of 30 minutes. 

3.4. Phase 4: frequent episode 
discovery 

The required inputs to this stage are the outputs from 
Phase 3 and a user-defined support value (sup) which 
is in the range of 0 – 100%. After the series of steps 
from Phase 1 to Phase 3, the raw alarm data was 
segmented into sets of transactions associated with 
each specific alarm tag and either the R-p or A-p 
filtering strategy. By the nature of the process 
involved in extracting these context-based transactions,  
a one-level (cause => depended group) frequent serial 
episode rule can be obtained via this phase, providing 
an answer to questions like: “ What is the group of 
tags that were activated after TAG Q (tag of interest) 
went into activation?” (i.e. (TAG Q => [group of co-
occurring alarm tags]). A domain expert such as a 
process engineer can decide on the sup value to be 
used in an exploratory manner.  By increasing this 
value close to 100%, the number of possible one-level 
frequent serial episode rules can be reduced, thus 
ensuring that the extracted relationship is found in 
nearly all the transactions. 

In order to find the groups of co-occurring alarm 
tags, a modified FP-growth algorithm has been 
implemented to output maximal frequent itemsets (i.e. 
the smallest frequent itemsets) that are associated with 
each alarm tag of interest.  Note that a frequent itemset 
is defined as being a maximally frequent if none of its 
immediate supersets are frequent [19]. At the end of 
this phase, the list of all extracted frequent maximal 

itemsets associated with each alarm tag of interest (e.g. 
Table 4) are displayed for the domain expert to further 
refine the mining results as well as to validate the 
extracted rules using his/her domain knowledge.  
Based on a set of associated constraints (i.e. filtering 
strategy = R-p or A-p, Wud = 30 minutes, sup = 90% 
and confidence = 100%), results obtained can be: 

• an empty set associated with a specific tag of 
interest (e.g. TAG 1), thus indicating that 
there are no co-occurring alarms tags 
associated with this specific tag 

• a non-empty set associated with a specific tag 
of interest (e.g. TAG 3), thus indicating that 
there are co-occurring alarms tags associated 
with this specific tag. The domain expert may 
validate this result using their domain 
knowledge and then carry out further 
investigation involving tags of this group. A 
point to note is that it is possible to have 
multiple tags in the set instead of just one (i.e. 
16) tag in the set of frequent closed itemsets. 

• If an alarm tag is associated with a process 
variable that’s fixed then the result shown 
would be similar to that of TAG 26. 

The significance of this phase is that only non-
empty sets are of interest and the process engineers 
can carry out further validation or investigation before 
using the groupings for alarm rationalisation. 

4. Experimentation 
The proposed approach was evaluated using simulated 
data produced from a Matlab model of the Vinyl 
Acetate chemical process.  Figure 1 shows the process 
flowsheet with the locations of 27 associated alarm 
tags denoted in the figure as AM01 to AM27.  They 
are placed to measure the outputs of 27 controlled 
variables. In order to generate discrete alarm data 
using the Matlab model, it is necessary to perform a 
simulation twice. The first iteration of the simulation 
is performed to obtain the measurement outputs of the 
Vinyl Acetate model under normal operating 
conditions. Then faults are injected at random points 
in the second iteration of the simulation to obtain the 
disturbed measurement outputs of the model. The 
difference between the normal measurement outputs  
and the disturbed measurement outputs can then be 
used to generate discrete alarm data which are 
associated with the injection of disturbances.  
 
 
 
 



Fig. 1: Vinyl Acetate process flowsheet showing location of 
the simulated alarm monitors (modified from [20]).   

4.1. Generation of the simulated  

4.2. Alarms 
Using the normal process output stored in the first data 
file and the disturbed process output stored in the 
second data file, it is straightforward to obtain the 
changes in the process measurements which are 
caused by the injected disturbances. For simplicity, it 
is assumed that a simulated alarm is activated if the 
following condition is satisfied: 
 
Abs((Disturbed output magnitude – Normal output 
magnitude)/normal output magnitude) ≥ Sensitivity of the 
simulated alarm monitor 
 

The simulated alarm returns to normal if the 
above condition is not satisfied. Note that the 
sensitivity in the above condition refers to the signal 
detection sensitivity of a measurement instrument. The 
sensitivity for all simulated alarm monitors is 0.0005. 
Two sets of alarm data described below, each 
associated with a different fault were produced. Unlike 
process data, these alarm data are discrete (i.e. 0s and 
1s).  
Simulated fault data set 1 

Frequent disturbances are injected into the Vinyl 
Acetate process to induce a response in measurement 

outputs. Only one type of disturbance is introduced in 
this simulation, namely the loss of the fresh HAc feed 
stream (associated with alarm TAG AM03), with each 
fault lasting over different durations. The fault was 
injected 10 times. The measurement outputs are 
monitored and sampled at a frequency of 1 sample in 
five seconds.  
 
Simulated fault data set 2 

Frequent disturbances of one type, namely the 
loss of %O2 in the Reactor Inlet (associated with 
alarm TAG AM01), are injected into the Vinyl Acetate 
process to induce a response in measurement outputs. 
Each injected fault lasted for different durations. The 
fault was also injected 10 times. The measurement 
outputs are monitored and sampled at a frequency of 1 
sample in one second.  

4.3. Initial results and discussion 
Table 4 and 5 respectively show the grouping results 
where the transactions associated with the two sets of 
different simulated fault data were processed via the 
proposed technique  using sup = 90% confidence = 
100% and Wud = 30 minutes and both filtering 
strategies. The first column in these two tables 
identifies the alarm tags; the second and third columns 
show the associated result sets of co-occurring alarm 
tags obtained from mining the transactions obtained 
from the A-p and R-p strategies respectively. Table 4 
shows the result sets associated with the complete set 
of 27 alarm tags and Table 5 only shows alarm tags 
where the result set is not empty.    

By examining entries like those found in Table 4 
and Table 5, a process engineer can very quickly 
identify initial alarm groupings that are of interest (i.e. 
non empty sets).  The process engineer can then use 
the identified groups to further examine the data. In 
comparison, when the same data set was mined using 
WINEPI, using a fixed size window of 10 minutes, it 
was shown that at sup = 90%, only one result sets 
were obtained and at a low support level, the result set 
consists of tens of thousands of rules, thus making it 
extremely difficult to analyse.  

 
TAG Activation-Points  

Preprocessing 
Return-Points  
Preprocessing 

1 %O2 1  => ( ) 1  => ( ) 
2 Press 2  => ( ) 2  => ( ) 
3 HAc-L 3 => (5 2 12 16 9 

4 18 6 11 8 14)   
3 => (16) 

4 Vap-L 4 => (25)  4  => ( ) 
5 Vap-P 5  => ( ) 5  => ( ) 
6 Pre-T 6  => ( ) 6  => ( ) 
7 RCT-T 7  => ( ) 7  => ( ) 
8 Sep_L 8  => ( ) 8  => ( ) 

 



9 Sep-T 9 => (27 18) 9  => ( ) 
10 Sep-V FIXED FIXED 
11 Com-T 11  => ( ) 11  => ( ) 
12 Abs-L 12  => ( ) 12  => ( ) 
13 Cir-F FIXED FIXED 
14 Cir-T 14  => ( ) 14  => ( ) 
15 Scr-F FIXED FIXED 
16 Scr-T 16 => (18) 16  => ( ) 
17 %CO2 17  => ( ) 17  => ( ) 
18 %C2H6 18 => 14 18  => ( ) 
19 FEHE-T 19  => ( ) 19  => ( ) 
20 %H2O 20  => ( ) 20  => ( ) 
21 Col-Ts no alarms no alarms 
22 Org-L no alarm no alarms 
23 Aqu-L 23  => ( ) 23  => ( ) 
24 Col-L 24  => ( ) 24  => ( ) 
25 Vap-In 25  => ( ) 25 => ( ) 
27 %VAc Final Product Final Product 

Table 4: Results associated with sets of co-occurring 
alarm tags obtained from the application of the proposed 
approach using Simulated Fault data Set 1 with respect to 

min support = 90%, time window  = 30 min, and confidence 
= 100%. 

 
The result set associated with alarm tag 3 HAc-L 

in Table 4 has the biggest number of co-occurring 
alarm tags associated with it when the A-p strategy is 
used but has only one co-occurring alarm tag for the 
case of the R-p. This is due to the fact that R-p 
strategy emphasis is on the alarm tags also returning 
within a time window of size N after the tag of interest 
has returned. On the other hand, in the case of A-p, the 
focus has been on alarms that are re-activated after the 
tag of interest has return, the rationale being if the 
causal alarm tag has returned, related alarm tags 
should not be re-activated unless they are nuisance 
alarms. Using this rationale, such alarm tags found in 
the WA-R(i)  are removed. The larger result set implies 
that those alarms tags have not been re-activated after 
the tag of interest returned and are most likely related 
to the tag of interest. 

In terms of checking whether the groupings are 
correct, the result sets associated with each tag can be 
checked against the process flowsheet in Figure 1. 
When there’s a  loss of the fresh HAc feed stream, 
alarm TAG AM03 goes into activation, and by 
following the flow of the directional lines, it can be 
seen that the next alarm Tag likely to go into 
activation would be AM16.  In fact Tag 16, being 
close to Tag 3, would return within a time frame of 30 
minutes (as seen from the result associated with the R-
p strategy). In terms of the set 3 => (5 2 12 16 9 4 18 6 
11 8 14), by looking at the flowsheet it is possible to 
have these tags going into activation while Tag 3 is in 
activation. A tag like 15 has not been picked up 
because it is FIXED.  

Similarly, the results in Table 5 associated with 
mining the second set of data can be validated against 
the flowsheet. The fault is associated with loss of %O2 
in the Reactor Inlet (AM01) and again it can be seen 
from the flowsheet that after Tag 1 goes into activation, 
Tag 7 and Tag 19 would go into activation. The reason 
that Tag 7 is not in the result sets is because it is 
chattering (i.e. going in and out of activation) because 
of its setting. Again the R-p strategy of filtering of 
data has a smaller grouping due to the fact that only 
alarm Tag 19 has returned in the given time frame.   

 
TAG Activation-Points  

Preprocessing 
Return-Points  
Preprocessing 

1 %O2 1 => (27 9 18 11 
4 19 6 12 8 20) 

1 => (19)  

4 Vap-L 4 => (12 6 19) 4  => ( ) 
6 Pre-T 6 => (12) 6  => ( ) 
7 RCT-T 7 => (12) 7  => ( ) 
11 Com-T 11 => (19) 11  => ( ) 
12 Abs-L 12 => (22) 12  => ( ) 
18 %C2H6 18 => (23 17) 18  => ( ) 
19 FEHE-T 19 => (12 23) 19  => ( ) 
25 Vap-In 25 => (3) 25  => ( ) 

Table 5: Results associated with the non-empty sets of 
co-occurring alarm tags obtained from the application of the 

proposed approach using Simulated Fault data Set 2 with 
respect to min support = 90%, time window  = 30 min, and 

confidence = 100%. 
 

A point to note is that the process engineer can 
vary the value of minimum support (sup), and the size 
of Wud, to explore the alarm groupings space. By using 
a bigger value of the size of Wud or by lowering the 
value of minimum support, the alarm grouping space 
to be explored can be widened. At the same time by 
using a smaller value of the size of Wud or by choosing 
the value of sup to be closer to a value of 100, the 
alarm grouping space to be explored can be made 
smaller. 

5. Conclusions 
This paper has described an approach that incorporates 
a context-based segmentation approach with a data 
mining technique to find a set of correlated alarms 
from historical alarm event logs. The approach allows 
an exploration of the alarm grouping space to find 
groups of co-occurring alarms which can be used to 
aid alarm rationalisation. Before the set of extracted 
results from this automated technique are used they 
can be evaluated by a process engineer with process 
understanding.  The proposed approach is evaluated 
initially using simulation data from a Vinyl Acetate 
model.  Future work would involve data containing 
multiple types of different faults, simulated from the 



Vinyl Acetate model as well as alarm data from 
petrochemical industries. The approach is more cost 
effective that any manual alarm analysis of the event 
logs for identifying primary and consequential alarms 
which are very time and labour intensive.  
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