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Abstract

The Camassa-Holm (CH) and Hunter-Saxton (HS) equations have an interpretation
as geodesic flow equations on the group of diffeomorphisms, preserving the H1 and
Ḣ1 right-invariant metrics correspondingly. There is an analogy to the Euler equa-
tions in hydrodynamics, which describe geodesic flow for a right-invariant metric on
the infinite-dimensional group of diffeomorphisms preserving the volume element of
the domain of fluid flow and to the Euler equations of rigid body whith a fixed point,
describing geodesics for a left-invariant metric on SO(3). The CH and HS equations
are integrable bi-hamiltonian equations and one of their Hamiltonian structures is as-
sociated to the Virasoro algebra. The parallel with the integrable SO(3) top is made
explicit by a discretization of both equation based on Fourier modes expansion. The
obtained equations represent integrable tops with infinitely many momentum compo-
nents. An emphasis is given on the structure of the phase space of these equations,
the momentum map and the space of canonical variables.

1 Introduction

The geometric interpretation of the Camassa-Holm equation [6] as a geodesic flow equation
on the group of diffeomorphisms, preserving the H1 right-invariant metric was noticed
firstly by Misio lek [42] and developed further in many recent publications, e.g. [37, 25, 7,
14, 15, 39, 13]. The CH equation has also an interpretation in the context of water waves
propagation [6, 34, 35, 19, 20, 32, 29]. The spectral problem for the CH equation on the
line is developed in [2, 8, 10, 11, 17, 36], the periodic spectral problem – in [16, 48]. The
CH solutions are investigated in a variety of recent papers, e.g. in [4, 5, 9, 12, 21, 22, 23,
26, 30, 46]. Hierarchies of CH equations are studied in [11, 31, 33], different modifications
are studied in [41, 47].

There are different forms of the CH equation, containing linear term with a first deriva-
tive ux; with a third derivative uxxx (called sometimes Dullin-Gottwald-Holm equation
[19, 20, 43, 44, 49]), or without such terms. These terms can be put in or removed from
the equation independently by Galilean transformations.

We will be interested in the CH equation of the form
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mt + auxxx + 2mux + mxu = 0, m = u − uxx, (1.1)

with a being an arbitrary constant. It can be written in Hamiltonian form

mt = {m,H1}, (1.2)

where, assuming that m is 2π periodic in x, i.e. m(x) = m(x + 2π), the Poisson bracket
and the Hamiltonian are

{F,G} ≡ −
∫

2π

0

δF

δm

(

a∂3 + m∂ + ∂ ◦ m
) δG

δm
dx, (1.3)

H1 =
1

2

∫

2π

0

mudx. (1.4)

The equation (1.1) is bi-Hamiltonian with a second Hamiltonian representation mt =
{m,H2}2, where

{F,G}2 ≡ −
∫

2π

0

δF

δm
(∂ − ∂3)

δG

δm
dx, (1.5)

H2 =
1

2

∫

2π

0

(u3 + uu2
x − a

2
u2

x)dx. (1.6)

One can notice that the integral

H0 =

∫

2π

0

mdx (1.7)

is a Casimir for the second Poisson bracket (1.5).

The relation of the first Poisson bracket (1.3) to the Virasoro algebra can be seen as
follows [18]. The 2π-periodic function allows a Fourier decomposition

m(x, t) =
1

2π

∑

n∈Z

Ln(t)einx +
a

2
, (1.8)

(the reality of m can be achieved by L−n = L̄n). Then the Fourier coefficients Ln close a
classical Virasoro algebra of central charge c = −24πa with respect to the Poisson bracket
(1.3):

i{Ln, Lm} = (n − m)Ln+m − 2πa(n3 − n)δn+m,0. (1.9)

The CH equation in the form
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mt + 2ωux + 2mux + mxu = 0, m = u − uxx, (1.10)

can be obtained from (1.1) via u → u + a, and apparently ω = 3a/2.
Since

H0 =
L0

2π
+ πa (1.11)

is an integral of motion (Casimir), so is L0.
The first Hamiltonian is

H1 =
1

4π

∑

n∈Z

LnL−n

1 + n2
+

a

2
L0 +

2πa2

8
. (1.12)

From (1.9) and (1.12) we obtain the ’Camassa-Holm top’ equations on the Virasoro
group, which are a discretization of the Camassa-Holm equation (1.1)

iL̇k =
1

2π

∑

n∈Z

k + n

1 + n2
LnLk−n +

a

2

3k − k3

1 + k2
Lk, (1.13)

(the dot is a t-derivative). This equation is analogous to the Euler top (rigid body)
equation on the Lie group SO(3)

Ṁk =
3

∑

p,l=1

εkplΩpMl, Mk ≡ IkΩk

for the quadratic Hamiltonian

HE =
1

2

3
∑

p=1

MpΩp,

where Ik (k = 1, 2, 3) are three constants – the principle inertia momenta. The phase space
is embedded in the Lie coalgebra so(3)* as a coadjoint orbit. The Lie-Poisson bracket,
related to the so(3)* coalgebra is

{Mn,Mm} = εnmkMk. (1.14)

The inertia operator I: so(3)→ so(3)* (see e.g. [1]) relates the parametrization on the
so(3) algebra given by the functions Ωk and the parametrization on the co-algebra so(3)*
given by the functions Mk = IkΩk. Note that the Poisson bracket (1.14) has a Casimir

K = Ω2
1 + Ω2

2 + Ω2
3, (1.15)

constraining the phase space on a sphere. Since the Lie-Poisson bracket is degenerate on
so(3)*, the coadjoint orbits (which are spheres centered at the origin) are labelled by the
value of the Casimir K.

For the CH top (1.13) the coadjoint orbits are embedded in the Virasoro algebra (pa-
rameterized by the functions Lk) due to the Lie-Poisson bracket (1.9).
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2 Lax representation for the discrete Camassa-Holm equa-

tion and integrals of motion

The Lax pair for the discrete CH equation (1.13) can be obtained from the Lax pair for
(1.10),

Ψxx =
(1

4
+ λ(m +

a

2
)
)

Ψ (2.1)

Ψt =
( 1

2λ
− u + a

)

Ψx +
ux

2
Ψ, (2.2)

as follows. We take the expansions

Ψ =
∑

n∈Z

Ψn

2

ei n

2
x, (2.3)

u =
1

2π

∑

n∈Z

uneinx +
a

2
, un =

Ln

1 + n2
. (2.4)

Then (2.1) gives

1

λ
Ψn

2

=
∑

p∈Z

Ln

2
, n

2
−pΨn

2
−p, (2.5)

where

Ln

2
, n

2
−p = − 4

n2 + 1

(Lp

2π
+ aδp,0

)

,

or

Ln

2
−q, n

2
−p = − 4

(n − 2q)2 + 1

(Lp−q

2π
+ aδp,q

)

(2.6)

Now from (2.2), (2.3), (2.4) and (2.5) it follows

Ψ̇n

2

=
∑

p∈Z

An

2
, n

2
−pΨn

2
−p, (2.7)

where

An

2
, n

2
−p = − i

4π

(

2n
p2 + 1

n2 + 1
+ n − 3p

)

up + in
(1

4
− 1

n2 + 1

)

aδp,0,
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or

An

2
−q, n

2
−p = − i

4π

(

2(n − 2q)
(p − q)2 + 1

(n − 2q)2 + 1
+ n − 3p + q

)

up−q

+ i(n − 2q)
(1

4
− 1

(n − 2q)2 + 1

)

aδp,q. (2.8)

Differentiating (2.5) with respect to t we obtain

1

λ
Ψ̇n

2

=
∑

p∈Z

L̇n

2
, n

2
−pΨn

2
−p +

∑

p∈Z

Ln

2
, n

2
−pΨ̇n

2
−p,

and with the further substitution from (2.7),

1

λ

∑

q∈Z

An

2
, n

2
−qΨn

2
−q =

∑

p∈Z

L̇n

2
, n

2
−pΨn

2
−p +

∑

p,q∈Z

Ln

2
, n

2
−qAn

2
−q, n

2
−pΨn

2
−p,

∑

q∈Z

An

2
, n

2
−q

( 1

λ
Ψn

2
−q

)

=
∑

p∈Z

L̇n

2
, n

2
−pΨn

2
−p +

∑

p,q∈Z

Ln

2
, n

2
−qAn

2
−q, n

2
−pΨn

2
−p,

and finally, the substitution of (2.5) gives

∑

p,q∈Z

An

2
, n

2
−qLn

2
−q, n

2
−pΨn

2
−p =

∑

p∈Z

L̇n

2
, n

2
−pΨn

2
−p +

∑

p,q∈Z

Ln

2
, n

2
−qAn

2
−q, n

2
−pΨn

2
−p, (2.9)

or in matrix form,

L̇ = [A,L]. (2.10)

After some lengthy computations one can verify that (2.10) gives (1.13). The integrals of
motion are given by Ik = tr(Lk). For example,

I1 = tr(L) =
∑

p∈Z

Ln

2
−p, n

2
−p = −4

(L0

2π
+ a

)

∑

p∈Z

1

(n − 2p)2 + 1

produces, up to an overall constant, the Casimir H0, (1.11).

I2 = tr(L2) =
∑

p,q∈Z

Ln

2
−p, n

2
−qLn

2
−q, n

2
−p

=
4

π2

∑

p,q∈Z

Lp−qLq−p

[(n − 2p)2 + 1][(n − 2q)2 + 1]

+
16a

π
(L0 + πa)

∑

p∈Z

1

[(n − 2p)2 + 1]2
. (2.11)
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With partial fractions decomposition with respect to n one can derive the identity

1

[(n − 2p)2 + 1][(n − 2q)2 + 1]

=
1/4

(p − q)2 + 1

{ (n − 2q) + (p − q)

(p − q)[(n − 2q)2 + 1]
− (n − 2p) + (q − p)

(p − q)[(n − 2p)2 + 1]

}

.

Further, using the fact that all expressions that change sign under p − q → −(p − q) are
zero, due to the summation over all integer numbers, we have

4

π2

∑

p,q∈Z

Lp−qLq−p

[(n − 2p)2 + 1][(n − 2q)2 + 1]

=
1

π2

∑

p,q∈Z

Lp−qLq−p

1 + (p − q)2

{ 1

(n − 2p)2 + 1
+

1

(n − 2q)2 + 1

}

=
2

π2

∑

p∈Z

LpL−p

1 + p2

∑

q∈Z

1

(n − 2q)2 + 1
.

Thus, the new integral that appears is
∑

p∈Z

LpL
−p

1+p2 , giving H1, the first Hamiltonian (1.12).

3 Oscillator algebra, Miura transformation and momentum

map

Let us introduce now the oscillator algebra

i{an, am} =
2πa

κ2
nδn+m,0, (3.1)

where κ is an arbitrary constant. Clearly, a0 is a Casimir due to (3.1). One can easily
verify the following oscillator representation of the Virasoro algebra [38, 24]:

Ln = −κ(n − 1)an +
κ2

4πa

∑

k∈Z

akan−k. (3.2)

This representation is also known as Sugawara construction. Further, it is evident that

i{an, Lm} = nan+m +
2πa

κ
n(n + 1)δn+m,0. (3.3)

Since ak satisfy the ’canonical’ Poisson brackets they are natural candidates for the
coordinates in the phase-space. Thus, Ln has an interpretation of a momentum and (3.2)
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gives the momentum map. The momentum map in terms of field variables is given by the
Miura transformation. This can be seen as follows. Defining

v =
1

2π

∑

k∈Z

ake
ikx +

a

κ
(3.4)

from (3.2) and (1.8) we have the analog of the Miura transformation:

m = iκvx +
κ2

2a
v2 +

a

2
(3.5)

The reality can be achieved by taking κ purely imaginary, ak = ā−k for k 6= 0 and
κ = 2πia/ℑ(a0).

Here we notice that the Casimir (1.7) due to (3.5) leads to the restriction

∫

2π

0

v2(x, t)dx = const, (3.6)

which reduces the evolution of v(x, t) on the L2-sphere. In terms of the canonical coordi-
nates this condition is

∑

k>0

|ak|2 = const, (3.7)

since a0 is a constant. It shows that the time evolution of the canonical variables, given
by

ȧn = {an,H1}

is constrained on the infinite-dimensional l2-sphere, a condition, similar to the one that
we see in the so(3) example (1.15).

When a = 0, the Sugawara construction for the Virasoro modes in the case of zero
central charge is

Ln =
1

2κ̃

∑

k∈Z

akan−k,

where κ̃ is an arbitrary constant and

i{an, am} = κ̃nδn+m,0. (3.8)

The Casimir with respect to the first Poisson bracket (1.3) with a ≡ 0 is

∫

2π

0

√
mdx =

√

π

κ̃

∫

2π

0

vdx = 2π

√

π

κ̃
a0,

i.e. this is the Casimir a0 of (3.8).

With the expansions
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m =
1

2π

∑

n∈Z

Lneinx, v =
1

2π

∑

n∈Z

aneinx

the Sugawara construction takes the form m = π
κ̃
v2. Since the integral

∫

2π

0
mdx = const

is a Casimir, we have again
∫

2π

0

v2dx = const,

leading to (3.7).

4 The Hunter-Saxton equation

The Hunter-Saxton (HS) equation

uxxt + 2uxuxx + uuxxx = 0

describes the propagation of waves in a massive director field of a nematic liquid crystal
[27], with the orientation of the molecules described by the field of unit 1 vectors n(x, t) =
(cos u(x, t), sin u(x, t)), where x is the space variable in a reference frame moving with
the linearized wave velocity, and t is a ’slow time variable’. A linear term auxxx can be
generated by a shift u → u + a:

uxxt + auxxx + 2uxuxx + uuxxx = 0. (4.1)

The HS equation is a short-wave limit of the CH equation, and can be obtained if one
takes m = −uxx. The Hamiltonian representation (1.2) – (1.4) for this equation is also
valid. The HS equation (4.1) is an integrable, bi-Hamiltonian equation with a second
Hamiltonian representation mt = {m,H2}2, where

{F,G}2 ≡
∫

2π

0

δF

δm
∂3 δG

δm
dx, (4.2)

H2 =
1

2

∫

2π

0

(u − a

2
)u2

xdx. (4.3)

The HS Lax pair is

Ψxx = λmΨ, (4.4)

Ψt =
( 1

2λ
− u − a

)

Ψx +
ux

2
Ψ. (4.5)

The analytic and geometric aspects of the HS equation are discussed in a variety of
recent papers, e.g. [28, 3, 40] and the references therein.
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Again, assuming periodicity and using the expansions

Ψ =
∑

n∈Z

Ψneinx, u =
1

2π

∑

n∈Z

uneinx

we obtain the discrete form of the HS equation:

inu̇n − an2un − 1

2

∑

k∈Z

k(n + k)ukun−k = 0.

In a similar manner from the Lax pair we obtain the matrix Lax representation for the
discrete HS equation

L̇HS = [AHS ,LHS ]. (4.6)

where

LHS
n,n−p = − p2

n2
up, AHS

n,n−p =
i

2

(

− p2

n
− 2n + 3p

)

up − inaδp,0.

The momentum map (the Sugawara construction) for the HS equation remains the
same as for the CH equation. However, it becomes degenerated in the case a = 0, since
m = −uxx and the Casimir

∫

2π

0
mdx = 0. Then

∫

2π

0
v2dx = 0, which, for real variables is

only possible when v ≡ 0, i.e. m ≡ 0.

5 Conclusions

At the examples of the CH and HS equations we have shown that the integrable systems
with quadratic Hamiltonians are equivalent to integrable tops (possibly with infinitely
many components), associated to the algebra of their Poisson brackets. An example
for the two dimensional Euler equations in fluid mechanics is presented in [50], another
example for the KdV superequation in [38, 45].
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