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Abstract: Artificial Immune Systems (AIS), which is inspired 
by the nature immune system, has been applied for solving 
complex computational problems in classification, pattern rec-
ognition, and optimization. In this paper, the theory of the 
natural immune system is first briefly introduced. Next, we 
compare some well-known AIS and their applications. Several 
representative artificial immune networks models are also dis-
cussed. Moreover, we demonstrate the applications of artificial 
immune networks in various engineering fields. 
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I. Introduction 
An immune system, one of the most intricate biological sys-
tems, has been used as a metaphor for intelligent computation 
in a variety of domains. Artificial Immune System (AIS) has 
been considered as a family of techniques originated from the 
community of immunology. As an important constituent of 
the AIS, the artificial immune networks are based on the 
principles of the behaviors of both B cells and T cells in the 
biological immune system. B cell is an integral part of the 
immune system. Through a process of recognition and 
stimulation, the B cells can clone and mutate to produce a 
diverse set of antibodies in an attempt to remove the infection 
from the body. T cell has two types. One regulates and con-
trols the strength of the immune response, and the other di-
rectly destroys the cells that have specific antigens. Both the B 
cells and T cells have been widely employed to solve a wide 
range of engineering problems, such as anomaly detection and 
data mining. This paper aims at giving a concise overview on 
the artificial immune network models including their theory, 
structures, and applications. 

The remainder of our paper is organized as follows. Section 
2 provides a brief survey of relevant immunology. Section 3 
discusses several typical models of artificial immune net-
works. The applications of these artificial immune networks 
in data mining, associative classification, pattern recognition, 

and function optimization are presented in Section 4. Finally, 
Section 5 concludes this paper with some remarks and con-
clusions. 

II. Natural Immune System 
A natural immune system has a very complex ‘hunt and de-
stroy’ mechanism working on the cellular level inside our 
bodies [1]. It has the remarkable ability of learning about 
foreign substances (pathogens) that enter the body and re-
sponding to them by producing the antibodies, which can 
attack the antigens associated with the pathogens [2]. Gener-
ally, the human immune system consists of the anti-
gen-presenting cells, lymphocytes, and antibodies. The lym-
phocytes are a kind of white blood cells, or more specifically, 
B lymphocytes and T lymphocytes [3]. These cells aid in 
recognizing and destroying specific substances. A B cell 
contains the antibodies on its surface, which can recognize the 
antigens invading the human body. The regions on the 
molecules the paratope can attach to are called epitopes. 
Identification of the antigen is achieved by the complemen-
tary matching between their paratope and epitope, comparable 
to ‘lock and key’ [4]. Figure 1 illustrates how an anti-
gen-presenting cell processes and presents an antigen. T cells 
can interact with the antigen under the help of the antigen 
presenting and major histocompatibility complex molecules. 
More precisely, (1) in Fig. 1 illustrates that once an Antigen 
Presenting Cell (APC) finds the antigen, it internalizes the 
antigen, and fragments it into antigenic peptides. In (2), pieces 
of these peptides are incorporated into the MHC molecules, 
and in (3), these peptidesa are displayed on the surface of the 
cell. The T cell recognizes and interacts with this pep-
tide-MHC molecule complex using its own receptor. Note 
that the T cells do not interact with the antigen directly. In-
stead they attach to the cell displaying foreign antigen com-
plexes on the basis of an MHC molecule [3]. 
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Figure 1. Processing and presentation of antigen 

An antibody recognizes and eliminates only a specific type 
of antigens. The key portion of the antigen recognized by the 
antibody is called epitope, an antigen determinant, as shown 
in Figure 2. The paratope is the portion of the antibody that 
corresponds to a certain kind of antigens. When an antibody 
merges an antigen via the epitope and paratope, it can attack 
this antigen [3]. 

 
Figure 2. Interactions between antibody and antigen in 

natural  immune system 

The human immune system maintains a memory of infec-
tions so that if ever exposed to the same antigen, a quicker 
response can be elicited against the infection. In other words, 
the secondary immune response occurs, when the same anti-
gen is indeed encountered. It is characterized by a rapider and 
more abundant production of the antibody, which results from 
the primary response [5]. 

III. Typical Artificial Immune Networks 
In this section, a few representative artificial immune network 
models are introduced. We will discuss these models’ theory, 
structures, and learning algorithms in details. 

A. Resource Limited Artificial Immune System 
The Resource Limited Artificial Immune System (RLAIS) [2] 
is built upon the work of the basic AIS [4]. As we know, the 
AIS consist of a set of B cells, links among themselves via 
their stimulation levels, and cloning and mutation operations 
performed on these B cells. The AIS can cluster together 
similar patterns in the training data presented. This network of 
B cells represents clusters with the affinity links [4]. However, 

several critical parameters should be manually set for efficient 
initialization: number of iterations, the Network Affinity 
Threshold (NAT), and mutation rate [5], which are explained 
as follows [5]. 

1. The number of iterations that the training data are pre-
sented to a learning system is not straightforward to choose. 
There is no direct correlation between the number of iterations 
and linkage value. Nevertheless, some experiences-based 
observations are clear: a). the more times the training set is 
presented to the artificial immune network, the longer it takes 
for the network to converge. In fact, there is an exponential 
growth in the network size, regardless of the training set, 
mutation rate, and NAT. b). We do not have a definite border 
line between presenting the training data in an insufficient or 
excessive number of times. Too many presentations of the 
training data may lead to a large network that is difficult 
interpret. The appropriate selection of this initialization pa-
rameter is clearly vital in the successful training of the AIS. 
Figure 3 of [5] tracks the evolution procedure of the RLAIS 
with the Iris data set as the training samples. Figure 3 (a) 
shows the resulting network after two iterations. It clearly 
demonstrates one separate cluster from the main cluster. 
Figure 3 (b) illustrates the network after five iterations, from 
which it is nearly impossible to observe any network struc-
ture.  

2. The NAT is defined in (1), which is calculated by parsing 
the training data and finding the average Euclidean distance 
between each item. In (1), li represents the affinity associated 
with the ith link in the network, nl is the number of links 
present, and A is a constant value, where 0≤A≤1. 

i

nl

i 0
{ aff (l )

NAT A
nl

== ∑ }

                     (1) 
If the affinity between two B cells is less than the NAT, a 

link is created between them. As a matter of fact, the NAT 
directly influences the network linkage, and it should be 
chosen as a small value, e.g., 0.1, which can decrease the 
potential connectivity of the AIS, and, thus, separate out the 
training data more efficiently than if it has larger values. 
 

 
(a) after two iterations. 
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(b) after five iterations. 

Figure 3.  RLAIS-based clustering of Iris data set 
 

3. Since the mutation rate creates a diverse representation 
of the training data, it can reduce the connectivity in the AIS. 
If the mutation rate is higher, it will produce a network with 
fewer B cells. Figure 4 shows the growth of the network 
linkage over training time with a mutation rate of 10% on the 
Iris data set. 

 

Figure 4.  Linkage growth with mutation rate of 10%  
on Iris data set 

The main difference between an AIS and a RLAIS is the 
removal of the number of times the training data set is pre-
sented to the network [5]. The RLAIS does not require setting 
the number of training cycles beforehand, but can still offer a 
more effective population control strategy. These improve-
ments are due to the deployment of the Artificial Recognition 
Ball (ARB). The ARB is a representation of a certain number 
of identical B cells, because individual B cells are no longer 
explicitly represented in the RLAIS. The RLAIS has a group 
of ARBs as well as links among them. All the ARBs compete 
for representing the B cells within the RLAIS on the basis of 
their stimulation levels. The higher the ARB stimulation level, 
the more B cells it can represent. Once an ARB does not 

represent any B cells, it is expunged from the network. Indeed, 
the goal of the mutation mechanism is to create new ARBs 
that can better fit the training data. As new ARBs are created, 
some of them are satisfactory matching of the training data, 
while others are not. The latter are less stimulated by the 
training data and network, and will be ultimately removed 
from the RLAIS. The ‘base’ size of the network is obtained 
after a number of training iterations. Thus, over-training is not 
a serious problem in the RLAIS. The explosion in population 
growth can be eliminated by the above new population con-
trol scheme. Clearly, compared with the AIS population 
growth, no exponential growth exists in the RLAIS. Addi-
tionally, instead of recalculating the NAT at the end of each 
training epoch in the AIS, we keep it constant throughout the 
whole learning process in the RLAIS. 

The RLAIS can be also used as a solid basis for continuous 
learning: previously unseen input data is presented to the 
RLAIS to allow new patterns to be learnt without adversely 
affecting those patterns already learnt. Unfortunately, there 
are a few unsolved problems in designing our RLAIS. For 
example, choosing the number of B cells that the RLAIS 
should allocate is an important factor. If there are too many 
resources selected, the network will become too large and 
unrepresentative, while too few resources can result in some 
un-captured patterns. Reference [6] proposes a new 
Self-Stabilizing Artificial Immune System (SSAIS) to deal 
with this drawback. The SSAIS differs from the RLAIS in 
that there is no fixed quantity of resources to be centrally 
distributed among the ARBs. The concept of resources is still 
used, but in an altered way. In the SSAIS, the resources are 
handled locally by each ARB. The ARB can increase its own 
resource allocation, when it registers the highest stimulation 
for an incoming data sample [6]. 

B. aiNet 
The aiNet is an emerging kind of the AIS inspired by the 

immune network theory firstly proposed by Jerne in 1974 [7]. 
It is developed based on the ideas and concepts of three 
theories: the immuned network theory, the clonal selection 
principle, and affinity maturation principle [21]. The main 
role of this artificial immune network is to perform data 
compression by following the clonal selection as well as 
affinity maturation principles. The immune network theory 
hypothesizes the activities of the immune cells, emergence of 
memory, and discrimination between our own cells (known as 
self) and external invaders (known as non-self). The aiNet 
model consists of a group of cells, namely antibodies, inter-
connected by links with associated connection strengths. The 
aiNet antibodies represent the network internal images of the 
pathogens (input patterns), to which they are exposed. The 
connections among these antibodies determine their interre-
lations with providing a degree of similarity among them-
selves in the given metric space. The closer the antibodies, the 
more similar they are. This approach results in an antibody 
network that can recognize the antigens (input data set) with 
an adjustable generality.  

The aiNet learning procedure can be divided in two prin-
cipal steps [7]. The first one corresponds to the clonal selec-
tion principle and affinity maturation interactions, where the 
antibodies (Ab) suffer from the cloning and mutation in order 
to recognize the antigens (Ag). This stage is actually similar to 
the CLONal selection ALGorithm (CLONALG) originally 
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proposed by de Castro and von Zuben. The raw training data 
set is explored and compressed by the aiNet leading to an 
antibody network that extracts the most relevant information 
from the data for the clustering purposes. The second step of 
the aiNet includes the immune network interactions and in-
troduction of diversity. The Minimal Spanning Tree (MST) is 
built on the antibody network, and its inconsistent edges are 
identified and removed, which can transform the network 
(data) separation into clusters. 

In general, the aiNet is developed to answer the following 
important questions: is there a great amount of redundancy 
within the training data set, and, if there is, how can we reduce 
it? Are there any subgroups intrinsic to the data? How many 
groups are there in the input data set? What is the structure of 
the spatial distribution of these data? How can we generate 
decision rules to classify novel samples [8]? However, the 
main drawbacks of the aiNet, as pointed out in [9], are the 
large number of application dependent parameters and proc-
essing overhead of each iteration. 

The aiNet can be considered as an evolutionary artificial 
immune network, because the evolution strategies based on 
the genetic variation and selection within a population of 
individuals are used to control the network dynamics and 
plasticity. Reference [10] proposes that the aiNet is capable of 
detecting the optimal solutions. Combined with the constant 
modulus criterion, it has been employed for the optimal blind 
IIR equalization. Furthermore, the aiNet is also a connec-
tionist system, in which a matrix of connection strengths is 
defined to measure the affinities among the network cells. The 
learning algorithm targets at building a memory set that can 
recognize and represent the structural organization of the 
training data. Especially, the suppression threshold controls 
the specificity level of the cells, clustering accuracy, as well as 
network plasticity. 

C. iNet 
The iNet is a general framework for simulating the natural 
immune networks and further describing how to develop the 
AIS [3]. It utilizes the essential principles of the AIS, such as 
autonomous policy negotiation and system reconfiguration 
facility, for communication. The iNet serves as an information 
infrastructure, and can be applied to explore related mecha-
nisms. Additionally, it helps to investigate a family of appli-
cations based on the artificial immune networks. As we know, 
application frameworks and patterns can enhance the reuse 
techniques, reduce development cost, and improve the quality 
of applications. The reusable components within the iNet are 
designed with several software patterns. Therefore, the iNet 
can explicitly show the developers its design intents and ex-
tension points, with which they can effectively tailor their 
own applications. More precisely, it is designed to allow the 
proper customization of various strategies to construct the 
artificial immune networks, e.g., network topology and net-
work dynamics control. The iNet contains four main packages: 
GUI visualization, graph management, immuno-component 
management, and persistence & exchange, as illustrated in 
Figure 5. 

  
Figure 5. Structure of iNet. 

D. IPAisys 

The choice of an AIS model, including its expression, 
matching, training, evaluation, and various controlling pa-
rameters, is in general pre-determined by experts based on 
their experience on hypothesized problem space. The model is 
next iteratively adjusted until satisfactory outcome has been 
achieved in both training and testing. If there is no or few 
improvement during this process, one needs to resort to other 
models. Due to the limited experience of individual experts, it 
is nontrivial to define a robust AIS model for detecting all the 
possible objects. 

Z. Wu and Y. Liang [26] propose an Integrated Platform of 
Artificial Immune Systems (IPAisys) based on the detector 
population mode to tackle the aforementioned problems. In 
this platform, a group of model prototypes are integrated in a 
unified framework, wherein the model structure can be 
automatically regularized by using the output of training and 
testing, as so-called “pressure”. A self-regulating algorithm is 
developed with the use of model library to achieve the optimal 
multi-AIS-models through dynamic configuration. Therefore, 
this platform is flexible and intelligent, because it is capable 
of choosing an optimal combination of different models to 
cooperatively evaluate each unknown case. 

In recent years, there have been numerous AIS models 
proposed for different intended applications. A. Iqbal and M. 
A. Maarof [34] suggest an artificial APC model for danger 
susceptible data codons. S. Stepney, R. E. Smith, J. Timmis et 
al [35] present that the bio-inspired algorithms are best de-
veloped and analyzed in the context of a multidisciplinary 
conceptual framework that provides for sophisticated bio-
logical models and well-founded analytical principles. A 
framework in the context of the AIS network models is also 
outlined in [35]. 

IV. Applications of Artificial Immune Net-
works 
During the past decade, the artificial immune networks have 
been successfully applied to a large variety of engineering 
areas, such as data mining [32], time series prediction, pattern 
recognition [33], optimization, fault detection [30], computer 
security [31], and process control. In this section, a few ex-
amples of these applications are demonstrated and discussed. 
We will also present our work on the clustering applications 
of the AIS. It illustrates that our AIS-based clustering algo-
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rithm is better than the commonly used clustering method, 
K-means [39]. 

A. Data mining 

The Artificial Immune Network (AINE) is a kind of the AIS 
developed for data analysis and pattern discovery [13]. It 
employs some high-level metaphors drawn from the natural 
immune system, e.g., B cells are capable of recognizing 
pathogens (antigenic recognition), similar B cells are linked 
together and these links form a network of B cells (immune 
network theory), cloning and mutation operations are per-
formed on B cells (clonal selection and somatic hypermuta-
tion), and a certain number of B cells can be represented by a 
single ARB. The AINE can clearly show the relationships 
among nodes in its topological network structure. 

The AINE has been investigated on the well-known 
Fisher’s Iris data [14]. After 20 iterations, the Setosa class 
completely disappears from the network representation. 
Compared with other conventional data mining techniques, 
we observe that the Kohonen Self-Organizing Map (SOM) 
[15] can separate the Setosa class and some of the Virginia 
class. However, the clusters may include both the Virginia 
and Versicolor classes. The two main parameters, learning 
rate and neighborhood function, are altered to help spread 
these clusters out, but they do little in providing adequate 
separation of the clusters of the Virginia and Versicolor.  

In [14], the minimum distance clustering method is applied 
for the Fisher’s Iris data as well. There are two major clusters 
generated by this technique, one of which describes the Setosa 
class, and the other is for both the Versicolor and Virginia. 
These two classes are eventually split after a number of re-
ductions. Reference [7] discusses a new approach for gene 
expression data clustering based on the aiNet. It is well known 
that the challenging problems in bioinformatics are generally 
characterized by very large sets of multivariate data, which 
present high levels of redundancy and noisy patterns. Refer-
ence [16] presents an adaptive unsupervised learning algo-
rithm for generating the AIS. The algorithm introduces the 
culmination of a series of attempts to obtain a self-organizing 
meta-stable artificial immune network .Reference [29] pro-
poses that the aiNet, an AIS algorithm exploiting the bio-
logically-inspired features of the immune system, works well 
on elementary clustering tasks. Based on the immune network 
and affinity maturation principles, the aiNet performs an 
evolutionary process on the raw data, which removes data 
redundancy and retrieves good clustering results.  

To summarize, because of the intrinsic features of the AIS, 
such as nonlinear adaptation and robustness to noise, the 
methods based on the AIS can identify not only the general 
patterns in training data, but also the strongest ones. This 
provides a good opportunity for exploring the AIS as pow-
erful machine learning techniques. However, it is difficult to 
obtain a clear understanding of the relationship between the 
individual items in the training data and information extracted 
from the AINE. 

 
B. Associative classification 

In [23], the AIS is investigated for mining association rules 
for the Associative Classification (AC). The AC takes the 
advantage from association rule mining in extracting high 

quality rules that can accurately generalize the training data 
set. The AIS-AC proposed in [23] avoids searching greedily 
for all the possible association rules, and is able to find an 
effective set of associative rules for classification.   

We treat the rule mining process as an optimization prob-
lem of finding an optimal set of association rules according to 
some predefined constraints. The proposed AIS-AC approach 
is efficient in dealing with the complexity problem in the large 
search space of rules. The AIS-AC is implemented as follows: 
Firstly, in each generation, the support constraint is used to 
filter out specific rules from the population. Next, the confi-
dence values of the rules are deployed for affinity selection. 
The population is cloned, mutated and diversified. Finally, the 
best rules in the population are moved to the memory based on 
the confidence constraint. The process will be terminated 
when the coverage constraint is satisfied or the number of 
generations reaches a predefined maximum number of gen-
erations. 

From Table 1 [23], we can observe that the number of rules 
used for classification in the AIS-AC is much smaller than 
that in the AC approach. 

 
Table 1. Numbers of rules and frequent item sets 

 for Adult data set 
 

Adult is one of the four databases used in the simulations of 
[23]. Figure 6 shows that the AC algorithm can obtain the 
complete set of association rules, but the AIS-AC has sur-
prisingly outperformed the AC with most of the threshold 
values. 

 

Figure 6. Associative classification performance 
of Adult data set 

The AIS-AC can be also used for mining fuzzy classifica-
tion rules [24]. In order to cope with continuous attributes, 
fuzzy logic is employed here. Furthermore, fuzzy logic is a 
powerful and flexible method to handle uncertainty and im-
prove the rule comprehensibility. The strategy in this study is 
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different from the ‘divide-and-conquer’ and ‘sepa-
rate-and-conquer’ approaches in the decision trees and lists, 
respectively. It actually applies a boosting mechanism to 
adapt the distribution of training instances in iterations. The 
AIS can deal with the previously misclassified or uncovered 
instances, and the cooperation among fuzzy rules is implicitly 
promoted. 
 
C. Pattern recognition 

Reference [17] proposes a new artificial immune network 
with diversity based on the ideas borrowed from the living 
body immune system, whose dynamics are examined via 
computer simulations on alphabet pattern recognition. The 
memory patterns in this system are classified into three unique 
types, as given in Figure 7. Pattern recognition is performed 
using the artificial immune network with these memory pat-
terns of such three types. More precisely, Type 1: in a certain 
fixed preprocessing period, the input pattern becomes the 
memory pattern. Here, the memory pattern does not update, 
and, therefore, is retained in the present state. Type 2: when 
the input pattern has been recognized to be a memory pattern 
belonging to Type 1, the corresponding memory pattern in 
Type 2 is updated with the memory pattern and input pattern 
of the recognized Type 1. Type 3: the memory pattern of this 
type has the similarity between the updated memory pattern in 
Type 2 and original memory pattern (memory pattern in Type 
1) of M% or above. Moreover, the memory pattern recognized 
and memorized as an unknown pattern also belongs to Type 3. 
Note that, in Type 3, the memory pattern, which is not con-
tinuously updated for L times, will be deleted.  

Reference [13] investigates the application of the above 
artificial immune network in the pattern recognition system 
for alphabets. The rate of correct recognition, rate of incorrect 
recognition, and rate of rejection are employed to evaluate the 
system performance. Furthermore, the proposed artificial 
immune network is compared with the binary immune net-
work in order to access its noise tolerance and recognition 
capabilities, when presented to the binary noise. Simulation 
results show that with the network diversity, it can acquire 
stronger noise immunity than the binary immune network for 
binary input patterns. 

 
 

Figure 7. Pattern recognition using artificial immune network 
 

Reference [27] proposes a novel clonal selection 
method-based artificial immune system. In the mutation 
process, we select all the mutated antibodies, which have 

higher affinities than the current memory cell, and regenerate 
a new candidate memory cell. Simulation results demonstrate 
that the proposed algorithm has a more effective mutation 
performance than the CLONALG. A comparison is also made 
by applying the noisy pattern recognition problem between 
this method and other AIS models. Recognition results show 
that this approach has stronger noise immunity and can rec-
ognize the unseen noisy patterns more effectively. Figure 8 
illustrates the recognition performances of the proposed al-
gorithm and AIS model with 30 generations. Obviously, it is 
less sensitive to the noise and more efficient in noisy patterns 
recognition than the AIS model. 

 
Figure 8. Recognition results of different AIS models 

 
D. Multimodal function optimization 

Optimization is a popular application area for the artificial 
immune networks. Reference [18] presents a modified ver-
sion of the artificial immune network model specially de-
signed to cope with multimodal optimization problems. It is 
theoretically compared with the clonal selection algorithm 
concerning their evolution strategies. A new artificial immune 
optimization method, named CLONALG, is developed in [19] 
to perform pattern recognition and engineering optimization. 
The authors empirically demonstrate that the CLONALG is 
capable of learning the input patterns by selecting, repro-
ducing, and mutating a set of ‘artificial immune cells’. 

The aforementioned aiNet combining the CLONALG with 
the artificial immune network theory [20] has been success-
fully applied in several data compression and clustering ap-
plications [12] including non-linear separable and 
high-dimensional problems. The same rationales that lead to 
the CLONALG are the motivations for the optimization ver-
sion of the aiNet, namely opt-aiNet. Firstly, data clustering 
can be considered as an optimization problem, where each 
cluster corresponds to the fitness peak of a subgroup of indi-
viduals within the whole population. Secondly, the aiNet is an 
extension of the CLONALG with additional steps involving 
the stimulation/suppression interaction of the network cells 
with each other. The advantage of evaluating the degree of 
similarity among the cells is that it is possible to maintain a 
dynamic control of the number of network cells, which allows 
the ultimate finding of more parsimonious solutions. 
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The opt-aiNet has been deployed to optimize several uni- 
and bi-dimensional functions to assess its optimization per-
formance. The results are also compared with those obtained 
by the CLONALG. In [21], three nonlinear functions are 
explored: multi, roots, and Schaffer’s. Figure 9 illustrates the 
performances of both the CLONALG and opt-aiNet, when 
employed to the same multimodal function optimization 
problem. Apparently, the opt-aiNet locates 61 peaks, while 
the CLONALG locates only 18. Moreover, the opt-aiNet 
positions one single individual in each peak, which can 
overcome the harmful ‘waste of resources’ shortcoming of the 
CLONALG. 

 

 
Figure 9.  Multimodal function optimization  

(a) using opt-aiNet. (b) using CLONALG 
 
E. Others Applications 

A novel artificial immune system-based data storage model, 
called AIS-DS, is proposed for dealing with the problem of 
resources sharing in a Storage Area Network (SAN) [28]. 
Especially, for the multi-user’s tasks, this technology has 
some essential features for ensuring the security and privacy 
of information and/or data. An extended examination of the 
spam-detection artificial immune system is given in [36]. The 
system can distinguish between a self of legitimate email 
(non-spam) and a non-self of spam. 
 
F. Experiments 

1)  Clustering algorithms 
Clustering is an unsupervised knowledge discovery process 
that groups a set of data such that the intra-cluster similarity is 
maximized while the inter-cluster similarity is minimized. We 

here discuss a novel clustering algorithm called Fuzzy Arti-
ficial Immune System Clustering (FAISC) [38], which is 
based on the artificial immune network [37] and fuzzy system. 
More precisely, at the first beginning of training, we initialize 
the AIS network with several data items and assign one fixed 
value. We add a parameter CHANGE to the original system 
[5], and the pattern of the ARB can be calculated as follows: 
 

1
new old

new
Pattern Change PatternPattern

Change
× +

=
+

, 

where Pattern new is the new pattern of the ARB after one data 
item enters the network, and Pattern old is the old pattern of 
ARB before that data item comes.  
 For evaluating a single clustering, we use totally three 
measurements, i.e., purity, balance, and f1. We compare the 
FAISC with the K-means method on the well-known iris data 
set, and we observe that if the value of the NAT is fixed to be 
1.2 or 1.0, the result of the FAISC is obviously better than that 
of the k-means approach. Especially, when the NAT is 1.2, 
the corresponding result is the best. 
 
2) Classification algorithms 
In our paper [39], we propose an AIS-based scheme for 
software quality classification. We also compare this method 
with other well-known classification techniques: Naive Bays, 
Nearest Neighbor, and OneR. The simulation results demon-
strate that our AIR is a promising method for software quality 
classification. 

V. Remarks and Conclusions 
The success of an AIS practitioner owes much to the theory 

presented by the immunologists. It is clear from many exam-
ples of the AIS that the way in which they are designed has 
changed from the early days of the AIS research. The original 
AIS, such as those proposed by Bersini [10], Forrest et al. 
[11], and Hightower et al. [12], are developed using an in-
terdisciplinary approach with clear inspiration from the bi-
ology. More recently, however, the design focus of the AIS 
has become more engineering oriented, with less emphasis on 
understanding and extracting the key biological models [25]. 

In this paper, we give an overview of the recently proposed 
artificial immune networks. The structures and learning al-
gorithms of a few typical artificial immune networks are 
discussed. We also demonstrate how they can be employed in 
dealing with real-world problems of data mining, pattern 
recognition, associative classification, and multimodal func-
tion optimization. Although they have achieved great suc-
cesses in various engineering areas, there are still some 
theoretical issues that need to be further explored, e.g., con-
vergence and running stability. The developments of the 
artificial immune networks would benefit from not only the 
inspiration of natural immune principles, but also merging 
with other soft computing paradigms, such as neural networks, 
fuzzy logic, and genetic algorithms. In addition, they could be 
generalized to more challenging application areas. 
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