Introduction

International Journal of Networked and Distributed Computing, Vol. 2, No. 4 (October 2014), 211-220

Embedding GPU Computations in Hadoop

Jie Zhu! , Hai Jiang! , Juanjuan Li! , Erikson Hardesty ! , Kuan-Ching Li? , Zhongwen Li >

! Department of Computer Science,
Arkansas State University, USA

E-mail: {jie.zhu,hjiang} @cs.astate.edu, {juanjuan.li, erikson.hardesty} @ smail.astate.edu

2 Department of Computer Science and Information Engr.,
Providence University, Taiwan

E-mail: kuancli@pu.edu.tw

3 College of Information Science and Technology,
Chengdu University, China

E-mail: lizwxmu@ gmail.com

Abstract

As the size of high performance applications increases, four major challenges including heterogeneity,
programmability, fault resilience, and energy efficiency have arisen in the underlying distributed sys-
tems. To tackle with all of them without sacrificing performance, traditional approaches in resource
utilization, task scheduling and programming paradigm should be reconsidered. While Hadoop has han-
dled data-intensive applications well in Clouds, GPU has demonstrated its acceleration effectiveness for
computation-intensive ones. This paper addresses the approaches for Hadoop to exploiting both CPU
and GPU resources effectively to handle aforementioned challenges. Hadoop schedules MapReduce’s
Map and Reduce functions across multiple different computing nodes through Java, whereas CUDA code
helps accelerate local computations further on attached GPUs. All available heterogeneous computational
power will be utilized. MapReduce in Hadoop eases the programming task by hiding communication and
scheduling details. Hadoop Distributed File System will help achieve data-level fault resilience. GPU’s
energy efficiency characteristics help reduce the power consumption of the whole system. To utilize
GPU in Hadoop, four approaches including Jcuda, JNI, Hadoop Streaming, and Hadoop Pipes, have been
accomplished and analyzed. Experimental results have demonstrated and compared their effectiveness.

Keywords: Hadoop, MapReduce, GPU, CUDA.

large quantity of digital information that can come

The term ”Big Data” has been used to describe data
sets which are so large that traditional means of
data storage, management, search, analytics, secu-
rity, and other processing issues have become the
major challenges. Big Data is characterized by the

from many sources and in variant data formats. The
sheer quantity of data makes it difficult to process
or analyze. These difficulties have led to shifts in
programming paradigms in order to efficiently and
effectively handle big data in terms of performance
and programmability.

Published by Atlantis Press
Copyright: the authors

211

J. Zhu, et al.

In Clouds, MapReduce, originally proposed
by Google ', is a commonly used programming
paradigm to reduce programming complexity so
that developers can focus on algorithms and eas-
ily exploit the parallelism in complicated applica-
tions over computer clusters or clouds composed of
inexpensive commodity machines that alone would
not have enough computational power to handle Big
Data applications. Hadoop has been popular for
its MapReduce and Hadoop Distributed File System
(HDES) for programmability and fault resilience, re-
spectively.

While MapReduce tackles data-intensive appli-
cations effectively, GPU computing becomes a good
candidate for computation-intensive ones. GPU’s
energy efficiency characteristics also help reduce the
power consumption of the whole system. Both CPU
and GPU resources will be exploited effectively to
achieve high performance computing. However,
how to utilize GPU in Hadoop smoothly remains
as a technical issue. Since Hadoop’s MapReduce is
written in Java and most GPU programs are coded
in CUDA, Java and CUDA integration is the target.
This paper makes the following contributions:

o Four approaches of GPU and Hadoop integration,
including JCUDA, JNI, Hadoop Streaming and
Hadoop Pipes, have been implemented.

 Detailed analysis and comparison of these four
approaches have been accomplished.

o Experimental results have demonstrated their ef-
fectiveness.

The remainder of this paper is organized as follows:
Section 2 briefly introduces Hadoop and GPU com-
puting. Section 3 provides the implementation de-
tails of the four approaches. Experiments and per-
formance analysis are given in Section 4. Section
5 includes the related work. Finally, the conclusion
and future work are given in Section 6.

2. Techniques for Heterogeneous Distributed
Computing

Programmability in heterogeneous distributed sys-
tems has become a critical issue as Clouds gains
its popularity. It will determine the effectiveness of

utilizing different system resources and easiness of
wiring code in distributed environments.

2.1. Hadoop and MapReduce

Hadoop meets the challenges of Big Data by sim-
plifying the programming process for data-intensive
applications. It provides a scalable and reliable
mechanism for processing large amount of data over
a cluster of commodity computers and providing
a cost-effective way for fault tolerant data stor-
age. Hadoop also provides newly improved analy-
sis techniques to enable sophisticated analytical pro-
cessing for multi-structured data.

The Hadoop MapReduce framework is based on
two primitives, Map and Reduce, from functional
programming. The general form is as follows:

o Map: (k1, vl) — list (k2, v2)
o Reduce: (k2, list (v2)) — list (k3, v3)

The Map function takes an input key/value pair (k1,
v1) and outputs a list of intermediate key/value pairs
(k2, v2). The Reduce function takes all values as-
sociated with the same key and produces a list of
key/value pairs. User-defined projects implement
the application logic inside the Map and the Reduce
functions. The MapReduce runtime manager han-
dles the parallel execution of these two functions.

(e N

Reduce
Task

Output

Reducing

Buffer Buffer
in memol in memo

patition sort
and split
to disk

merge
on disk

merge

/ Wask ” Task ” Task ” Task |
/ A " Kl
i // I/

,
L/ o R
p y .
- . .
> - L
- # L.
Other Map Task |- -~ /,’

Fig. 1. MapReduce in Hadoop

Published by Atlantis Press
Copyright: the authors

As shown in Fig. 1, the first phase of a MapRe-
duce program is called mapping. A list of data el-
ements is provided, one at a time, to a Map func-
tion run on a Mapper which transforms each element
individually to an intermediate data element. Re-
ducing process allows users to aggregate values to-
gether. A Reduce function run on a Reducer receives
an iterator of input values from an input list, and
then combines these values together for a single out-
put value. Both Map and Reduce computations are
therefore implicitly data parallel across (key, value)
pairs and have no data dependencies across input
and output. This means that computations can be
trivially mapped onto many or multi-core hardware
components.

However, in Hadoop MapReduce, mapper and
reducer tasks run inside of potentially short-lived
Java virtual machines. Task creation, scheduling,
and execution incur processing and memory over-
heads as well as reduce the efficiency of JIT (Just-In-
Time) compilation. However, using separate short-
lived JVMs contributes to a significant reliability
advantage by separating the Hadoop system from
Mappers and Reducers. As a result, it is important
to optimize the performance of these JVMs.

In each data node of Hadoop, the TaskRunner
generates and manages many child JVMs, which ex-
ecute Map and Reduce functions independently as
shown in Fig. 2. TaskRunner monitors device usage
and assign each JVM to a device.

Hadoop Datanode

Task Runner JVM

Mapper Child JVM Reducer Child JVM
........
[[cru | [[eru | [oisk |

Fig. 2. Hadoop MapReduce on one Data Node

Each child JVM is assigned one chunk of key-
value pairs for either Map or Reduce computation.
It contains two JAVA threads: main and communi-
cation threads. The main thread reads input keys

Embedding GPU Computations in Hadoop

and values from Hadoop Distributed File System
(HDFS), and then, it executes Map or Reduce func-
tion and saves the generated results in a queue
where the communication thread fetches the data
and writes it back to HDFS.

2.2. GPU and CUDA

In recent years, GPU has become a powerful co-
processor for general purpose computing due to
its high computational power and rapidly improved
programmability. General-purpose computation on
GPUs (GPGPUs) has emerged in various High Per-
formance Computing (HPC) domains, such as bioin-
formatics, medical imaging, embedded system de-
sign, machine learning, data mining, etc.

Unlike Hadoop MapReduce which targets at
data-intensive applications for high throughput re-
sults, GPU intends to speed up computation-
intensive ones for high performance achievement.
In Hadoop, both computations and data are spread
across multiple machines where CPU’s work might
be done be GPU instead for performance gains.
Therefore, Map and Reduce functions should be
passed down to attached GPUs for execution. How-
ever, how to activate GPU computing is the new
challenge.

GPU

CUDA GPU-Code

(C/C++ program with CUDA API
compiled by nvcc)

CPU

CUDA CPU-Code

(C/C++ program with CUDA API
compiled by gce, g++, ...)

Regular C/C++ code CJ/C++ Functions only

Kernel Launch

Kernel Function

Device Function

Fig. 3. CUDA Program Layout

Nvidia CUDA is a C/C++ extension with CUDA
Runtime and Driver APIs. Therefore, corresponding
runtime libraries should be linked during the com-
pilation with NVCC compiler which splits CUDA

Published by Atlantis Press
Copyright: the authors

J. Zhu, et al.

programs into two parts: CPU-Code and GPU-
Code. The CPU-Code is regular C/C++ code with
CUDA runtime library whereas GPU-Code includes
a kernel function and several device functions, as
shown in Fig. 3. Nvidia NVCC compiler invokes
regular C/C++ compilers such as GCC and g++
to translates CUDA CPU-Code into normal CPU-
executable files. In the meantime, NVCC also con-
verts GPU-Code into virtual GPU Assembly lan-
guage code (PTX) or GPU-executable files (CU-
BIN).

The PTX file is a human-readable (but hardly un-
derstandable) file containing a specific form of as-
sembler source code. CUBIN file is a CUDA bi-
nary file that can directly be loaded and executed
by a specific GPU. However CUBIN file is specific
for GPU Compute Capability which indicates GPU
version, and CUBIN files that have been created for
one Compute Capability cannot be loaded on a GPU
with a different compute capability. Thus, in this pa-
per the usage of PTX files is preferred, since they are
compiled at runtime for GPU of the target machine.

As Nvidia GPU families are dominating the mar-
ket, Hadoop and CUDA integration becomes an at-
tractive issue. Some existing systems such as Mars
[14] use Hadoop Streaming to launch GPU kernels.
The interfaces between GPU and Hadoop become a
bottleneck. Further investigation is required.

3. GPU and Hadoop Integration Approaches

Since Hadoop is implemented in Java, programmers
only need to write MapReduce Map and Reduce
functions in Java. Hadoop schedules these func-
tions’ executions on different machines as shown in
Fig. 2. Utilizing GPU in Hadoop means that these
functions will be executed by GPU, not CPU-based
JVM anymore. Java-based Map and Reduce func-
tions should play as proxies and be able to call the
CUDA CPU-code which in turn calls CUDA GPU-
Code. In Fig. 2, the main thread will copy the
buffered data to GPU, launch a Mapper or Reducer
kernel, and copy the results back from GPU into the
buffer on CPU side. The actual computations are
done on GPU instead. For the main thread, to enable
the execution on GPU, there exist four approaches:

JCuda, JNI, Hadoop Streaming, and Hadoop Pipes.

3.1. JCuda Approach

JCUDA CUDA

Java code C code

Assembly code
(Gompiled by NVGG:
String command = "nvee "+"-ptx’+fileName.cu®...;
Runtime.getRuntime().exec(command));

Kernel Code

Launch assembly code to Java
(JCUDA API!
cuModuleLoad(model, “fileName ptx");)

Java code C code

Fig. 4. Layout Comparison of JCuda and CUDA

JCuda enables Java programs to call CUDA ker-
nels directly. Since the program is written in Java, it
cannot rely on NVCC compiler to separate the pro-
gram into CPU-Code and GPU-Code. Programmers
have to write CPU-Code in Java with JCuda Driver
API to replace the original CUDA Runtime or Driver
API, as shown in Fig. 4. GPU-Code including ker-
nel and device functions is still written in C/C++ as
before, and should be converted into PTX or CU-
BIN file by NVCC compiler. There are two ways to
compile GPU-Code:

1. Just-In-Time (JIT) Compilation: Java pro-
grams call a Java API, Runtime.getRuntime()
to let NVCC compile GPU-Code into PTX or
CUBIN.

2. Off-line Compilation: GPU-Code should be
compiled in advance.

Finally, JCuda programs can load kernels from PTX
and CUBIN files through JCuda Driver API, cuMod-
uleLoad, for the execution on GPU.

3.1.1. Compilation and Execution

Since Map and Reduce functions in Hadoop are
written in Java, JCuda is a natural consideration.
Now these functions can be re-written with JCuda
Driver API. However, since Hadoop disables Java’s

Published by Atlantis Press
Copyright: the authors

214

command line interface, NVCC cannot be activated
as in the original JCuda. Therefore, Just-In-Time
compilation fails in Hadoop. GPU-Code has to be
compiled in advance.

Hadoop works in distributed computing environ-
ments. The locations of GPU-Code vary from ma-
chine to machine. It is better to embed the compiled
GPU-Code in JCuda programs. Generally, Hadoop
and JCuda can be integrated in two ways:

1. GPU-Code can be loaded to HDFS , and then
pre-launched with a specific configuration in
Hadoop’s Datanodes. This configuration pro-
cess becomes time-consuming as more nodes
are involved in Hadoop systems. Therefore, it
only works with small applications and fewer
nodes.

2. GPU-Code in PTX or CUBIN format can be
embedded into a Java string. Since CUBIN
varies based on GPU types, PTX is the better
option for portability. Although programmers
have to make this happen manually, it avoids
the hassle of updating configuration files on
all Datanodes. It helps achieve portability and
scalability in Hadoop. We have adopted this
approach.

With JCuda, Hadoop can offload Mapper and Re-
ducer work to GPUs gradually as shown in Fig. 5.

buffersize MAX
initialize buffer[buffersize]
while stdin(key,value) !=0 do
if size==max then
launch kernel to GPU device
release buffer
end
insert (key,value) to buffer

end

Fig. 5. Pseudocode of Map Function in JCuda Approach

3.1.2. Setting JCuda Library in Hadoop

There are several ways for Hadoop to call JCuda
runtime library on Data Nodes. One approach is
to compress the native library ’.so’ file into a JAR
file, submit it to a subdirectory in ‘“\hadoop\lib” , and
then include the subdirectory in the library path en-
vironment variable. A MapReduce job will be able

Embedding GPU Computations in Hadoop

to find and unpack the JAR file in the distributed en-
vironments.

Another approach is to specify library JAR file
location using ‘-libjars’ option in the ‘hadoop jar...’
command line. The JAR will be placed in dis-
tributed cache and will be made available to all of
the Hadoop tasks. The advantage of the distributed
cache is that the library JAR might still be there
even for the next program run (the size of distributed
cache can be adjusted by a configuration variable
with default value of 10GB). Hadoop keeps track of
the changes to the distributed cache file by examin-
ing their modification timestamps.

The major drawback to use JCuda for Hadoop
and GPU integration is the software dependency.
Since all CUDA Runtime and Driver APIs should be
replaced by JCuda Driver APIs, JCuda versions will
depend on CUDA versions. The latest JCUDA is
based on CUDA 5.5 and it can support all properties
before version 5.5. However, once Nvidia releases a
new CUDA version, new JCuda one will suffer few
months delay.

1. Java Code
Editor (CudalnJni.
java)

WardCount()

2. Compile
JavaJNI
dalnJni.cla

3. Java Header 4. CUDA Method
(CudalnJni.h) (CUDA.cu)

5. Native Method
(CudalnJni.c)

6. Compile native
code load shared
library
(libCudalnJni.so)

7. Invoke shared
library in JVM
(CudalnJni.class)

8.upload shared library
and executable file
on to hadoop

(Command Line)

9. Run JVM by Hadoop
API
(GenericOptionParser)

Fig. 6. Flow Chart of CUDA and Hadoop integration in JNI

Published by Atlantis Press
Copyright: the authors

J. Zhu, et al.

3.2. JNI Approach

JNI (Java Native Interface) is a programming frame-
work that allows Java Code running in a JVM to call
native applications. This enables users to include
native methods in the Java Program to handle sit-
uations in which an application cannot be written
entirely in Java. Including platform-sensitive lan-
guages in the standard library allows all Java appli-
cations to access this functionality in a safe manner.

Word Count application is used to demonstrate
the process of JNI as shown in Fig. 6. Java appli-
cations invoke C functions, which include CUDA
kernel calls. The process consists of the following
steps:

1. Create a class (JavaJni.java) that declares the
native method. For example, a program in-
cludes a class named CudalnJni that contains
a native method called WordCount, via key-
word “native” to indicate that this portion is
implemented in another language.

2. Use Javac to compile the Javalni source file
and achieve the class file, JavaJni.class.

3. Use Javah —jni to generate a C header file
(JavaJni.h) containing the function prototype
for the native method implementation.

4. Create a CUDA source file with CUDA APIs
or Thrust library.

5. Write the C implementation of the native
method, including header: jni.h and cuda.cu.

6. Compile C implementation into a native li-
brary, called libHadoopJni.so, via local C
compilers and linkers. This library is sys-
tem dependent. For example, in Linux, the
library file is “libCudalnJni.so”. However, in
Mac, the extension name “.so’’ is converted
into “.dylib’’ whereas in Windows, it is “.dll”.

7. Run the Javalni program through Java runtime
interpreter. Both the class file (JavaJNI.class)
and the native library (libHadoopJni.so) are
loaded. Method WordCount() is contained
in the native library to process loading,

which is a static initializer that invokes Sys-
tem.loadLibrary () to load native library Cud-
alnJni during the runtime class loading.

8. Upload shared library and executable file to
Hadoop.

9. Execute JNI project through GenericOption-
Parser.

3.3. Hadoop Streaming Approach

Hadoop Streaming is a generic API that allows Map
and Reduce functions to be written in virtually any
language. Both of them receive input from *’stdin’’
and emit output (key/value pairs) to ’stdout’’.

Hadoop Streaming:

$hadoop jar local/path/to/hadoop-streaming.jar \
-mapper mapperProgram -reducer reducerProgram \
-file mapperProgram -file reducerProgram \

-input hdfs/input/streaming -output hdfs/output/streaming

Fig. 7. Hadoop Streaming: Command Line Integration

In the Streaming implementation, input and out-
put are always represented textually. The input
(key/value) pairs are written to stdin for a Mapper or
Reducer, with a tab character separating a key from
its value. Both functions write their outputs to std-
out in the same format: key and value separated by a
tab, and pairs separated by a carriage return. The in-
puts to the Reducer are sorted so that while each line
contains only a single key/value pair, all the values
for the same key are adjacent to one another. Map
and Reduce functions are implemented in two inde-
pendent files. Hadoop Streaming uses the command
line interface to redirect the data flow as shown in
Fig. 7.

The main purpose of streaming is to reduce de-
velopment complexity since programmers do not
have to follow Hadoop APIs. People have used
different kinds of high-level languages such as C,
python, or Perl to work with Hadoop. However, ef-
ficiency is the one of design goals and the runtime
overhead is more than usual.

Compared with other approaches, Hadoop
Streaming does not support shuffle stage to optimize

Published by Atlantis Press
Copyright: the authors

216

the output of Mapper. Hadoop will automatically
wait on all Map tasks until they finish and transfer
the results to Reducers in the following ways:

1. All key/value pairs are stored before being
presented to the Reducer function.

2. All key/value pairs sharing the same key are
sent to the same Reducer.

These two points are vital. As a Reducer accepts
many key/value pairs, if the Reducer encounters a
key that is different from the last one just processed,
Hadoop knows that the previous key will never ap-
pear again. In some cases, if keys from input files are
all the same, Hadoop will only use one Reducer and
fail to achieve parallelization. Users should come up
with a more unique key if this happens.

3.4. Hadoop Pipes Approach

Hadoop Pipes is a programing interface that enables
users to utilize C/C++ source code for Mapper and
Reducer implementation. The difference between
Hadoop Streaming and Hadoop Pipes is shown in
Fig. 8. Hadoop Pipes still have to define one in-
stance of a Mapper and Reducer. Unlike the classes
of the same name in Hadoop itself, both Map and
Reduce functions take a single argument. The one
for Map function references an object of type Map-
Context, whereas the one for Reduce references an
object of type ReduceContext. Both Map and Re-
duce are implemented in C/C++, rather than any
other language as in Hadoop Streaming.

Hadoop
Streaming

Hadoop
Pipes

Input: stdin Input: Pipes API
(HadoopPipes::MapContext)

I

Declaration and Kernel Launch
(Any language)

Declaration and Kernel Launch
(C Source Code)

]

Kernel Running Kernel Running
(In GPUSs) (In GPUSs)

] |

Write Output to Buffer
(Any language)

Write Output to Buffer
(C Source Code)

|

Output: Pipes API
(context.incrementCounter())

’ Output: stdout |

Fig. 8. Comparison of Hadoop Streaming and Pipes

Embedding GPU Computations in Hadoop

Unlike Hadoop streaming, Hadoop Pipes con-
nect JVM and C/C++ code through a Socket rather
than a JNI, as shown in Fig. 8 and 9. Keys and val-
ues in the Hadoop Pipes are in byte buffers, repre-
sented as Standard Template Library strings. This
makes the interface simpler although it leaves a
slightly greater burden on the application developer,
who has to convert all C types to corresponding
Hadoop designed types.

TaskTracker

Child JVM
(Server Socket)

Input K/ V Output K/ V

C++ Wrapper
(Client Socket)

Native Library Call

CUDA

Fig. 9. Flow chart of GPU-Hadoop Pipes

The command line interface of Hadoop Pipes is
shown in Fig. 10. Both Map and Reduce functions
are assembled into one C/C++ program.

Hadoop Pipes:
1. copy the binaries file to HDFS:

$hadoop fs -put wordcount.out hdfs/path/pipes/
2. run the word count:

$hadoop pipes -program local/path/to/wordcount \
-input hdfs/input/pipes -output hdfs/output/pipes

Fig. 10. Hadoop Pipes Command Line Interface

4. Experimental Results

Four approaches of embedding GPU computations
in Hadoop are compared for performance and com-
plexity analysis. The experiment is conducted on

Published by Atlantis Press
Copyright: the authors

217

J. Zhu, et al.

a 64-bit server with an Intel Genuine 8 proces-
sor i7 CPU (3.07GHz). The equipped GPUs are
NVidia Corporation GF100 (GeForce GTX 480) and
GF106GL (Quadro 2000). The server is running
with the GNU/Linux operating system of kernel ver-
sion 2.6.18. The Hadoop system and the testing ap-
plications are implemented with CUDA 5.0 and as-
sociated NVCC compiler.

Word Count (WC) is selected for the test and it
counts all occurrences of each unique word. The in-
put is a collection of texts, with words taken from a
predetermined corpus. The typical CPU implemen-
tation reads a chunk of the input data for each Map-
per, scans one word as provided by the specified text
input format and emits [W, 1] for every found word
W. With the hash implementation, the real inputs for
the Mapper actually become [hash (W), 1].

Time(s)

68 32M .
64 64M

60

56
52
48
44
40
36
32
28
24
20
16
12
8
4
0

Streaming

Fig. 11. Performance Comparison over Word Count Appli-
cation

In the WC application, Hadoop exhibits stable
performance for different data sizes as shown in Fig.
11. It is clear that JCuda approach outperforms the
other three whereas Hadoop Streaming delivers the
worst performance. This also indicates the tight-
ness between Hadoop’s Map/Reduce function and
CUDA kernel functions. In JCuda approach, Java
code calls binary GPU code directly; but Hadoop
Streaming goes through much slower file system
stdin/stdout. As data size increases, the increase
of the execution time is lower than expected. This
implies Hadoop prefers larger processing data. On
the other hand, these four approaches do not exhibit
dramatic performance difference. This means that

Hadoop task scheduling and file operations are still
the major bottlenecks.

Table 1. Overall Comparison of Four Approaches

High Development Program Testing
Connecting approaches Performance Complexity Translation Difficulty
Jeuda XX X
JNI XXX XXX XXX X
Pipes AXXX XXX XXXX XXXX
Streaming XX KX XXXXX XXXXX

The overall comparisons of these four integration
approaches are listed in Table 1. Each column illus-
trates a comparison result about one aspect. “High
Performance” indicates the overall performance of
Hadoop on GPU clusters. “Development Complex-
ity” demonstrates the difficulty in deployment with
a particular approach. “Program Translation” refers
to the effort in translating a current CPU-Hadoop
project to a GPU one. “Testing Difficulty” indicates
the degree of difficulty of setting up a test.

The number of X’s in the table cells reflects the
advantage points of each approach. Five X’s im-
plies the best case and one X implies the worst case.
Overall, JCuda will yield the highest performance,
but it is also the most expensive for development
and translation. JNI is quite difficult to be tested.
Hadoop Pipes shows no obvious shortcomings; it
is relatively more worth implementing. However,
it can only be achieved in C language which limits
its scope of application. Hadoop Streaming offers
the best development complexity, program transla-
tion, and testing difficulity. However, it is quite hard
to improve its performance. If a project seeks easy
development and testing without sacrificing perfor-
mance too much, Hadoop Streaming might be a
good candidate.

5. Related Work

There are several MapReduce studies that consider
GPU-based computing environments. Bingsheng
He, et al. [4] proposed the first framework for dis-
tributed MapReduce on CUDA named Mars [14]
in 2008. Their outstanding work mainly adopted
Hadoop Streaming for GPU utilization. Stuart et al.
[5] have proposed a MapReduce-based volume ren-
dering application for a multi-GPU computer clus-
ter, whereas this study focuses on interface connec-

Published by Atlantis Press
Copyright: the authors

218

tion and considers running applications in Multi-
GPU cluster environments.

There are also several studies related to using
GPUs to accelerate MapReduce in cluster comput-
ing environments. Okur, et al [6] provide a frame-
work called HAPI that is a simpler implementa-
tion of heterogeneous MapReduce using APAR API
to transfer the computationally intensive parts of a
Hadoop job to the GPU but only applies to mappers.
HAPI provides a heterogeneous mapper class, which
includes preprocessor, GPU execution, and postpro-
cessor methods that must be implemented by ap-
plication developers. HAPI implementation is only
done on a single node so that communication over-
heads are ignored. There is no support for multi-
devices, and most time CPU is idle since one core
is used to manage a single GPU. In this work, both
JCUDA and JNI can utilize all GPUs and CPUs.

Chen, et al [8][9] worked on advanced optimiza-
tions to MapReduce implementation over a hetero-
geneous architecture. They have modified MapRe-
duce scheduling algorithm, improved the usage of
GPU scratchpad memory, accomplished interme-
diate/immediate reduction, and performed runtime
tuning. The evaluation results have demonstrated
good load balancing effect and higher speedup over
sequential execution. Although their work was not
done on top of Hadoop, many of their ideas are quite
useful for Hadoop.

6. Conclusions and Future Work

The strengths of Hadoop and GPU naturally com-
plement each other. Hadoop provides a robust and
proven distributed system with a MapReduce exe-
cution model and distributed file system. However,
its computational performance is lacking. CUDA
enables execution of Hadoop computation in GPU
native threads on heterogeneous high-performance,
low-power architectures. The four different ap-
proaches provide seamless integration of these two
prevalent programming models to provide a high
performance distributed system with usability on
par with Hadoop. These approaches are analyzed
and compared thoroughly. The experimental results
have indicated their effectiveness in porting com-

Embedding GPU Computations in Hadoop

mon Hadoop applications to distributed heteroge-
neous environments.

The future work includes reducing JCuda run-
time overhead in integrating with Hadoop and
adopting GPU-based MapReduce schemes for high
performance two-level MapReduce systems.

Acknowledgment

This work has been partially supported by Scientific
Research Fund of SiChuan Provincial Science and
Technology Department (2014SZ0107), 20804 Uni-
versities cooperation research project (20804), and
Scientific Research Fund of SiChuan Provincial Ed-
ucation Department (13ZA0296).

References

1. NVIDIA CORPORATION, CUDA Program-
ming Guide, http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html

2. NVIDIA CORPORATION, CUDA Reference Man-
ual, http://developer.nvidia.com/cuda

3. The Hadoop Distributed File Sys-
tem: Architecture and Design
http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf

4. B. He, W. Fang, Q. Luo, N. K.Govindaraju, and T.
Wang, “Mars: A mapreduce framework on graphics
processors,” Parallel Architectures and Compilation
Techniques, pp. 260-269, 2008.

5. J. A. Stuart, C.-K. Chen, K.-L. Ma, and J. D.
Owens, “Multi-GPU volume rendering using mapre-
duce,” in Proceedings of 1st International Workshop
on MapReduce and its Applications, June 2010.

6. S. Okur, C. Radoi, and Y. Lin, “Hadoop+aparapi:
Making heterogeneous mapreduce programming eas-
ier,” https://netfiles.uiuc.edu/okur2/www/docs/
hadoop+aparapi.pdf

7. B. Catanzaro, N. Sundaram, and K. Keutzer, “A map
reduce framework for programming graphics proces-
sors,” in Proceedings of Workshop on Software Tools
for Multi-Core Systems, 2008.

8. Linchuan Chen, Xin Huo, and Gagan Agrawal, “Ac-
celerating MapReduce on a Coupled CPU-GPU Ar-
chitecture,” in Proceedings of The International Con-
ference for High Performance Computing, Network-
ing, Storage and Analysis, 2012.

9. Linchuan Chen and Gagan Agrawal, “Optimizing
MapReduce for GPUs with Effective Shared Memory
Usage,” in Proceedings of HPDC, 2012.

Published by Atlantis Press
Copyright: the authors

219

J. Zhu, et al.

10.

11.

12.

13.

Jeffrey Dean and Sanjay Ghemawat, “MapReduce:
simplified data processing on large clusters,” Commu-
nications of the ACM, (1): 107, January.

Richard M. Yoo, Anthony Romano, and Christos
Kozyrakis, “Phoenix rebirth: Scalable MapReduce on
a large-scale shared-memory system,” in Proceedings
of IEEE International Symposium on Workload Char-
acterization (IISWC), pages 198-207. IEEE, October
2009.

Y.Yan, M. Grossman, and V. Sarkar, “JCUDA: A Pro-
grammer Friendly Interface for Accelerating Java Pro-
grams with CUDA,” in Proceedings of Euro-Par Con-
ference Series. August 2009.

M. Grossman, M. Pretermits, V. Sarkar, “HadoopCL:

14.

15.

MapReduce on Distributed Heterogeneous Plat-
forms Through Seamless Integration of Hadoop and
OpenCL,” in Proceedings of HDPIC 2013.
Bingsheng He, Wenbin Fang, Naga K. Govindaraju,
Qiong Luo, and Tuyong Wang, “Mars: a MapReduce
Framework on Graphics Processors,” in Proceedings
of 17th International Conference on Parallel Archi-
tectures and Compilation Techniques, pages 260-269,
2008.

J. Dean and S. Ghemawat, “Mapreduce: Simplified
Data Processing on Large Clusters,” Proc. Sixth Conf.
Symp. Opearting Systems Design and Implementation
(OSDI), 2004.

Published by Atlantis Press
Copyright: the authors

220

