
Proposal of a Visualizing Method of Data Transitions to
Support Debugging for Java Programs

Tetsuro Katayama*†, Hiroto Nakamura†, Yoshihiro Kita‡, Hisaaki Yamaba† and Naonobu Okazaki†

†Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
‡Security Center, Kanagawa Institute of Technology, Kanagawa 243-0292, Japan

*Corresponding author, E-mail: kat@cs.miyazaki-u.ac.jp

Tel: +81-985-58-7586, Fax: +81-985-58-7586

Abstract

It takes much time to find the cause of a bug in debugging of programs. Finding the cause of a bug needs to
comprehend a flow and data transitions in executing programs. It is difficult to grasp behavior in executing the
programs whose behavior is unexpected by a bug. We propose a visualizing method of data transitions to support
debugging for Java programs in order to improve efficiency of debugging by supporting to find the cause of a bug.
We have implemented TVIS in order to confirm efficiency of the proposed method. The data transitions diagram is
the most characteristic function of TVIS which shows the data transitions in executing programs as a table. It can
show visually abnormal behavior: no data renewed at all, data abnormally renewed, and so on. Because abnormal
behavior is detected in the data transitions diagram at first glance, it is useful for programmers in finding the cause
of a bug. This paper shows that the method can support to find the cause of a bug.

Keywords: programming, program slicing, visualization, debug, dynamic analysis, syntax analysis

1. Introduction

It takes much time to find the cause of a bug in
debugging of programs [1]. Finding the cause of a bug
needs to comprehend a flow and data transitions in
executing programs. It is difficult to grasp behavior in
executing the programs whose behavior is unexpected
by a bug. Additionally, many programs are
complicated for including a number of loops and
branches. In particular, unskilled programmers need
more time for this work.

Thin slicing [2] is a technique to find the cause of a
bug, but sometimes its information is insufficient. Thin
slicing is a kind of program slicing [3], and can analyze
data transitions without superfluous information by
restricting abstraction of slice to data transitions only.
However, enough information to find the cause of a bug

cannot be gotten because states and renewals timing of
data which is not selected as slice are not shown.

This paper proposes a visualizing method of data
transitions to support debugging for Java programs in
order to improve efficiency of debugging by supporting
to find the cause of a bug. The method supports to
grasp behavior in executing programs because
visualizes renewals and states of each data.

This paper has implemented TVIS which is tool to
visualize data transitions for Java programs to confirm
efficiency of the proposed method. Main functions of
TVIS are the data transitions diagram, the renewal
history table, and the slicing function. In particular, the
data transitions diagram is the most characteristic
function which shows the data transitions in executing
programs as a table. Therefore, the method shows
abnormal behavior and data renewals for understanding
behavior of executing programs.

Journal of Robotics, Networking and Artificial Life, Vol. 1, No. 2 (September 2014), 111-115

Published by Atlantis Press
Copyright: the authors

111

This paper visualizes the programs which include
a bug in order to confirm that TVIS can support to
find the cause of a bug.

2. Data Transitions

The data transitions in this paper show the flow of
variable renewals in executing a program. It expresses
when and what value of each variable is renewed.
Programmers can grasp behavior of a program because
they can prefigure the behavior of each variable at
arbitrary timing in the program execution by
understanding the data transitions. Hence, finding the
cause of a bug becomes easier by comparing the
difference between the behavior which programmers
expect and the actual behavior, if they grasp the data
transitions of the program which includes a bug.

However, it is difficult to grasp data transitions of the
program which includes a bug. The reason is that the
program which includes a bug doesn't behave as
programmer's expectation, in addition they doesn’t
know the cause of a bug.

3. Visualization

In order to confirm efficiency of the proposed
method, TVIS (transitions visualization), which is tool
to support debugging, has been implemented. It can
visualize data transitions. Fig.1 shows the process of
visualizing data transitions. The contents of the process
is as follows.

I. TVIS statically analyses structure

information of the program in order to
choose the point which probes to do dynamic
analysis are inserted in.
TVIS does syntax analysis of the source code
which is visualized and analyses the result of it for
investigating structure information of the program.
Structure information of a program is information
which includes the following data: locations of
declaring variables, locations of renewals, ranges
of each variable scope, locations of loops, and so
on.

II. TVIS generates the source code which
includes probes, and then outputs the result
of dynamic analysis of the program by
executing it.

TVIS generates the probe file which is inserted
probes in the source code to get information of
renewals of variables and loops from structure
information. TVIS outputs the result of dynamic
analysis by executing the probe file after
compiling it.

III. TVIS visualizes data transitions by using
the result of dynamic analysis and the
structure information of a program.
The result of dynamic analysis has information in
each process in executing the program: declaration
and renewals of variables, and loop. TVIS analyses
data transitions which occur in each process by
using the result of dynamic analysis, and shows
them on the window.

Main functions of TVIS are the data transitions

diagram, the renewal history table, and the slicing
function. Fig.2 shows an example of the window of
TVIS. The data transitions diagram is on the upper right
of the window, and the renewal history table is on the
green area, and slices list as the result of the slicing
function is on the blue area. TVIS can support to grasp
behavior of executing programs because it shows data
transitions by using these functions.

The data transitions diagram is the most characteristic
function which shows renewals of each variable and its
timing. It is a table and indicates the number of
iterations of each loop in a lateral direction and
indicates the line number of data renewals in a vertical
direction, and shows renewal value of variables in each
loop. It is possible to understand the line and the loop
where each renewal exists by using the data transitions
diagram. For example, the area which is surrounded by
the red frame in Fig.2 shows that Loop1 is repeated four

Fig. 1:The process of visualizing data transitions.

Published by Atlantis Press
Copyright: the authors

112

times in the first loop of Loop0. The area which is
surrounded by the yellow frame in Fig.2 shows that the
value of variable asc is assigned into 10 in the third loop
of Loop1 in the first loop of Loop0. Hence, the data
transitions diagram can show the flow of renewals of
each data. Moreover, it is possible to grasp renewals and
flow of the whole by using the table form, it is easy to
understand states of the other data when a suspicious
state occurs.

In addition, TVIS shows the data transitions arrow
which shows relations between each renewal of
variables as the red arrow on the data transitions
diagram. The relations mean ones between state of a
variable and the state of other variables which is used
for the renewal of its state. After a programmer selects a
state by clicking a value on the data transitions diagram,
TVIS draws a red arrow from the state which influenced
its renewal to the state which was selected. When a
suspicious state occurs, finding the cause of it becomes
easy by using the data transitions arrow.

The renewal history table shows how many renewals
of each variable in executing programs happen and what
its value is after renewals. It indicates the number of
renewals in a lateral direction and indicates a variable
name in a vertical direction. It can show information
about whether abnormalities of values of variables after
renewals and the number of the renewals happen.

In addition, TVIS can perform thin slicing to arbitrary
states of each variable as an ancillary function. When
the value on the data transitions diagram or the renewal
history table is clicked, TVIS performs thin slicing, and
shows the result of slicing on the blue area of the
window. TVIS can perform thin slicing at one click, and
it becomes easy to perform the slicing to not only the
final state but also an arbitrary state of each variable by
using the data transitions diagram or the renewal history
table. Therefore, analysis of data transitions can be
performed without superfluous slices.

4. Example

Two programs which include a bug are visualized by
adapting them to TVIS, to confirm efficiency of the
proposed method. They are bubble sort programs in
Java and include different bugs.

The bubble sort program in Fig.3 sets a wrong
condition of a loop. The correct loop condition in the
5th line in Fig.3 is not "j < data.length-j-1" but "j <
data.length-i-1". This mistake that programmers
confuse variables of similar names happens often, but
they hardly notice existence of it. The program has
returned the array which is identical with the original
array because of this mistake.

Fig. 2: An example of the window of TVIS.

Published by Atlantis Press
Copyright: the authors

113

The data transitions diagram on Fig.3 shows
abnormal behavior of exchanging elements of the array
from 9th line to 11th line and Loop1 which starts at the
5th line. The area which is surrounded by the red frame
shows that all iterations in Loop1 repeated only two
times and variable j as the loop counter didn't become
more than two. The correct behavior of Loop1 dwindles
the number of iterations of the loop as shown Fig.2.
Hence, we understand that the loop condition of Loop1
is suspicious.

The bubble sort program in Fig.4 contains variables
assigned to a wrong value. The variable which is used
from 7th line to 11th line on Fig.4 is not variable i but
variable j. This mistake occurred by merely confusing
variables, but it is hardly noticed because multiple lines
are wrong in succession. The program finishes process
without executing until completion of sorting because of
this mistake.

The data transitions diagram on Fig.4 shows
abnormal behavior to exchange elements of the array.
The area which is surrounded by the red frame shows
that Loop1 repeated four times in the first loop of Loop0
which starts at the 3rd line. Here, if statement at the
7th line, was expected to compare all elements of the

array, but it never exchanged them. Hence, we
understand that if statement at the 7th line is suspicious.

From the above two results of visualization, we have
confirmed that programmers can get useful information
to find the cause of a bug and grasp behavior of the
program included the bug by using visualization of data
transitions of TVIS.

5. Evaluation

This paper has implemented TVIS which supports
debugging for visualizing data transitions, in order to
confirm efficiency of the proposed method by
visualizing the program which includes bugs. It explains
the difference by comparing the method with
conventional methods below.

Dynamic slicing [4] which includes thin slicing is a
technique to analyze behavior in executing a program
by extracting processes which relate to generation of a
selected state as slice. We cannot get useful information
if not we appositely decide a condition of slicing,
because slicing cannot show information which is not
selected as slice. In case of Fig.3, it is difficult to get

Fig. 3:An example A: Visualizing the program which includes a bug.

Fig. 4:An example B: Visualizing the program which includes another bug.

Published by Atlantis Press
Copyright: the authors

114

useful information, because slice except initialization
processes is not gotten even if elements of the array are
selected as a condition of slicing. However, TVIS can
show useful information for programmers to grasp
behavior of a program, because it shows the situation of
each variable and loop by the diagram.

Breakpoint is one of the most frequently used
methods for debugging [5]. Breakpoint has the problem
which programmers need experience of programming to
decide a location of breakpoint. Nevertheless, it is a
useful method of finding the cause of a bug, and also the
method which automatically generates breakpoint has
reported [6]. When programmers found an abnormal
process, it is difficult to understand correctly the
situation of execution with only information of a point.
TVIS becomes easy to grasp behavior of a program,
when programmers found the abnormal process,
because TVIS shows them to information of variables or
loops which concern it. In a large program, efficiency of
TVIS may lower in comparison with breakpoint,
because information of the diagram is liable to increase.

An applicable range of programs which TVIS can
visualize is small in comparison with the tool [7] which
can visualize a large program by a diagram with a high
abstraction level or tool [8] which can visualize
multithreaded programs. TVIS, which generates a
diagram of low abstraction level, may make gigantic a
diagram because data to visualize even a program of
moderate size may become huge [9]. Therefore, the
variety of programs which TVIS can visualize may have
a limit. Accordingly, TVIS need reduce spaces to show
information by improving the expression format of the
diagram. An applicable range of programs which TVIS
can visualize is enlarged by focusing object to visualize
on only an important object.

6. Conclusion

This paper has proposed the visualizing method of
data transitions to support debugging for Java programs
in order to improve efficiency of debugging by
supporting to find the cause of a bug. We have
implemented TVIS which supports debugging and
visualizes data transitions, in order to show efficiency of
the proposed method. We visualize programs which
include a bug by using TVIS, and show that TVIS can
support to grasp behavior of executing programs and to
find the cause of a bug.

Visualization of the proposed method can give the
information which is not gotten by using conventional
methods for analyzing data transitions. The data
transitions diagram can show visually abnormal
behavior: abnormal data renewals and so on. Also, it is
easy to understanding states of other variables when
abnormal behavior is found.

Therefore, the proposed method can support to find
the cause of a bug by visualizing data transitions, and
improve efficiency of debugging for Java programs. The
method reduces time to grasp behavior in executing a
program for programmers by showing data transitions to
them. In particular, it is useful for unskilled
programmers.

The future issues are as follows.
(1) Improving the format for expressing values of

variables.
(2) Introducing the localization in visualization.

References

1. Roger S. Pressman, Software Engineering A Practitioner’s
Approach 5thEdition, McGraw-Hill Science (2001).

2. M. Sridharan, S. J. Fink, R. Bodik, Thin slicing, In Proc.
the 2007 ACM SIGPLAN Conference on PLDI (2007),
pp.112-122.

3. Mark Weiser, Programmers Use Slices When Debugging,
Communications of the ACM Vol.25 (1982), pp. 446-452.

4. H Agrawal, JR Horgan, Dynamic Program Slicing,
SIGPLAN Notices, Vol.25, No.6 (1990), pp.246-256.

5. G. C. Murphy et al, How Are Java Software Developers
Using the Eclipse IDE?, IEEE Software, Vol.23, No.4
(2006), pp.76-83.

6. Cheng Zhang et al, Automated Breakpoint Generation for
Debugging, JOURNAL OF SOFTWARE, Vol.8, No.3
(2013), pp.603-616.

7. Steven P. Reiss, Guy Eddon, From the Concrete to the
Abstract: Visual Representations of Program Execution,
DMS 2005 (2005), pp.315-320.

8. Jan Lönnberg et al, Java replay for dependence-based
debugging, PADTAD '11 (2011), pp.15-25.

9. W. De Pauw et al, Execution patterns in object-oriented
visualization, In Proc. 4th COOTS (1998), pp. 219-234.

Published by Atlantis Press
Copyright: the authors

115

	1. Introduction
	2. Data Transitions
	3. Visualization
	4. Example
	5. Evaluation
	6. Conclusion
	References

