International Journal of Networked and Distributed Computing, Vol. 2, No. 4 (October 2014), 250-258

Accelerating NTRU Encryption with Graphics Processing Units

Tianyu Bai, Spencer Davis, Juanjuan Li, Ying Gu and Hai Jiang

Department of Computer Science
Arkansas State University, USA

E-mail: {tianyu.bai, spencer.davis, juanjuan.li, ying.gu} @smail.astate.edu, hjiang @astate.edu

Abstract

Lattice based cryptography is attractive for its quantum computing resistance and efficient encryp-
tion/decryption process. However, the Big Data issue has perplexed most lattice based cryptographic
systems since the overall processing is slowed down too much. This paper intends to analyze one of the
major lattice-based cryptographic systems, Nth-degree truncated polynomial ring (NTRU), and accelerate
its execution with Graphic Processing Unit (GPU) for acceptable processing speed. Three strategies, in-
cluding single GPU with zero copy, single GPU with data transfer, and multi-GPU versions are proposed
for performance comparison. GPU computing techniques such as stream and zero copy are applied to
overlap computations and communications for possible speedup. Experimental results have demonstrated
the effectiveness of GPU acceleration of NTRU. As the number of involved devices increases, better

NTRU performance will be achieved.

Keywords: NTRU, Multi-GPU, CUDA, Acceleration.

1. Introduction

With the explosive growth of data and increasing de-
mands on high performance computing in the mod-
ern scientific era, it does not seem that CPU will be
able to handle the overwhelming computing burden
alone. Graphic Processing Unit (GPU) is now turn-
ing into a forceful parallel computing co-processor
for its innate hardware architecture. Because of
the arising of Compute Unified Device Architecture
(CUDA), achieving high performance computing by
GPU is not only feasible, but also user friendly.

The complexity of lattice problems guarantees
high theoretical security levels of lattice based cryp-
tographic systems. Compact encryption and de-
cryption schema for lattice based cryptography en-
sure its superiority on execution efficiency com-
pared with other public key cryptographic systems

such as RSA. Furthermore, the fact that lattice based
cryptography is quantum secure enhances its proba-
bility to become a next generation mainstream cryp-
tographic system.

However, for large data applications, traditional
sequential lattice based cryptography is quite time-
consuming and supports low system throughput.
This paper is principally focused on applying both
single GPU and multi-GPU acceleration strategies
to a particular lattice based cryptographic system,
NTRU, to ameliorate the computing capability bot-
tleneck. This paper makes the following contribu-
tions:

o For NTRU key generation, a CPU implementation
of was developed.

o For NTRU encryption, three GPU implementa-
tions (Single GPU, Single GPU-zero copy, and

Published by Atlantis Press
Copyright: the authors

250

T. Bai, et al.

Multi-GPU) are proposed to exploit three-level
data parallelism (device, block, and thread levels).

« Stream technique is used to achieve device com-
putation overlapping.

« Experiments have been conducted to demonstrate
the effectiveness of GPU optimization.

The remainder of this paper is organized as follows.
Section 2 briefly introduces basic number theory and
the lattice concept for better understanding of lattice
based cryptographic systems. NTRU background is
included here as well. Section 3 contains the NTRU
key generation process explanation and three GPU
optimizations for execution acceleration. Section 4
demonstrates the experimental results and gives an
analysis of the ideal scenario and bottleneck for each
implementation. Section 5 describes related work.
The conclusion and future work are given in Section
6.

2. NTRU: A Lattice-Based Cryptographic
System

Programmability in heterogeneous distributed sys-
tems has become a critical issue as Clouds gains
its popularity. It will determine the effectiveness of
utilizing different system resources and easiness of
writing code in distributed environments.

2.1. Euclidean Vector Space

Euclidean vector space E" is a finite dimension
space formed by lines or vectors. Each single vector
in the space is represented by Cartesian coordinates
! satisfying Euclidean space properties such as Eu-
clidean translation 7 and Euclidean rotation 8.

Due to the complexity and abstractness of Eu-
clidean vector space, real coordinate space R" is de-
fined with N real number coordinates for each vec-
tor. For instance, in dimension one, the vector space
is actually the real number line in mathematic geom-
etry.

2.2. Lattice

Lattice is the set of vectors such that every vector in
the lattice could be represented as a linear combina-

tion of the lattice basis.

g(b],bz. . bn) = ()L]b] +Aobs .. ./'Lnbn)ki ez

The basis of a lattice is a set of linear independent
vectors (b1, b2, ... bn), which means scalar (41, A,
..An) A € Z is not exist such that

b1y b1z bin 0

by bxn b 0
Mo | | | =

bnl bn2 bnn 0

2.3. Lattice-Based Hard Problems

Most famous lattice-based hard problems include
Shortest Vector Problem (SVP) and Closest Vector
Problem (CVP).

Shortest Vector Problem (SVP): given basis of
rank d, BY and corresponding generated lattice
£ (B%), anon-zero vector v is returned such that:

[[vl] = min{|[v|l|v € £(B)}

Closest Vector Problem (CVP):: given a randomized
vector 1, rank d basis B? and corresponding gener-
ated lattice .Z(B“), a vector v is returned such that:

distance(v,r) = min{distance(v,r) |v € Z(B%)}

2.4. NTRU

Nth-degree truncated polynomial ring (NTRU)
lattice-based cryptographic system was devised by
J. Hoffstein, J. Pipher and Joseph H. Silverman in
1996. For now, NTRU is a patented cryptographic
system owned by Security Innovation '°. Besides
the outstanding security level, NTRU is also holding
the eye for its scalability on platforms with limited
resources due to its low power consumption and fast
encryption speed.

Published by Atlantis Press
Copyright: the authors

251

2.4.1. NTRU Key Generation

The degree of truncated polynomial ring N is set to
be a prime integer. Normally, number 503 is viewed
as a relatively high security level degree number.
Vectors f and g are randomly chosen from the
truncated polynomial ring with small coefficients,
whereas p and g are a co-prime integer pair for co-
efficient modular operations.

In practical implementations, the traditional
value for p is 3 and ¢ is a power of 2 although the
values depend on the different implementation en-
vironments. f,° ! and s ! are the multiplicative in-
verses of f with the modular operation on each coef-
ficient.The formula for key generation is expressed
as the following, where the * operation is the convo-
lution production defined above.

H=pxf;«gmodq

2.4.2. NTRU Encryption

Before encryption, data is first translated into the
polynomial form M. There could be different ap-
proaches on heterogeneous platforms as the encryp-
tion procedure is not defined in NTRU algorithm,
but implementation details such as execution time
and memory space occupation should be handled
deliberately. Additionally, a random polynomial
r is applied to achieve better diffusion, obscuring
the correlation between the plaintext and ciphertext.
The formula for encryption is expressed as follows:
E=rxH+Mmodq

2.4.3. NTRU Decryption

The receiver keeps polynomial f and its multiplica-
tive inverse f, ! as the private key. Decryption oc-
curs in the following three steps:

Dy =Exfmodgq

Dy = Dymod p

D3 = f, '« Dymod p

To demonstrate that the decryption works, recall
that in the encryption and key generation formulas,
H is substituted by p* f° !« g into the encryption
formula. A substituted E is taken into the formula
of Dy, Dy = prxg+ f*M mod q. The modular op-
eration in the second step cancels the polynomial

Accelerating NTRU Encryption with Graphics Processing Units

pr=g and leaves f* M modq as the result of D,.
In the last step, f, ' * f mod p is equalent to 1 mod p
by the definition of multiplicative inverse, such that
D3 = 1xMmod p.

2.4.4. NTRU Security Analysis

Cryptanalysis against NTRU could be treated as a
momentous resource to assess the security level of
NTRU cryptographic system. Three types of attacks
against NTUR have been observed.

A brute force attack against NTRU is technically
equalent to an exhaustive search of the small norm
vectors f and g in a given lattice. The convolution
production is calculated and compared with public
key H for a possible match. As the degree of lat-
tice increases to a certain level, the lattice volume
will explode and the number of involved vectors
will increase in a geometrical progression. Thus,
brute force attack could not compromise the sys-
tem in polynomial time even extraordinary comput-
ing power is provided.

Basis reduction !? attack aims at the lattice struc-
ture of the NTRU cryptographic system. It re-
generates the similar spatial structure lattice with
better basis vectors, which is normally to have a
small norm and orthogonal vectors. But, several re-
searchers have pointed out that for some intention-
ally designed parameter combinations, basis reduc-
tion algorithm might not work in polynomial time.

Quantum computing 3 attack is a brand new form
of attack, which combines a quantum computer and
a quantum computing algorithm such as Shor’s al-
gorithm 3. There is no theoretical proof that lattice
based cryptographic systems such as NTRU could
entirely defend against a quantum computing attack.
However, several researchers’ experiments have in-
dicated that there seems to be no performance break-
through in solving lattice problems with quantum
computers. Thus, it is entirely possible that lat-
tice structure has certain resistance against quantum
computing attacks for now.

2.5. CUDA

CUDA (Compute Unified Device Architecture) is
a programming paradigm developed by NVIDIA °

Published by Atlantis Press
Copyright: the authors

252

T. Bai, et al.

to ease parallel programming in GPU. CUDA has
abandoned the inflexible Graphics APIs to interact
with GPU and allowed programmers to use the tradi-
tional C-style language to declare kernel functions,
which will be executed directly on GPU CUDA
cores. With the involvement of integer calculations,
bitwise operations, and full utilization of hardware,
CUDA has transcended former methods in dealing
with GPU computing.

3. Acceleration of NTRU Cryptographic
System

Optimizations of NTRU encryption algorithm are
accomplished in three approaches: Single GPU, Sin-
gle GPU with Zero Copy, and Multi-GPU optimiza-
tions.

To overcome NTRU’s inefficient CPU imple-
mentation, Single GPU version uses one GPU as a
coprocessor to achieve data parallel execution. Sin-
gle GPU with Zero Copy version utilizes CUDA
zero copy technique '! to ameliorate the data trans-
fer pressure. Dual-GPU version is an example of
Multi-GPU optimization to achieve device level par-
allel processing.

3.1. NTRU’s CPU Implementation

Traditionally, the NTRU encryption, denoted as
E =rxH+ Mmodgq, is processed by CPU. For
the fixed public key H, the entire encryption pro-
cess can be viewed analogously to a vector addition
problem. Typically, a for loop is applied to en-
crypt each message unit into ciphertext. Although
CPU-based implementation has adopted Instruction
Level Parallelism (ILP), Single Instruction Multi-
ple Data (SIMD) and Single Instruction Multiple
Thread (SIMT) to ameliorate the inefficient hard-
ware utilization and boost system throughput, fur-
ther performance improvement is fatally restricted
by the number of executing hardware pipelines,
which will determine the maximum number of in-
structions that can be run simultaneously. To exploit
the massive parallelism in NTRU encryption, GPU
turns out to be a possible alternative.

3.2. NTRU Key Generation

Since NTRU key generation is a one-time process,
normally it is done on CPU side. Major NTRU en-
cryption parameters include the follows:

« Dimension size N = 503
o Modular operation integer p = 3, g = 256

« Private key: random polynomial f and its multi-
plicative inverse f,

o Publickey: H = pf,*gmodq

Basic operations are polynomial modular addition,
denoted as +, and polynomial convolution produc-
tion, denoted as x*.

Polynomial modular addition is demonstrated in
Algorithm 1, as shown in Fig. 1. The corresponding
coefficients (with the same degrees) from two poly-
nomials are added up together. Then the modular
operation is performed.

Algorithm 1 polynomial modular addition

Input: { polynomial A, B and integer p}

1: fori=0toN-1do
2: C[i] = (A[i] + B[i]) mod p // coefficient all in domain Z,
3: end for

Output: { Polynomial_addition returns sum of A and B}

Fig. 1. polynomial modular addition

Algorithm 2 shown in Fig. 2 defines the con-
volution production operation. The original poly-
nomial multiplication is conducted in the first loop
as the kth coefficient of polynomial C[k] is equal to
Zﬁif)v “!BiA;_;. The truncated polynomial ring re-
quires the most significant degree of every polyno-
mial must be N — 1. Thus, based on the observation
of polynomial long division 4 consequence, the co-
efficients with degrees higher than N — 1 should be
mapped back to the lower degrees in the domain.
This adjustment process is done by the second loop
in Algorithm 2.

Published by Atlantis Press
Copyright: the authors

253

Accelerating NTRU Encryption with Graphics Processing Units

Algorithm 2 convolution production

that all asynchronous memory access requests have

Input: { polynomial A, B and integer p}

1: fork = 0 to 2N-2 do

2: fori= 0 toN-1do

3: ifk-i>=0andk-i< Nthen
4: C[k] = C[k] + B[i]A[k - i]

5: end for

6: end for

7: for k = N to 2N-2 do

8: C[k - N] = C[k - N] + C[K]

9: end for

Output: { polynomial C, the convolution production of A and B}

been finished.

Algorithm 3 single gpu-zero copy implementation

Input: { NTRU parameters N, p, q, public key H}

1: Allocate pinned memory on host, size = data_size

2: Map Host page locked memory to device address space

3: Do kernel execution // device pointer direct access host memory
4: Synchronize threads on device

Output: { encrypted data E is directly written to host memory}

Fig. 3. single gpu-zero copy implementation

Traditionally, CPU memory is allocated as page-
able memory such that the operating system could

Fig. 2. convolution production

Private key polynomial f is a randomly gener-
ated polynomial with small coefficients. The other
part of the private key is the multiplicative inverse of
polynomial f in domain Z,, and Extended Euclidian
Algorithm is applied to calculate the multiplicative
inverse 2.

Public key is generated in two separate steps.
First, convolution production of g and f, is calcu-
lated and g is a randomly chosen polynomial as well.
Second, the result is multiplied with integer p and
the modular operation is applied to coefficients of
all degrees in domain Z,.

3.3. Single GPU Version with Zero Copy

CUDA’s zero copy technique is designed to amelio-
rate the overwhelming pressure on data transfer by
overlapping two different directional memory copies
and kernel executions.

Zero copy apportions page locked memory space
in host memory rather than GPU global memory.
Since such memory space is also mapped to GPU
memory space, GPU programs can directly access it
without explicit data movement operations.

Algorithm 3, shown in Fig. 3, has briefly
described the implementation layout where cuda-
HostAlloc is called to allocate pinned memory on
host and map it into the device’s address space
through cudaHostGetDevicePointer. Then, the ker-
nel function can be executed directly since data will
be fetched from memory as needed. Additionally,
CUDA threads need to be synchronized to make sure

create an illusion of a much larger virtual memory.
However, when GPU DMA engine executes cud-
aMemcpy operation, it will first allocate a tempo-
rary page locked memory and then copy the required
data from pageable memory into a temporary page
locked buffer. Finally, the DMA engine carries data
through the PCle bus to the device and frees the tem-
porary buffer. With zero copy technique, this extra
data copy process is avoided and thereby data trans-
fer time decreases.

Furthermore, zero copy automatically overlaps
data transfer and kernel execution. Although mem-
ory copy still exists, it happens only if any threads
request memory access in host page locked mem-
ory. Such asynchronous memory access could be
processed while other threads maintain kernel exe-
cution. Consequently, such overlapping might re-
duce overall communication latency.

3.4. Single GPU Version with Data Transfer

Other than the strategy of leaving data in host pinned
memory, the traditional approach is to move data
into GPU memory for processing. GPU global
memory is selected due to its relatively large capac-
ity and direct usage, unlike shared memory which
requires extra data movements.

Coalesced memory access could lessen latency
to a certain degree. When each thread accesses
global memory, it retrieves a data block instead of
one data item. If other threads can reutilize other
items in the same data block, several memory ac-
cesses could be avoided and the total latency is re-
duced.

Published by Atlantis Press
Copyright: the authors

254

T. Bai, et al.

Single GPU version starts with the CudaMal-
loc() function call to dynamically allocate memory
space in GPU global memory. Then CudaMemcpy()
copies data from CPU memory to the just allocated
GPU global memory. The kernel function will not
start until all required data has been transferred, i.e.,
the memory copy operation is synchronized.

Hardware restricts the maximum number of
threads inside one block and registers that can be
allocated for each thread. For a complicated ap-
plication involving many operations for each sin-
gle thread, larger register sizes may benefit perfor-
mance. Otherwise, simpler applications such as
NTRU encryption prefer to use a large number of
threads and blocks, reducing the frequency of exe-
cution repetition for better performance.

Algorithm 4 single gpu implementation

Input: { NTRU parameters N, p, q, public key H}

1: Allocate device global memory

2: Copy data to be encrypted from host to device
3: Do kernel execution

4: Copy encrypted data back to host memory

Output: { encrypted data E}

Fig. 4. single gpu implementation

In NTRU encryption, data for encryption has
been laid out in adjacent area and memory coalesc-
ing is exploited thoroughly. Since data movement
and execution are scheduled in separate phases, no
overlapping is achieved. The single-GPU version
design is depicted in Algorithm 4, shown in Fig. 4.

CUDA stream —»

grid management unit

arids % Il

giga thread engine

blocks @ smxﬁ» - ﬂ smxﬂ>mr

Fig. 5. Task scheduling in Nvidia Kepler GPU

Logically there are three steps to finish the en-
cryption process: data transfer from CPU to GPU
memory, GPU kernel execution, and data transfer
from GPU back to CPU memory. As shown in Fig.
5, all operations are packed into a CUDA stream,
a logical single direction channel from host to de-
vice. On GPU side, data transfer operations are
passed to DMA engines and kernels are taken over
by the Grid Management Unit, which launches ker-
nels and generates job grids, partitioned into blocks.
These blocks depend on the parameters in the kernel
function call. Giga Thread Engine assigns blocks to
different SMXs. Several blocks from same or dif-
ferent kernels can be assigned to one SMX where
four Warp Schedulers (in Kepler) inside SMX are
in charge of the thread level scheduling. The basic
scheduling unit is warp with 32 bound threads which
execute the same instructions.

GPU code is first compiled by the NVCC com-
piler into a virtual assembly language PTX °, and
then translated into machine code. The Warp Sched-
uler analyzes each instruction and assigns a warp to
execute on a particular hardware pipeline, such as a
stream processor (CUDA core), LD/ST unit or Spe-
cial Function unit, based on the instruction types.

3.5. Multi-GPU Version

Multi-GPU version dispatches workload across mul-
tiple GPUs to reduce execution time through com-
putation overlapping. Key generation process still
remains on CPU side and only data processing is
ported to multiple GPUs. Intricate data dependency
must be taken into consideration during data divi-
sion. For NTRU encryption, all elements for en-
cryption are independent to each other. Then, equal
division is acceptable here.

One crucial practical misapprehension is intu-
itively executing the encryption algorithm on two
devices. Recall the CUDA stream concept, such a
manipulation will lead to a sequential execution of
two GPUs, because all of the operations are packed
into a single logical path to Fermi or earlier GPUs
and each operation in a CUDA stream is handled se-
quentially.

Published by Atlantis Press
Copyright: the authors

Algorithm 5 multi-gpu implementation

Input: { NTRU parameters N, p, q, public key H}
1: create CUDA streams for different devices
for i=0 to device_number-1
memory copy from host to device on stream i
end for
for i=0 to device_number-1
do kernel execution on stream i
end for

for i=0 to device_number-1

© 0 N o ua » W N

memory copy from device to host on stream i
10: end for

Output: { encrypted data E}

Fig. 6. multi-gpu implementation

To avoid sequential execution, two separate
CUDA streams are generated and data transfer and
kernel operations for different devices are packed
into their corresponding streams. Algorithm 5,
shown in Fig. 6, demonstrates multi-stream strat-
egy for Fermi GPU. Operations are dispatched into
different streams without blocking each other since
Fermi GPU will merge all streams in one logi-
cal channel. However, Kepler’s Hyper-Q technique
eliminates this three-loop handling since scheduler
will scan all streams simultaneously.

Performance improvement relies on platform
hardware support, which may increase the cost of
this optimization; however, as the number of co-
processors grows, even better performance could be
achieved.

4. Experimental Results

Performance analysis and comparison have been
conducted for four NTRU implementations: single
CPU, single GPU with zero copy, single GPU with
data transfer and multi-GPU versions.

CPU version is implemented in C language,
while the other three optimizations are programmed
in CUDA. The testing platform is equipped with
an Intel Xeon E5-2620 processor and two GeForce
GTX 680 GPUs. Execution time is acquired by the
gettimeo fday function call and cudaEvent API, re-
spectively.

The execution time comparison only involves

Accelerating NTRU Encryption with Graphics Processing Units

NTRU encryption while the public key generation is
omitted. Then, the execution platform will be iden-
tical in all four cases for fair comparison. Moreover,
the time consumed for data transfer is included in
the GPU implementations, since GPU optimizations
should pay for the penalty of extra data movement.
The comparison result is shown in Fig. 7.

4.1. CPU Version

The CPU version does not adopt any parallelization
techniques such as multithreading. It merely relies
on CPU hardware and scheduling algorithms to ac-
tualize instruction-level execution acceleration.

As Fig. 7 implies, the CPU implementation
achieves the best performance when the encrypted
message data size is smaller than eighty million
bytes due to optimized scheduling techniques such
as ILP and the lack of extra data movement. How-
ever, as the data size reaches one billion byes, the
execution time of CPU version begins to grow due
to the limited number of CPU computing pipelines.
CPU hardware fails to exploit the further parallelism
in big data and achieves almost linear execution time
increasing as data expands.

NTRU parmeters: N:503, p:3, q:256

6000 . cpu
M 1-gpu
zero_copy
4500 B 2-0pu

ume / miliseconds

1500

8ES 12E9 3E9 5E9

input data size / bytes
Fig. 7. Performance Comparison with Four Schemes

4.2. Single GPU with Zero Copy

The performance of single GPU version with zero
copy is thwarted since its execution time is even
longer than the CPU one.

Published by Atlantis Press
Copyright: the authors

256

T. Bai, et al.

Logically the entire amount of data transferred
from CPU to GPU should be the same no matter
if zero copy technique is applied or not. For GPU
kernel execution, thread operations are arranged by
warp schedulers dynamically. Zero copy intends to
incur overlapping by allowing data transfer on PCle
buses and kernel execution on GPU at the same time.

However, frequently accessing host page locked
memory might reduce memory access efficiency. In
frequent data transfers, PCle bus might not be fully
utilized since threads issue memory access arbitrar-
ily. Such under-utilization of data results in more
data access trips than the traditional cudaMemcpy
approach. Additionally, laconic operation of NTRU
encryption results in tiny kernel execution time,
which reduces the benefit from overlapping dramat-
ically. As result, single GPU with zero copy fails to
achieve any speedup.

NTRU parameters N:503, p:3, q:256

2800 Memcpy
Device-Host

B kemel

W Memcpy
Host-Device

ume /milisecond
=

3ES8 8ES 2E9 4EQ

input data size / bytes

Fig. 8. Execution Breakdown of Single GPU Version

4.3. Single GPU with Data Transfer

When input data size is small, the execution speedup
achieved by the parallelism exploitation on GPU
fails to compensate the loss in GPU memory allo-
cation and data transfer. As in Fig. 7, when data is
smaller than 1.5 billion bytes, CPU version outper-
forms the single GPU one with data transfer. How-
ever, when data size is larger than two billion, the
time saved by the parallel execution on GPU ex-
ceeds the extra data transfer time. Therefore, over-

all speedup becomes quite obvious. When the data
size reaches five billion, the single GPU version only
uses half of the time spent with CPU implementa-
tion.

Even though the single GPU version beats the
CPU implementation for large data size, it is hard
to achieve further performance gains. Data trans-
fer overhead dominates the overall execution time.
Overhead breakdowns are shown in Fig. 8 for dif-
ferent data sizes. The time of data movement from
CPU to GPU is longer than the one from GPU to
CPU due to the GPU global memory allocation op-
erations. For NTRU encryption, the kernel execu-
tion time is almost ignorable.

4.4. Multi GPU Performance

Since zero copy technique does not bring in any per-
formance gain for NTRU in single GPU version, the
Multi-GPU one adopts the traditional data transfer
approach. As shown in Fig. 7, a dual-GPU ver-
sion achieves 3 times speedup over the CPU version
and 1.25 times speedup over single GPU (with data
transfer) in a case with 5 billion bytes input data.

The overall NTRU encryption time includes
communication and computation since they are not
overlapped. The dual-GPU version can cut the com-
putation time in half, not the overall encryption time
which is still dominated by data transfer time. Two
times speedup cannot be achieved in data transfer
since the time for GPU memory allocation, execu-
tion environment preparation, and combination of
partial results will not increase linearly as the num-
ber of GPUs increases.

5. Related Work

Lattice basis reduction algorithm is serving as a
theoretical foundation in resolving the hard lattice
problem. Thijs Laarhoven ¢ classified lattice re-
duction algorithms into different categories and an-
alyzed their practical performance in solving partic-
ular lattice problems. Connections between the lat-
tice problem and logical conversions of basis reduc-
tion algorithms were thoroughly explored. More-
over, improved enumeration and sieving techniques
helped analyze hard lattice problems in different

Published by Atlantis Press
Copyright: the authors

257

viewpoints. Finally, the long execution time in prac-
tically solving lattice problems has proved the se-
curity of lattice based cryptosystems from the other
side.

Efficient NTRU Implementations * by Colleen
consist of both software and hardware designs. In
the software design, involved operations such as ad-
dition, convolution production, random polynomial
generation, and multiplicative inverse calculation
have all been explained. Additionally, an improved
version of the convolution production was proposed
for better scalability. The hardware pipeline design
was developed base on the analysis of NTRU al-
gorithm features. NTRU multiplier and adder were
proposed for higher CPI (Cycles per Instruction) and
more efficient hardware utilization over the tradi-
tional CPU pipeline.

6. Conclusions and Future Work

As Nth-degree truncated polynomial ring (NTRU)
becomes a major quantum-resistant candidate in
lattice based cryptographic systems, its processing
speed turns in to a major concern. This paper ana-
lyzes NTRU structure and utilizes Graphics Process-
ing Unit (GPU) to accelerate NTRU encryption. The
single GPU version parallelizes NTRU encryption
on GPU to overcome the CPU hardware restriction.
Although considerable execution speedup has been
achieved, relatively narrow data transfer bandwidth
between the host and device impedes further perfor-
mance gains. Multi-GPU version implants device-
level parallelism to promote both data transfer effi-
ciency and computation capability.

GPU zero copy technique has been used to
overlap the communication and computation in
CPU/GPU bus (PCle) and GPU itself. However, the
factual performance is undermined by high frequent
data transfer requests and low bus utilization. Obvi-
ously, NTRU is not a good candidate for such opti-
mization.

The future work includes pushing NTRU to dis-
tributed systems in Big Data cases and support-
ing NTRU with OpenCL across heterogeneous plat-

Accelerating NTRU Encryption with Graphics Processing Units

forms for flexibility and scalability.

References

1. D. Cremer and J. A. Pople, General definition of ring
puckering coordinates, Journal of the American Math-
ematic Society, pp. 1354-1358, 1975.

2. Andreas Enge, The extended euclidian algorithm on
polynomials and the computational efficiency of hy-
perelloptic cryptosystems, Designs Codes and Cryp-
tograhpy, 2001

3. Jozef Gruska and Czech Republik, Quantum Comput-
ing, 2004

4. Fei Hu, Kyle Wilhelm, Michael Schab, Marcin
Lukowiak, Stanislaw Radziszouske, and Yang Xiao,
Ntru-based sensor network security: a low-power
hardware implementation perspective, Security and
Communication Networks, pp. 71-81, 2009.

5. Andrew Kerr, Gregory Diamos, and Sudhakar Yala-
manchili, A characterization and analysis of ptx ker-
nels, In Workload Charaterization, 2009

6. Thijs Laarhoven, Joop van de Pol, and Benne de
Weger, Solving hard lattice problems and the secu-
rity of lattice-based cryptosystems, IACR Cryptology
ePrint Archive, 2012

7. Peter D. Lax and Ralph S. Phillips, Translation rep-
resentations for automorphic solutions of the wave
equation in non-euclidean spaces, In Communications
on pure and applied mathematics, pp. 303-328, 1994.

8. Shahn Majid, gq-euclidean space and quantum wick ro-
tation by twisting, Journal of Mathematical Physics,
pp. 5025-5034, 1994.

9. CUDA Nvidia, Programming guide, 2008

10. Kazuhiko Ohashi, Security innovation on several as-
sets under asymmetric information, Japanese Eco-
nomic Review, pp. 75-95, 1999.

11. Jason Sanders and Edward Kandrot, Cuda by exam-
ple, An Introduction to General-Purpose GPU Pro-
gramming/J. Sanders, E. Kandrot-Addision Wesley
Professional, 2010.

12. Claus-Peter Schnorr and Martin Euchner, Lattice basis
reduction: improved practical algorithms and sloving
subset sum problems, Mathematical programming,
pp- 181-199, 1994.

13. Lieven M. K. Vandersypen, Matthias Steffen, Gre-
gory Breyta, Costantino S. Yannoni, Mark H. Sher-
wood, and Isaac L. Chuang, Experimental realization
of shor’s quantum factoring algorithm using nuclear
magnetic resonance, Nature, pp. 883-887, 2001.

14. Stanislaw H. Zak and Kai Hwang, Polynomial divi-
sion on systolic arrays, IEEE Trasnsactions on Com-
puters, pp. 577-578, 1985.

Published by Atlantis Press
Copyright: the authors

258

