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The smart house under consideration is a service-integrated complex system to assist older persons and/or
people with disabilities. The primary goal of the system is to achieve independent living by various
robotic devices and systems. Such a system is treated as a human-in-the loop system in which human-
robot interaction takes place intensely and frequently. Based on our experiences of having designed and
implemented a smart house environment, called IntelligentSweet Home (ISH), we present a framework
of realizing human-friendly HRI (human-robot interaction) module with various effective techniques of
computational intelligence. More specifically, we partition the robotic tasks of HRI module into three
groups in consideration of the level of specificity, fuzziness or uncertainty of the context of the system,
and present effective interaction method for each case. We first show a task planning algorithm and its
architecture to deal with well-structured tasks autonomously by a simplified set of commands of the user
instead of inconvenient manual operations. To provide withcapability of interacting in a human-friendly
way in a fuzzy context, it is proposed that the robot should make use of human bio-signals as input of
the HRI module as shown in a hand gesture recognition system,called a soft remote control system.
Finally we discuss a probabilistic fuzzy rule-based life-long learning system, equipped with intention
reading capability by learning human behavioral patterns,which is introduced as a solution in uncertain
and time-varying situations.

Keywords:Intelligent Techniques, Smart House Environment, Context, Human-Machine Interface, Ges-
ture Recognition, Learning, Task Planning

1. Introduction

Various robotic systems have been developed to help
human in home environment as well as in public
places. The robots that perform works and activities
for human beings are called service robots1. Ser-
vice tasks include fetching and delivering articles
and foods in the home2,3,4. Also, in large public

places such as office, hospital, or museum, service
robots can provide similar services such as guid-
ing, moving objects and rendering entertainment
services5,6,7.

Rehabilitation robots are specialized service
robots to assist older people or people with disabil-
ities depending on the level of disabilities. KARES
II 3 is designed, for example, to assist daily life activ-



78 Z. Zenn Bienet al.

ities of the patient with the spinal cord injury. It per-
forms 12 predefined service tasks, such as assisting
drinking and eating, turning a switch on/off, pick-
ing up objects, etc., via various human-machine in-
terfaces. FRIEND8 and Care-O-Bot II9 have been
also developed to assist people with disabilities for
daily activities.

Differently from general-purpose service robots,
an assistive robot should be designed in considera-
tion of the characteristics of the target user. L. Leifer
has proposed three general guideline principles for
assistive service robots10:

(1) assistive service robots should be designed as
social agents;

(2) they must possess some intelligence to tolerate
ambiguity;

(3) all applications should be reapplications.

In practice, it is emphasized that the target user, pos-
sibly along with his/her caretakers, should be in-
volved in the design stage and that the specialties
and characteristics of the user, such as kind and de-
gree of disabilities, are analyzed beforehand, and
then, the required service tasks and the design spec-
ifications are to be determined. In particular, the
designer should take into consideration of the fact
that the older persons and/or people with disabilities
as target users would have difficulty in controlling
complex robotic systems and in reacting rapidly to
an unexpected situation. Thus, service tasks should
be performed autonomously or semi-autonomously
with ease as much as possible by the robot’s own
intelligence for the given task command.

The words ‘intelligence’ or ‘intelligent system’
has been widely used but, in a non-unique way11.
We find that general notions on intelligence do not
provide any specific guideline in designing a practi-
cal system because the required type of intelligence
varies according to target applications. AI (artifi-
cial intelligence) on knowledge abstraction and in-
formation fusion is important, for example, in the
financial/economic analysis while cognitive intelli-
gence is more useful in the biometrics field. Also,
computational intelligence on manipulation/control
under uncertain complex environment is effective in
the robotics area.

In this paper, we shall discuss a set of effec-
tive intelligent techniques which can be utilized in

a smart house environment in which human, con-
trollable devices, and robotic agents are treated to
be subsystems in a human-in-the-loop system. In
the design of a smart house for the people in need,
there would be many important factors to consider,
such as safety, reliability, accessibility, and so on to
evaluate the performance of the system. But we con-
centrate on the aspect of human-robot interaction in
the paper. Note that human-robot interaction (HRI)
would become intense and frequent in such a home
environment where robotic services are desired for
independent living of the residents such as aged peo-
ple and/or people with physical handicaps.

This paper is organized as follows. In Section 2,
the notions on the intelligence for a smart house en-
vironment are briefly discussed and a smart house
environment, called Intelligent Sweet Home (ISH),
is explained. Then, for human-friendly human-
machine interaction, the tasks that a robot should ex-
ecute with some intelligent techniques are grouped
into three types in view of the context of the total
human-in-the loop system in Section 3. We describe
in detail, each context-based HRI type in Sections 4,
5 and 6, respectively. Finally, brief concluding re-
marks are stated in Section 7.

2. Intelligent Sweet Home as a Smart House
Environment

As a practical example, we describe a smart house
environment developed in KAIST, called Intelligent
Sweet Home (ISH). This system is aimed for a per-
son with movement limitations to perform various
complicated everyday tasks as much independently
as possible in a residential space12. Based on the
consensus gathered from a group of potential users
on a special questionnaire survey13, ISH is designed
to provide those services that are needed for inde-
pendent activities in cases of going outdoors, meal
preparation, eating, drinking, control of home ap-
pliances from the bed or wheelchair, and bring-
ing/removing objects while they are in the bed.

The ISH includes several robotic subsystems
such as an intelligent bed, intelligent wheelchair
and robotic hoist to assist transfer between the bed
and the wheelchair, and human-machine interaction
modules to provide a natural and convenient means
of conveying information between the user and the
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subsystems installed in the home. All the home-
installed components/devices are connected via a
home network that includes both wired and wireless
communication modules. Responding to the user’s
commands, the central unit generates a set of actions
for each robotic agent or for an automation device
and the sequence information according to which
these actions will be executed. Most of the assistive
modules are designed to perform their own specific
functions as well as to cooperate with other related
subsystems whenever necessary.

(a) Intelligent Sweet Home

(b) Joy in ISH

Fig. 1. Intelligent Sweet Home and Steward robot Joy

Since the ISH consists of a number of subsys-
tems and tasks, and since each task requires usually
more than one subsystem for cooperative execution,
it would be quite difficult for a user to control and
command all the subsystems by various correspond-
ing human-robot interfaces. To resolve this diffi-
culty, we have developed a steward robot, named
Joy, as shown in Fig. 1 so that the user can get a
service by interacting with the steward robot only in
operating the whole system14. The steward robot is
endowed with the learning function to handle uncer-
tain services and also with the intention reading ca-
pability so that some awkward or difficult situations
can be avoided for the user with physical disabilities.
The system is also capable of providing with per-

sonalized services depending on the resident’s pref-
erence and life style. All of these functions of the
robot will enable the home system to perform appro-
priate tasks autonomously or semi-autonomously in-
stead of cumbersome manual operations by observ-
ing the resident’s behavior. Figure 2 shows the hard-
ware structure of the steward robot and the ISH.

Fig. 2. Structure of the steward robot Joy and the
Intelligent Sweet Home

3. Human-friendly Interaction via Intelligent
HRI module

3.1. Comments on Intelligence for a Smart
House Environment

Imagine a home environment where the resident as
a user interacts with a service robot in various man-
ners. The user may give a command to bring a cup
to him/her or assist walking outside. Also, he/she
may want the robot to adjust the internal temperature
or turn on TV with a usual favorite channel. While
the robot is performing a given task command, the
user may express his/her feelings as feedback on the
robot’s performance or render another instruction to
be done after the current task. In this situation, ob-
serve that human-robot interaction occurs frequently
and sometimes intensely and that it is dealt with in
the framework of a human-in-the-loop system. Tra-
ditionally, a major concern of designing the total
human-in-the loop system is to minimize the trou-
blesome human factors. In an airplane control sys-
tem, for example, the pilot is trained not only to be
skillful in maneuvering the airplane but also not to
make any human errors. It means that the target sys-
tem is first designed according to some given speci-
fications, and the operator of the system is required
to make the system perform optimally or adapt to
the machine. We may call such a design approach as
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machine-centered approach.

Recall that the older people and people with dis-
abilities may have difficulty in learning how to con-
trol a complex system such as a smart house. Note
that a smart house environment is designed to as-
sist the potential users for their independent living
with some assistive components, and that the num-
ber of components increases as the number of ser-
vice tasks increases, so the cognitive load of the
users correspondingly increases to control all the de-
vices and subsystems in a smart house. For this
type of a smart house, we adopt the different phi-
losophy called “human-friendly design approach”,
according to which the robot is designed so as to
minimize human training or human cognitive load in
operation of the system. A service robot, designed
under the human-friendly design philosophy, is ex-
pected to adapt itself to human by learning and un-
derstanding characteristics and behaviors of human,
which sometimes also called “human-centered” sys-
tem design approach2. One obvious thing, in this
approach, is that the robot has to possess some form
of capability to understand human characteristics.

When human-robot interaction takes place in
a smart house environment, human would prefer
communication between human and the system to
be easy and convenient. In communication, hu-
man responds mostly with perception-based input
data while employing an approximate reasoning
inference mechanism, whereas robot is operating
with measurement-based input data and under well-
defined mathematical logic and formulae. This dif-
ference makes it difficult for human being and the
target robotic machine to communicate with each
other unless properly interfaced. Thus, realiza-
tion of effective human-machine interaction relies
on appropriate human-machine interfaces that are
capable of translating one type of information and
knowledge to another completely different type, and
for this, some intelligent techniques are considered
to be essential to make human-machine interfaces
more effective and more human-friendly. To make
the robot human-friendly, conventional techniques
based on math have limited applications.

Note that, when human communicates with an-
other human, human can express his/her instruc-
tions or intention in various forms, such as natu-
ral language, facial expressions, gestures, and be-

havioral patterns. To make interaction to be nat-
ural and easy for human, we may design a robot
to learn these human communication skills. There
have been tremendous attempts to make mathemat-
ical models with quite limited success. To make
the robot human-friendly, conventional techniques
based on math have limited applications due to the
fact that human is an entity which are very diffi-
cult to model because of subjectivity, time-variance,
ambiguity, inconsistence, susceptibility, and high-
dimensionality. Thus, some form of intelligence
is needed and it is proposed to use soft computing
techniques or the techniques of computational intel-
ligence such as fuzzy logic, GA and ANN that can
be effectively utilized for mimicking human intelli-
gence in HRI.

Another aspect to note is that service tasks by
a robot are desired to be performed autonomously
as much as possible in many situations and for this,
some high level of intelligence may be needed. Let
us imagine a service task assigned to a robot to bring
a cup on a table. If the user has to designate an
accurate 3-dimensional position of the target object
to perform the task, let us call it 1st level of intelli-
gence. This kind of intelligence is viewed as a phys-
ical ability of the robot. If the robot additionally pos-
sesses its own cognitive intelligence by sensing and
recognizing the target object, then we regard it as 2nd

level of intelligence. This kind of intelligence en-
ables the robot to handle a great deal of uncertainty.
Finally, if the robot can bring the cup autonomously
with avoiding and/or rearranging possible unneces-
sary obstacles, then we may call it 3rd level of intel-
ligence for the given task. It is remarked that, for the
robot with a lower level of intelligence, the role of
human being becomes more involved in letting the
robot to perform a task and the robot requires contin-
uous human interventions during its operation. On
the other hand, if the robot has higher level of in-
telligence, the robot can perform the given task by a
simplified command of human being. Therefore, the
capability of autonomously performing a task is con-
sidered to reduce unnecessary interaction between
human being and the target machine. Of course, if
the robot has much higher level of intelligence, it
may tries to seek target tasks autonomously with-
out any designated command by estimating intended
command of the user.
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In designing and realizing an assistive robotic
system, we remark that many additional functional
requirements should be taken care of, such as safety,
reliability and usability. In the paper, however, we
concentrate on the human-robot interaction perspec-
tive for which the intelligence in the human-machine
interface as well as autonomous task performing is
considered as essential in a smart house environ-
ment.

3.2. Human-friendly Interaction between
Human and Robot

Human-friendly human-robot interaction can be
studied from many perspectives including views of
psychology, neuroscience, cognitive science, sociol-
ogy and engineering. In particular, we can note that
a functionally-driven engineering approach has been
vigorously investigated with a variety of issues in-
volving interactive design, safety, modeling and task
management. From a realization point of view, con-
siderable aspects of HRI are found to be some mod-
ified versions from HCI or from HAI (human-agent
interaction).

For analysis and design of a HRI module, it
would be necessary to identify the mode of inter-
action if the number of robots versus that of humans
is termed as “mode”. It can be 1 : 1, 1 :N, N : 1 or
N : M. Usually, we deal with the 1 : 1 mode when
a single user interacts with a robot in the house one
at a time. In an office environment, it can be 1 :N
mode with a variety of service menus for different
users, while in a smart house, the robot works in
the N : 1 mode where a user should deal with sev-
eral robotic subsystems. When multiple robots and
a number of people do cooperatively cleaning and
arranging scattered chairs of a classroom, the situa-
tion can be considered as anN : M mode.

In case of making models of human for interac-
tion, the distance between the user and the robot be-
comes an important factor. A human can be modeled
as a simple moving object when the distance is very
far away while the same human becomes a complex
entity that renders various forms of input to the HRI
Module such as facial emotional expressions, hand
gestures or EMG signals when such physical signals
are used for controlling other subsystems such as
wheelchair. These considerations of mode, distance
and others can be fused into a concept of “context”.

Here, we propose that the set of interaction tasks
that a service robot is supposed to carry out can be
partitioned according to the context in which the
robot is situated. The degree of context awareness
and the specificity of the context information deter-
mine the tasks that a robot should do in HRI as in
context-aware services. Here, “context” refers to a
situation of an entity or the properties of a system
that are relevant to interaction between the system
and its surroundings and would help it adapt to its
behavior accordingly. It is known that any represen-
tation is context dependent. In modeling or describ-
ing the HRI environment, the robotic tasks should be
designed in consideration of the context. The con-
text information can be well-defined and crisp, or it
can be fuzzy or uncertain.

We consider HRI Interaction Module to be a
system that takes input from human and generates
output for human. Generation of the output de-
pends on the context of the situation in which hu-
man and robot are situated. We divide the context
into 3 types: (1) crisp context, (2) fuzzy context,
and (3) uncertain context. Thus, the HRI Mod-
ule generates the output under context reasoning
where the context is hierarchically structured; the
bottom level is crisp and task execution is done as
if there is no context situation whereas the top level
is uncertain and the task done may lead to erro-
neous/unsatisfactory output from the human point of
view and learning is necessary in the long term ba-
sis.

H R I
M o d u l e

S u b - s y s t e m

C o n t e x t

C r i s p
C o n t e x t

F u z z y
C o n t e x t

U n c e r t a i n
C o n t e x t

H R I  ( H u m a n - R o b o t  I n t e r a c t i o n )  e n v i r o n m e n t

O u t p u tI n p u t

t o  H u m a nf r o m  H u m a n

Fig. 3. HRI Module Subsystem in Context

In this paper, the interaction tasks done by the
robot are considered in terms of HRI in crisp cnon-
text, in fuzzy context or in uncertain context and are
exemplified by three subsystems: (1) task planning
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subsystem, (2) soft remote control subsystem, and
(3) probabilistic fuzzy-rule base subsystem of the
ISH. Also, the steward robot is discussed as a rep-
resentative example in view of computational intel-
ligence for effective human-machine interaction.

4. Task Planning Subsystem for HRI in Crisp
Context

When the human-robot interaction (HRI) takes place
in crisp context, the HRI Module can precisely react
or take actions to an input in a well-defined way.
The subsystem under crisp context amounts to a
task planning subsystem for which an advanced al-
gorithm is utilized in the paper for improving task
performance with autonomy, convenience and easy
controllability for the user. Recall that the ISH is
equipped with several robotic subsystems and de-
vices and that the increased number and the com-
plexity of subsystems can lead to the decrease of ac-
cessibility and a great deal of inconvenience. As an
approach toward human-friendly human-robot inter-
action in crisp context, therefore, we focus on en-
dowing a versatile task planning capability to the
steward robot, aiming at ‘simplification of task com-
mands’ by the user.

4.1. System Overview

In the ISH, the service tasks are categorized as one
of the following15: 1) low-level task: the task re-
quired to control a single target device (e.g., turn-
ing on/off the TV) and 2) high-level task: the task
required to control multiple target devices with a
proper sequence (e.g., preparing outside trip, prepar-
ing a meal). Let us consider a high-level task sce-
nario, for example, that a person with lower-limb
paralysis wants to go outside from the bed in the
ISH. In this case, the target user with mobile dis-
ability has to control the intelligent bed robot, the
robotic hoist, the intelligent wheelchair, the stew-
ard robot Joy, and the other devices with a proper
sequence in the way of reducing task performing
time and of avoiding possible collision among mo-
bile agents. Recall that this process requires a cum-
bersome planning of manual operations, and it is
quite difficult for the person with physical disabil-
ity to conduct such a sequence of operations under
possible unexpected events.

To resolve this potential difficulty, a task plan-
ning system is proposed for the steward robot “Joy”
to control subsystems automatically in a proper se-
quence. Based on observation of the environmental
status and the device conditions, the task planning
system generates an appropriate sequence of low-
level tasks from the given high-level task.

A task planning subsystem finds a sequence of
actions that enable the system to move from an ini-
tial state to a goal state in the way that all the facts
of the goal state are true. Here, a fact is defined to be
the discretized status of a device and a state is a set
of facts. The goal state is given by a high-level task
and the initial state is decided by some environmen-
tal sensory information. The task planning system
in the paper is based on the STRIPS (STanford Re-
search Institute Problem Solver) representation16,17.
Many task planning systems have been developed
under the STRIPS representation, including Graph-
plan18, BSR-Graphplan19, and Split planning20, to
name a few. Among them, the split planning method
is proved to show better performance than the other
planning algorithms in view of computation time un-
der the condition that the number of facts in an initial
state is larger than that in a goal state15. However,
we have noted that the computation time of the split
planning method is still too large to be applied in
a practical real-time system such as ISH. To han-
dle this requirement, we have applied a backward
graph construction scheme to the existing split plan-
ning method with a state partitioning technique. Fig-
ure 4 shows the overall structure of the proposed task
planning system.

T h e  t a s k  p l a n n i n g  s y s t e m  o f  S t e w a r d  R o b o t  J o y

S e q u e n c e  M e r g i n g  M o d u l e

B S P  # 1 B S P  # 2 B S P  # n.  .  .

I n i t i a l  P l a n n i n g
M o d u l e

S t a t e  P a r t i t i o n i n g
M o d u l e

s u b - p r o b l e m  # 1 s u b - p r o b l e m  # 2 s u b - p r o b l e m  # n

a c t i o n
s e q u e n c e  # 1

a c t i o n
s e q u e n c e  # 2

a c t i o n
s e q u e n c e  # n

a  m e r g e d  s e q u e n c e  
o f  a c t i o n s

D e v i c e  c o n t r o l  m o d u l e

u s e r
c o m m a n d

e n v i r o n m e n t a l
s e n s o r y

i n f o r m a t i o n

* B S P :  B a c k w a r d  S p l i t  P l a n

Fig. 4. Overall structure of the task planning system

As shown in Fig. 4, the task planning system
consists of four kinds of the processing submod-
ules, which are an initial planning submodule, a state
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partitioning submodule, BSP (Backward Split Plan-
ning) submodules, and a sequence merging submod-
ule. For the given high-level task and the observed
sensory information, the initial planning module
generates an initially planned graph based on the
STRIPS representation. Then, the initial graph is de-
composed into a collection of several sub-problems
in the state partitioning submodule. For each sub-
problem, the BSP module generates the planning re-
sult, which is a sequence of actions. Finally, each
sequence is merged into a sequence of actions for
the original problem. The detailed procedures are
explained in the next Section

4.2. A Backward Split Planning Method with
State Partitioning: Intelligent Technique in
the Task Planning System

To find an appropriate sequence of actions, the con-
dition given to a planning system consists of three
tuples: an initial state, a goal state, and a set of
the defined actions16. All actions are predefined by
STRIPS representation, which has two factors: state
and action. An action is a mapping from a current
state to a new state.

In general, Graphplan-based task planners (e.g.,
Graphplan, BSR-Graphplan, Split planning, and so
on.) construct a graph first, and then it searches an
optimal path to reach the given goal. Recall that one
of the performance measures is the computational
time of the planning system, and the time is mostly
spent in the graph-construction phase. We find that
the planning time mainly increases as the number
of redundant facts of an initial state increases in
a forward-graph construction planner such as Split
plan15.

It is remarked that some subsystems in the
ISH such as the robotic hoist and the intelligent
wheelchair are highly related to their high-level
tasks whereas some devices and home appliances
are not. Thus, as long as a high-level task in the ISH
is concerned, the number of redundant facts of an
initial state is larger than that of a goal state. In this
case, we also found that a backward graph construc-
tion algorithm such as BSR-Graphplan shows better
performance. Therefore, we have applied a back-
ward graph construction scheme in the split planning
algorithm. A brief procedure is shown in Table 1.

Table 1. Procedure of a backward split planning

Procedure

(1) Construct a backward split planning graph for
the given planning problem

(2) Based on the analysis of the constructed graph,
calculate heuristic function values and obtain a set
of transition facts.

(3) Search a sequence of actions by enforced-hill
climbing algorithm

In addition, a state-partitioning technique has
been applied to the backward split planning algo-
rithm. It is remarked that decomposition of an orig-
inal planning problem into a set of independent sub-
problems can highly reduce the computational time.
The crux of this problem is grouping the initial and
the goal state into several sub-initial states and sub-
goal states, which does not affect each other, respec-
tively. Starting from the initially divided sub-goal
states, which is one fact in the original goal state, the
planner finds the essential sub-initial state for each
sub-goal state. Based on the obtained sub-initial
state, we analyze dependency, and then, the decom-
position of an original planning problem into inde-
pendent sub-problems is conducted by merging op-
eration of dependent sub-initial states and sub-goal
states.

Fig. 5. Abstracted world model of Intelligent Sweet Home

Table 2 shows an example of task planning in
the ISH for preparing the task of going out as ex-
plained before. Figure 5 shows an abstract world
model of the ISH using the world abstraction tech-
nique21. Using the proposed task planning system,
we can finally obtain the sequence of actions for the
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given high-level task as shown in Table 2.
Table 2. Example of task planning

High-Level Task Performing with the proposed Task Planner:

preparing ‘going out’ task

Initial state

in STRIPS

representa-

tion

on (user, bed), right (RH, P6), left (Wheel

chair, P5), on (TV), on (lights), open (cur-

tain), right (JOY, P1)

Goal state in

STRIPS rep-

resentation

on (user, Wheel chair), right (RH, P6), off

(TV), off (lights), close (curtain)

Obtained se-

quence of ac-

tions by the

task planner

(1) Let the robotic hoist move to the bed

from initial position.

(2) Let the user move to the robotic hoist

from the bed.

(3) Let the intelligent wheel chair move to

the docking place with the robotic hoist.

(4) Let the intelligent wheel chair dock the

robotic hoist.

(5) Let the user move to the intelligent

wheel chair from the robotic hoist.

(6) Let the steward robot turn off the TV,

lamps, and the air conditioner.

(7) Let the robotic hoist move to the home

position.

For evaluating the proposed system in view of
computational time, we have conducted experiments
for the following six cases under CPU P4-2.8GHz:

(a) split planning only

(b) split planning+ world abstraction technique

(c) backward split planning

(d) backward split planning+ world abstraction
technique

(e) backward split planning+ state partitioning
technique

(f) backward split planning+ state partitioning
technique+ world abstraction technique

As shown in Table 3, the computational time
has been remarkably reduced with state partitioning
technique. Also, the world abstraction technique ad-
ditionally reduces the computational time. The pro-
posed task planning system can provide a proper ac-
tion sequence within one second for the high-level
task, preparing ‘going out’, which is a quite satis-
factory result to be applied in a practical situation.

5. Soft Remote Control Subsystem for HRI in
Fuzzy Context

In this Section, we present a form of HRI in Fuzzy
Context, called “soft remote control system”, which
is a hand gesture recognition-based interface. Us-
ing the soft remote control system, the user can give
his/her command directly to the target devices by
some pointing/pre-defined gestures. Note that hu-
man gestures are intuitive, natural, and easy with
which the user can express his/her intentions of
approval and satisfaction or giving instructions by
pointing some devices and directions but that in-
formation contents would be fuzzy and interaction
takes place in a fuzzy context. Facial emotional ex-
pression recognition is another example of this cate-
gory.

Table 3. Experimental results of case (a)∼ (f)

Method
Graph Graph

A sequence of actions
Partition

Graph
Search Total

level node Step
The number

time (s)
construction

time (s) time (s)
of actions time (s)

(a) 22 62597 14 22 - 545.97 0.02 545.99
(b) 22 5289 14 22 - 38.81 0.03 38.84
(c) 22 30184 14 22 - 152.15 0.02 152.17
(d) 22 4916 14 22 - 8.12 0.03 8.13
(e) 22 3727 14 22 1.59 1.56 0.02 3.17
(f) 22 611 14 22 0.45 0.38 0.01 0.84

1

5.1. System Overview

The soft remote control system allows the users to
control various home appliances naturally without
any body-attached devices in a smart house.22 Fig-
ure 6 shows the overall configuration of the soft re-
mote control system. Multiple color cameras with
a pan/tilt/zoom module are used to acquire the im-
ages of the room. In the vision processing sys-
tem, the user’s commands using his/her hand ges-
ture are analyzed and the information about them is
transferred to the home server via TCP/IP. Then, the
home server sends Infrared (IR) signals to control
the home appliances.

The command procedure to operate a function
of a specific device is defined in a simple and nat-
ural way that the user can command easily and intu-
itively. The detailed procedure is described in Fig. 7.
The user first selects the device that he/she wants to
control by pointing to it. Then, the user can com-
mand the operation of desired functions via 10 pre-
defined basic hand motion commands which consist
of 1-D motion and 2-D motion as shown in Fig. 8.
If there is no command gesture in a few seconds, the
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activated device is released. Otherwise, the user can
command other functions to the currently activated
device. In order to complement the errors in rec-
ognizing the user’s pointing directions, we adopt the
concept of feedback by which the user can adjust the
pointing direction and confirm the recognition result
as shown in Fig. 9.

Fig. 6. Soft remote control system in the Intelligent Sweet
Home

In the case that the pointing direction is be-
side the target, the soft remote control system finds
out the closest appliance to the current pointing di-
rection, and announces to the user which direction
his/her pointing hand should be moved to adjust the
pointing direction by displaying the location of the
target and currently pointed spot. The display also
shows the selected device and recognized command
gesture when a device is pointed and an operation of
the selected device is commanded, respectively, by
the user.

S t a r t

P o i n t i n g  a t  t h e
h o m e  a p p l i a n c e ?

A c t i v a t i o n  o f  t h e  p o i n t e d  a p p l i a n c e
( V o i c e  a n n o u n c e m e n t  &  D i s p l a y )

R e l e a s i n g  t h e
a c t i v a t e d  a p p l i a n c e

T i m e r  s t a r t

H a n d
c o m m a n d ?

T i m e r
e n d ?

O p e r a t i o n  o f  t h e  d e s i r e d  f u n c t i o n
&  D i s p l a y  t h e  r e c o g n i z e d  c o m m a n d

Y e s

Y e s

Y e s

N oN o

N o

Fig. 7. Command procedure for home appliance control

5.2. Intelligent Technique in the Soft Remote
Control System: Fuzzy Garbage
Model-based Gesture Recognition

Even though the user does not give a command
by hand gesture, the soft remote control system
may take some hand motion as a gesture command.
This fuzzy context causes wrong recognition results.
Such a situation can happen when an ordinary hand
behavior looks like a gesture similar to one in the
predefined command gestures. To resolve this prob-
lem, a fuzzy garbage model has been proposed.23

(a) 1-dimensional motions

(b) 2-dimensional motions

Fig. 8. Command gestures using hand motions

The fuzzy garbage model is a fuzzy model de-
fined by meaningless but similar gestures to the set
of commands. Those gestures are called garbage in
this paper. Also, a fuzzy command model is de-
fined by the command gestures. Each model is con-
structed by the corresponding fuzzy rules and mem-
bership functions, and produces the output score,
which indicates that the input gesture belongs to
each class. By comparing the output score, the
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user’s gesture is recognized as a garbage or com-
mand as shown in Fig. 10.

(a) Pointing direction

(b) Confirmation of the

recognition result

Fig. 9. Display for the feedback

F e a t u r e
v e c t o r

R e c o g n i t i o n
R e s u l t

C o m m a n d  M o d e l

G a r b a g e  M o d e l

F u z z y  r u l e  a n d  m e m b e r s h i p
f u n c t i o n  f o r  c o m m a n d  g e s t u r e

F u z z y  r u l e  a n d  m e m b e r s h i p
f u n c t i o n  f o r  g a r b a g e  g e s t u r e

C o m p a r e
d e f u z z i f i e d

v a l u e

0 1

0 1

Fig. 10. Command gesture recognition by fuzzy garbage
model

Note that fuzzy logic can be effectively utilized
to handle the uncertainty of human gesture. The
ambiguity can be expressed and treated as linguis-
tic values in fuzzy logic. In this paper, for example,
eating and ‘up’ command are discussed to explain
the overall system. Two features are used for the
recognition as follows:

1. Distance change between hand and face while
hand is moving

2. Distance between face and hand after user fin-
ishes a gesture

Four membership values (ZO: Zero, PS: Positive
Small, PM: Positive Medium and PB: Positive Big)
shown in Fig. 10 and the sixteen fuzzy rules in Ta-
ble 4 are used to recognize ‘up’ command. The COS
(Center of Sums) method is adopted for defuzzifi-
cation.24 For clear understanding of the problem,
defuzzified values of the recognition result are de-
scribed for five different users as shown in Fig. 11.

Observe that the defuzzified value of user #3’s non-
command is higher than user #2’s command gesture.
It means that some command gestures may not be
correctly recognized if a single threshold is applied
for the recognition system.
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Fig. 11. Defuzzified values for ‘up’ command and
non-command with five different users

Table 4. Fuzzy rules for ‘up’ command

If A is ZO and B is ZO
then Out is ZO

If A is PS and B is ZO
then Out is PB

If A is ZO and B is PS
then Out is ZO

If A is PS and B is PS
then Out is PM

If A is ZO and B is PM
then Out is ZO

If A is PS and B is PM
then Out is PB

If A is ZO and B is PB
then Out is PS

If A is PS and B is PB
then Out is PS

If A is PS and B is ZO
then Out is PS

If A is PB and B is ZO
then Out is PB

If A is PS and B is PS
then Out is ZO

If A is PB and B is PS
then Out is PB

If A is PS and B is PM
then Out is ZO

If A is PB and B is PM
then Out is PM

If A is PS and B is PB
then Out is PB

If A is PB and B is PB
then Out is PS

To resolve this difficulty, the fuzzy rules for
garbage gesture are generated as shown in Table 5
using the same features. Genetic algorithm (GA) is
adopted to optimize the membership functions be-
cause of its global optimization and robustness.25

The length of left, right side and center point of each
membership function are the parameters to be opti-
mized by the optimization rule in Eq. (1).

Figure 12 shows the optimized membership
functions by the proposed method and the results
of recognition error rate. Observe that the user #5
shows a particularly high error rate. This is a person
dependence problem. Note that the same model has
been applied for different users, and each user’s ges-
ture characteristics are different from one another.
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Thus, a personalized system as an individually op-
timized system is desired and for this, a two-stage
user adaptation technique has been adopted.

Table 5. Fuzzy rules for garbage gesture

If A is ZO and B is ZO
then Out is ZO

If A is PS and B is ZO
then Out is PS

If A is ZO and B is PS
then Out is PM

If A is PS and B is PS
then Out is PS

If A is ZO and B is PM
then Out is PB

If A is PS and B is PM
then Out is PS

If A is ZO and B is PB
then Out is PB

If A is PS and B is PB
then Out is ZO

If A is PS and B is ZO
then Out is PM

If A is PB and B is ZO
then Out is ZO

If A is PS and B is PS
then Out is PM

If A is PB and B is PS
then Out is PS

If A is PS and B is PM
then Out is PM

If A is PB and B is PM
then Out is ZO

If A is PS and B is PB
then Out is PM

If A is PB and B is PB
then Out is ZO

N
∑

i=1

[{

XA(i)−YA(i)
}

+
{

XB(i)−YB(i)
}]

N
(1)

N: Number of training samples
XA: Output score of command model from command
data
YA: Output score of garbage model from command data
XB: Output score of garbage model from garbage data
YB: Output score of command model from garbage data

Fig. 12. Optimized membership functions and recognition
error rates

For the first stage of user adaptation, GA is ap-
plied because of its strong “search” capability, and
this adaptation should be done in advance before the
system gets started. The initial values of the pa-
rameters are obtained from the optimized result in
this stage. However, we find that the gesture char-
acteristic of a single user is changeable in a differ-
ent environment. Therefore, additional adaptation
is required for a single user during his/her opera-
tion. This adaptation is defined as the second stage
of user adaptation, during which the steepest descent
method has been adopted because of its high speed
capability.26 The adaptation rule and a cost function
J are described in Eq. (2), where D is a defuzzified
value. Parameter updating equations are described
in Fig. 13. This adaptation process is performed in
an incremental manner, where the learning rate is
decided to prohibit possible performance deteriora-
tion by the user’s accidental gesture.

αnew = αold−η
∂J

∂αold
, J =

1
2
× (1−D)2 (2)

αnew = αold−η × (D−1)×
[( N

∑
i=1

∂
∂αold

Su

)

×

( N

∑
i=1

S

)

−

( N

∑
i=1

Su

)

×

( N

∑
i=1

∂
∂αold

S

)]

×

( N

∑
i=1

S

)
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Su =

∫ 1

0
u× fi(u)du

=
∫ u1

u0

u×Li(u)du+
∫ u2

u1

u×ydu+
∫ u3

u2

u×Ri(u)du

S=
∫ 1

0
fi(u)du=

∫ u1

u0

Li(u)du+
∫ u2

u1

ydu+
∫ u3

u2

Ri(u)du

f (u)

y

u0 u1 u2 u3

u

L(u) R(u)

Fig. 13. Parameter update rules for the steepest descent
method

The experimental results are described in Table 6
and Table 7. They are first conducted for the pre-
vious soft remote control system, comparing with a
fuzzy model with one threshold value, fuzzy garbage
model, and adapted fuzzy garbage model. Among
the 75 data patterns collected from five different
users, 25 data patterns are used for training while
50 data patterns are used for test.

The results are described in terms of recognition
rate (RR), false negative (FN) error and false posi-
tive (FP) error. As shown in Table 6 and Table 7,
the recognition rate of the garbage model with adap-
tation is highest. We remark that, when command
gesture is mixed with many other similar gestures,
the recognition rate may be much degraded. It is
due to the difficulty of finding appropriate features
and fuzzy rules to discriminate command gesture
and many other similar gestures. Therefore, it is re-
quired to develop a complementary method to en-
hance discrimination capability of the system.

Table 6. Experimental results for ‘up’ command

Up command vs. eating

User 1 2 3 4 5

Previous system

RR 82 48 77 53 72

FN 2 4 0 0 0

FP 34 100 46 94 56

Fuzzy Logic by
Threshold

RR 91 74 72 92 41

FN 10 32 36 6 44

FP 8 20 20 10 74

Garbage Model

RR 98 74 93 100 80

FN 4 50 8 0 38

FP 0 2 6 0 2

User adapted
Garbage Model

RR 98 74 93 100 80

FN 4 50 8 0 38

FP 0 2 6 0 2

6. Probabilistic Fuzzy Rule-based Learning
Subsystem for HRI in Uncertain Context

Finally in this Section, we discuss the HRI in uncer-
tain context which can be considered as an indirect
human-machine interface in the ISH. Recall that the
user can generally express his/her intention directly
to the target machine or a robot through a direct and
well-defined set of commands or behaviors. Also re-
call that, due to inconsistence and time-variance of
human expressions as input to the HRI Module, di-
rect interpretation of input for proper interaction can
be erroneous and sometimes impossible if not prop-
erly learned. It is necessary to have an advanced
form of human-machine interface which can provide
reading of the user’s intentions by indirectly observ-
ing his/her behavioral patterns or can respond in the
long run to inconsistent commands and changed en-
vironment with proper learning. Learning is essen-
tial for interaction in an uncertain context which al-
lows the robot to render services intelligently.

6.1. System Overview

The learning system is a subcomponent of the stew-
ard robot Joy, as shown in Fig. 2, which is applied
for learning the resident’s behavioral patterns. One
of the key features of the steward robot is the learn-
ing capability. The learning system collects data
on behavioral patterns of the resident according to
the available sensory information, converts in an ap-
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propriate knowledge form, and utilizes the acquired
knowledge to control target devices.

Table 6. (continued) Experimental results for ‘up’ command

Up command vs. many similar gestures

User 1 2 3 4 5

Previous system

RR 57 50 56 61 59

FN 2 4 0 0 0

FP 84 96 88 78 82

Fuzzy Logic by
Threshold

RR 61 64 57 55 62

FN 16 28 24 34 6

FP 62 44 62 56 70

Garbage Model

RR 62 62 53 87 82

FN 64 58 74 4 6

FP 12 18 20 22 30

User adapted
Garbage Model

RR 85 88 99 98 94

FN 16 6 2 2 4

FP 14 18 0 2 8

In general, an appropriate learning model and
a learning algorithm are selected based on analysis
about their learning target. In most pattern classi-
fication/learning problems, data pattern with well-
separable classes are considered as learning target.
However, the human behavioral pattern and some
physiological bio-signals (e.g., EEG, EMG, ECG,
etc.) show complex characteristics such as high di-
mensionality, nonlinear-coupling of attributes, sub-
jectivity, apparent inconsistency, susceptibility to
environments and disturbances, and time-variance
as well as situation-dependency2, and therefore, it
is difficult to handle them with a complete mathe-
matical model.

Note that, in practical situations, possible mea-
surement data by available sensors are limited for
behavioral pattern monitoring, and thus I/O train-
ing examples can be sparse and may contain appar-
ently inconsistent examples. Therefore, we select
PFRB (probabilistic fuzzy rule base) as a knowledge
representation type to handle such an inconsistent
characteristic of the target data pattern. Also, we
have proposed an IFCS (Iterative Fuzzy Clustering
with Supervision) algorithm to extract meaningful
PFRB from numerical data patterns.26 Furthermore,
to handle time-varying characteristics of the target
data pattern, a life-long learning structure with an
adaptation scheme based on the four interconnected
functional memory blocks, which are STM (Short-
Term Memory), ITM (Interim-Transition Memory),

LTM (Long-term Memory), and ABM (Action-
Buffer Memory). Figure 14 shows the overall learn-
ing architecture of the proposed learning system.

Table 7. Experimental results for ‘left’ command

Left command vs. eating

User 1 2 3 4 5

Previous system

RR 59 52 50 49 50

FN 0 8 2 4 0

FP 82 88 98 98 100

Fuzzy Logic by
Threshold

RR 49 87 75 78 83

FN 26 22 36 20 4

FP 76 4 14 24 30

Garbage Model

RR 95 85 94 97 95

FN 8 26 10 4 0

FP 2 4 2 2 10

User adapted
Garbage Model

RR 97 98 99 100 10

FN 6 2 2 0 0

FP 0 2 0 0 0

Table 7. (continued) Experimental results for ‘left’ command

Left command vs. many similar gestures

User 1 2 3 4 5

Previous system

RR 53 48 51 56 54

RR 0 8 2 4 0

RR 94 96 96 84 92

Fuzzy Logic by
Threshold

RR 61 56 82 45 45

FN 48 42 16 36 78

FP 30 46 20 74 32

Garbage Model

RR 78 58 78 45 90

FN 8 2 0 82 0

FP 36 82 44 28 20

User adapted
Garbage Model

RR 88 96 95 98 97

FN 2 2 4 4 0

FP 22 6 6 0 6

The proposed learning system can be utilized
to a home appliance control system in the ISH.
For example, in this paper, we introduce the learn-
ing system as an application to a TV viewing
genre/channel recommendation system. The learn-
ing system can recommend to the resident his/her fa-
vorite TV genre/channel based on the acquired prob-
abilistic fuzzy rule-based knowledge in a sequential
order. The detailed intelligent techniques are ex-
plained in the next Section.
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Fig. 14. Structure of PFRB-based life-long learning system

6.2. Sub-Intelligent Technique in the
Probabilistic Fuzzy Rule-based Learning
System: A Life-long Learning System with
Multiple Probabilistic Fuzzy Models

While fuzzy logic is effective to deal with linguis-
tic uncertainty in describing the antecedent part of a
rule, the probability theory can be effective to han-
dle probabilistic uncertainty in describing the conse-
quent part of the rule. In many fuzzy rule-based sys-
tems, a pre-defined homogeneous (grid-like) fuzzy
partition is initially employed, and then, a set of
fuzzy rules for the partitioned input space is ac-
quired from numerical input-output data. Note that
partitioning can affect system performance in a sig-
nificant way. A well-partitioned input space, for ex-
ample, can induce a reduced set of rules to describe
the given data pattern with high interpretability,
whereas an ill-partitioned input space may gener-
ate redundant rules some of which can be even con-
flicting or inconsistent. Thus, a methodology of ex-
tracting fuzzy rules with meaningful self-organized
fuzzy partition is desirable.

Fig. 15. Learning procedure of IFCS (Iterative Fuzzy
Clustering with Supervision) algorithm

We remark that the target data pattern such as hu-
man behavioral pattern is usually intermingled with
inseparable data groups and separable data groups

because of probabilistic and time-varying character-
istics. In this case, we find that conventional unsu-
pervised fuzzy clustering such as FCM27,28 shows
lower performance because it cannot extract separa-
ble information of a cluster correctly. In this con-
text, we think that effective combination of an unsu-
pervised learning process with a proper supervisory
scheme can be helpful to search general regularities
in data patterns, and in particular, in finding more
separable/analyzable groups of geometrical shapes.

More specifically, the IFCS learning algorithm
tries to extract a meaningful PFRB from a set of
numerical training examples iteratively in view of
separability. The learning system starts with a fully
unsupervised learning process with the FCM clus-
tering algorithm and a cluster validity criterion29,
and then gradually constructs meaningful fuzzy par-
titions over the input space. The corresponding rules
with probabilities are obtained through an iterative
learning process of selective clustering with super-
visory guidance based on cluster-pureness and class-
separability. If there are separable classes during the
learning process, re-clustering of the selected clus-
ter is performed. If not, extraction of probabilistic
information from the selected cluster is conducted.
Figure 15 shows the learning procedure of the IFCS
algorithm.

Another aspect to be considered is that the be-
havioral pattern of the resident may be changed as
time goes on. Also, the acquired knowledge could
be evaluated by the target user, and then modified to-
ward more reliable knowledge throughout incessant
learning and control. Referring to learning through
the entire lifespan of a system30, we may use a
new terminology “life-long learning” or continuous
learning. Grossberg asserts that, in contrast to a
paradigm adapting only to a changing environment,
the notion of life-long learning suggest preservation
of previously learned knowledge if it does not con-
tradict the current task.31

In conjunction with the notion of a human-in-
the-loop system, in this paper, we use a refined defi-
nition of the life-long learning for designing a prac-
tical learning system, which is defined as a repeated
knowledge accumulation process by alternation of
an inductive learning process and a deductive learn-
ing process throughout the entire lifespan of the sys-
tem as shown in Fig. 16.
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Fig. 16. Structure of fuzzy life-long learning system for
human-in-the-loop system

In view of PFRB construction, the inductive
learning process works to construct a PFRB in a
way that the PFRB is constructed and updated in-
ductively by pairs of accumulated training examples,
which are monitored during a period, using the IFCS
learning algorithm. The deductive learning process
operates also to modify the PFRB. The learning sys-
tem provides control output for a given input con-
dition using the acquired PFRB, and modifies the
PFRB by the user’s feedback. In both of the learning
processes, a judging process (or a decision maker)
is conducted which can decide between addition of
the rule/rule-base and modification (or deletion) of
the existing rule/rule-base by an incoming rule/rule-
base.

The proposed learning structure is shown in
Fig. 17. There have been several attempts to design
a learning system from a view of memory structure
in reference to a human cognitive learning model. It
is instructive to refer Hawkins31 who asserts that, if
an intelligent machine is ever to behave like a hu-
man, it should have a memory structure and func-
tionally similar to the neo-cortex of human brain.
Also, some required memory blocks in logical ar-
chitecture of memories in the brain has been pro-
posed.32 The proposed life-long learning structure
is based on multiple probabilistic fuzzy models, em-
ploying STM, ITM, LTM, and ABM in the learning
structure. We find that it is difficult to model human
behavioral pattern with a single probabilistic fuzzy
rule base. Here, a probabilistic fuzzy model denotes
for a probabilistic fuzzy rule base. Therefore, the
accumulated knowledge is expressed with a collec-
tion of multiple probabilistic fuzzy models, that is, a
probabilistic fuzzy model base.

We first consider the inductive learning process
as shown in Fig. 17 (a). A PFRB is generated
by the IFCS algorithm in the STM, and then the
PFRB is transferred to the ITM. Based on the model
base construction scheme, which maximizes dissim-
ilarities between the constructed models, the PFRB
is adapted to the model base in the LTM using a
similarity-based model comparator. After a model
is constructed in the LTM, the deductive learning
process is then activated as shown in Fig. 17 (b).
We adopt a model estimator for rapid selection of
an appropriate model among the existing models
in the LTM. The value of model estimator is up-
dated by calculating the compatibility between the
incoming training examples and the existing mod-
els. The selected model, which is used for control
by a model estimator, is transferred from the LTM to
the ABM. The learning system provides a classifica-
tion result for a test instance using the PFRB in the
ABM. Then, using a training example by feedback,
the value of the model estimator is updated. The
on-line adaptation scheme is applied in the ABM in
paralleled with updating the model estimator. The
selected model in the ABM is continuously adapted
by the on-line adaptation scheme. However, it is dis-
carded if a new model is selected by the model esti-
mator.

(a) Inductive learning process

(b) Deductive learning process
Fig. 17. The proposed structure of a PFRB-based life-long

learning system
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Even though the proposed learning system has
been originally designed to handle inconsistent data,
we first tested the learning system for well-separable
benchmark data in the UCI repository of Machine
Learning Database. By 10-fold cross validation,
we obtained 95.1% (2 PFRs), 95.4% (3 PFRs),
and 97.0% (3 PFRs) for Iris, Wine, and Wisconsin
Breast-Cancer Data, respectively.

To evaluate the proposed learning system as a TV
genre/channel recommendation system, 25 persons’
TV viewing data collected for one year have been
used. We have obtained an average success rate of
80.63% for genre selection and 69.98% for chan-
nel selection with 5 probabilistic fuzzy models, in-
cluding the second probable class in the presence of
highly inconsistent data. We have also found that
the learning system shows better performance for
the repeated/periodic data patterns. The experimen-
tal result shows that the learning system can recom-
mend favorite TV genres/channels for the resident
with high satisfaction degree within two or three tri-
als, which is very useful in a practical system. Note
that one of the merits in a probabilistic fuzzy rule-
based approach is that it can provide probable out-
puts sequentially according to the probabilities of
each class in the PFRB.

7. Concluding Remark

Interaction between human and robot in a smart
house environment would take place frequently in
various forms under different situations and context.
When special considerations are needed for the resi-
dent of the house, as for the older persons or people
with physical disabilities, the human-friendly design
approach is preferred in the sense that a robotic sys-
tem should adapts to human rather than training hu-
man for expert operation of the robotic system. It
is noted that machine intelligence is a crucial fac-
tor for such a design approach. In this paper, we
have proposed that, for the robot system, interaction
is considered as input and output of the HRI module
and that, the robotic response can be designed as a
system output in accordance of three different situ-
ations such as crisp context, fuzzy context and un-
certain context. And then, a successful example of
human-robot interaction is provided for each case.

The configuration of interaction between human
and robot in terms of contextual situations is an at-

tempt to be further studied in conjunction of rich re-
search results and we believe that there will be active
studies in search of effective and efficient HRI struc-
ture hybridized with various techniques of computa-
tional intelligence and with context theories33.
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