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Abstract

We investigate the particle trajectories in an irrotational shallow water flow over a flat
bed as periodic waves propagate on the water’s free surface. Within the linear water
wave theory, we show that there are no closed orbits for the water particles beneath the
irrotational shallow water waves. Depending on the strength of underlying uniform
current, we obtain that some particle trajectories are undulating path to the right or
to the left, some are looping curves with a drift to the right and others are parabolic
curves or curves which have only one loop.

1 Introduction

The motion of water particles under the waves which advance across the water is a very old
problem. The classical description of these particle paths is obtained within the framework
of linear water wave theory. After the linearization of the governing equations for water
waves, the ordinary differential equations system which describes the particle motion turns
out to be again nonlinear and explicit solutions are not available. In the first approximation
of this nonlinear system, one obtained that all water particles trace closed, circular or
elliptic, orbits (see, for example, [13], [16], [20], [21], [22], [23]), a conclusion apparently
supported by photographs with long exposure ([13], [22], [23]). Consequently there is no
net transfer of material particles due to the passage of the wave, at least, at this order of
approximation.

While in these approximations of the nonlinear system all particle paths appear to be
closed, in [10] it is shown, using phase-plane considerations, that in linear periodic gravity
water waves no particles trajectory is actually closed, unless the free surface is flat. Each
particle trajectory involves over a period a backward/forward movement, and the path is
an elliptical arc with a forward drift; on the flat bed the particle path degenerates to a
backward /forward motion.

Similar results hold for the particle trajectories in deep-water, that is, the trajectories
are not closed existing a forward drift over a period, which decreases with greater depth
(see [5]). These conclusions are in agreement with Stokes’ observation [24]: ”There is one
result of a second approximation which may possible importance. It appears that the
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forward motion of the particles is not altogether compensated by their backward motion;
so that, in addition to their motion of oscillation, the particles have a progressive motion
in the direction of the propagation of the waves. In the case in which the depth of the
fluid is very great, this progressive motion decreases rapidly as the depth of the particle
considered increases.”

For shallow water waves, the standard results are that the orbits described by water
particles beneath waves are elongated ellipses with the longer axis parallel to the flat
bottom, and at the bottom the orbits are straight lines (see, for example, [18]).

Similar conclusions hold for the governing equations without linearization. Analyzing
a free boundary problem for harmonic functions in a planar domain, in [4] it is shown that
there are no closed orbits for Stokes waves of small or large amplitude propagating at the
surface of water over a flat bed; for an extension of the investigation in [4] to deep-water
Stokes waves see [15]. Within a period each particle experiences a backward /forward mo-
tion with a slight forward drift. In a very recent preprint [9], the results in [4] are recovered
by a simpler approach and there are also described all possible particle trajectories be-
neath a Stokes wave. The particle trajectories change considerably according to whether
the Stokes waves enter a still region of water or whether they interact with a favorable or
adverse uniform current. Some particle trajectories are closed orbits, some are undulating
paths and most are looping orbits that drift either to the right or to the left, depending
on the underlying current.
Analyzing a free boundary problem for harmonic functions in an infinite planar domain,
in [6] it is shown that under a solitary wave, each particle is transported in the wave
direction but slower than the wave speed. As the solitary wave propagates, all particles
located ahead of the wave crest are lifted while those behind have a downward motion.

Notice that there are only a few explicit solutions to the nonlinear governing equations:
Gerstner’s wave (see [14] and the discussion in [2])), the edge wave solution related to it
(see [3]), and the capillary waves in water of infinite or finite depth (see [12], [19]). These
solutions are peculiar and their special features (a specific vorticity for Gerstner’s wave
and its edge wave correspondent, and complete neglect of gravity in the capillary case)
are not deemed relevant to sea waves.

The present paper is concerned with the particle trajectories in an irrotational shallow
water flow over a flat bed as a periodic wave propagates on the water’s free surface. It
is natural to start this investigation for shallow water waves by simplifying the governing
equations via linearization. In Section 2 we recall the governing equations for water waves.
In Section 3 we present their nondimensionalisation and scaling. The linearized problem
in the irrotational shallow water regime is written in Section 4. We also obtain the general
solution of this problem. The next section is devoted to the description of all the possible
particle trajectories beneath a linear periodic irrotational shallow water wave. We see that
these particle trajectories are not closed. Depending on the strength of underlying uniform
current, denoted by the constant ¢y, we obtain that: for ¢y > 2 the particle trajectories
are undulating path to the right, for ¢y < —1 the particle trajectories are undulating path
to the left, for —1 < ¢g < 0 the particle trajectories are looping curves with a drift to the
right and for 0 < ¢y < 2 the particle trajectories are parabolic curves or curves which have
only one loop.
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2 The governing equations for gravity water waves

We consider a two-dimensional inviscid incompressible fluid in a constant gravitational
field. For gravity water waves these are physically reasonable assumptions (see [16] and
[21]). Thus, the motion of water is given by Euler’s equations

1
U + Uy + VU, = _Epz

1 (2.1)
Ut + uvy + 00, = =3Pz — g

Here (z, z) are the space coordinates, (u(zx, z,t),v(z, z,t)) is the velocity field of the water,
p(z, z,t) denotes the pressure, g is the constant gravitational acceleration in the negative
z direction and p is the constant density. The assumption of incompressibility implies the
equation of mass conservation

Uy + v, =0 (2.2)

Let hg > 0 be the undisturbed depth of the fluid and let z = hg + n(z,t) represent the
free upper surface of the fluid (see Figure 1).

n(x.t)
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Figure 1. A periodic water wave propagating over a flat bed.

The boundary conditions at the free surface are constant pressure
p=po on z = hy+n(x,t), (2.3)

po being the constant atmospheric pressure, and the continuity of fluid velocity and surface
velocity

v =1 +un, on z=hy+n(xt) (2.4)
On the flat bottom z = 0, only one condition is required for an inviscid fluid, that is,
v=0 onz=0 (2.5)

Summing up, the exact water-wave problem is given by the system (2.1)-(2.5). In respect
of the well-posedness for the initial-value problem for (2.1)-(2.5) there has been significant
recent progress, see [11] and the references therein.

A key quantity in fluid dynamics is the curl of the velocity field, called vorticity. For
two-dimensional flows with the velocity field (u(x, z,t),v(z, z,t)), we denote the scalar
vorticity of the flow by

w(z,z) = uy — vy (2.6)
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Vorticity is adequate for the specification of a flow: a flow which is uniform with depth is
described by a zero vorticity (irrotational case), constant non-zero vorticity corresponds
to a linear shear flow and non-constant vorticity indicates highly sheared flows.

The full Euler equations (2.1)-(2.5) are often too complicated to analyze directly. One
can pursue for example a mathematical study of their periodic steady solutions in the
irrotational case (see [1], [25]) or a study of their periodic steady solutions in the case of
non-zero vorticity (see [7], [8]). But in order to reach detailed information about qualitative
features of water waves, it is useful to derive approximate models which are more amenable
to an in-depth analysis.

3 Nondimensionalisation and scaling

In order to develop a systematic approximation procedure, we need to characterize the
water-wave problem (2.1)-(2.5) in terms of the sizes of various fundamental parameters.
These parameters are introduced by defining a set of non-dimensional variables.

First we introduce the appropriate length scales: the undisturbed depth of water hg, as
the vertical scale and a typical wavelength A (see Figure 1), as the horizontal scale. In
order to define a time scale we require a suitable velocity scale. An appropriate choice for
the scale of the horizontal component of the velocity is \/ghg. Then, the corresponding

time scale is ﬁ and the scale for the vertical component of the velocity is hg —Vg/\ho. The

surface wave itself leads to the introduction of a typical amplitude of the wave a (see
Figure 1). For more details see [16]. Thus, we define the set of non-dimensional variables

T Ar, z+— hgz, mnw—an, tHﬁt,

vgho

(3.1)
u— +/ghou, v ho¥5—v

where, to avoid new notations, we have used the same symbols for the non-dimensional
variables x, z, n, t, u, v, on the right-hand side. The partial derivatives will be replaced
by

h Vgh Vgh
Ug — gTOutv Uy %\ Uy, Uy ;goouzy

Vgho gho (3.2)

ghg h
Vg = 2 Ut Vg b2 N2 Uz, Uz b2 "7 Uz

Let us now define the non-dimensional pressure. If the water would be stationary, that is,
u = v = 0, from the equations (2.1) and (2.3) with n = 0, we get for a non-dimensionalised
z, the hydrostatic pressure pg+ pgho(1— z). Thus, the non-dimensional pressure is defined
by

P+ po + pgho(1 — 2) + pghop (3.3)
therefore
gho
Pa = P "Pay Pz —pg t pgp: (3.4)

Taking into account (3.1), (3.2), (3.3) and (3.4), the water-wave problem (2.1)-(2.5)
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writes in non-dimensional variables, as

Ut + UUy + VU, = —Py
52 (Ut + uvg + Uvz) = —Pz
Uy +v, =0 (3.5)

v=c€(n +un,) and p=-en on z =1+ en(x,t)
v=0 onz=0

where we have introduced the amplitude parameter € = hio and the shallowness parameter

J = %. In view of (3.2), the vorticity equation (2.6) writes in non-dimensional variables
as

u, = 6%, + w(z, 2) (3.6)

Vgho
Y
For zero vorticity flows (irrotational flows) this equation writes as

Uy = 020, (3.7)

After the nondimensionalisation of the system (2.1)-(2.5) let us now proceed with the
scaling transformation. First we observe that, on z = 14 €7, both v and p are proportional
to €. This is consistent with the fact that as ¢ — 0 we must have v — 0 and p — 0, and
it leads to the following scaling of the non-dimensional variables

pr—ep, (u,v)— €e(u,v) (3.8)

where we avoided again the introduction of a new notation. The problem (3.5) becomes

up + e(uuy + vuy) = —py
§%[vg + e(uvy + vv,)] = —p,
Uy +v, =0 (3.9)

v=mn+eun, and p=mn on z=1+ en(z,t)
v=0 onz=0

and the equation (3.6) keeps the same form.
The system which describes our problem in the irrotational case is given by

up + e(uuy + vuy) = —py
8%[vt + €(uvy + vv,)] = —p.
Uy + v, =0
e (3.10)

v=mn+eun, and p=mn on z=1+ en(z,t)
v=0 onz=0

4 The linearized problem

The two important parameters € and § that arise in water-waves theories, are used to define
various approximations of the governing equations and the boundary conditions. The
scaled version (3.10) of the equations for our problem, allows immediately the identification
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of the linearized problem, by letting ¢ — 0, for arbitrary . The linearized problem in the
shallow water regime is obtain by letting further § — 0. Thus, in the irrotational case, we
get the following linear systems

ut +py =0
p>=0
Uy + v, =0
u, =0
v=mn and p=n on z=1
v=0 onz=0

(4.1)

From the second equation in (4.1) we get in the both cases that p does not depend on z.
Because p = n(x,t) on z =1, we have

p=n(z,t) forany 0<z<1 (4.2)

Therefore, using the first equation and the fourth equation in (4.1), we obtain in the
irrotational case

t
u = —/ N (z, s)ds + F(x) (4.3)
0
where F is an arbitrary function such that
F(x) = u(z,0) (4.4)

Differentiating (4.3) with respect to x and using the third equation in (4.1) we get, after
an integration against z,

V= —zuy =2 < /0 t New (@, 8)ds — .7-"’(:6)) (4.5)

In view of the fifth equation in (4.1) we get after a differentiation with respect to ¢, that
1 has to satisfy the equation

Nt — Nzx = 0 (4.6)

The general solution of this equation is n(x,t) = f(z —t) + g(z + t), where f and g are
differentiable functions. It is convenient first to restrict ourselves to waves which propagate
in only one direction, thus, we choose

n(z,t) = fz —1) (4.7)
From (4.5), (4.7) and the condition v = 7; on z = 1, we obtain
F(z) = f(z) + o (4.8)

where cp is constant.
Therefore, in the irrotational case, taking into account (4.2), (4.3), (4.5), (4.7) and (4.8),
the solution of the linear system (4.1) is given by

nEx ti fE:c — t;

plx r—1

u(z, z,t) = f(z — 1) + o (49)
v(x zt):—zf(x—t)——zux
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5 Particles trajectories in the irrotational case

Let (x(t),z(t)) be the path of a particle in the fluid domain, with location (x(0), z(0)) at
time ¢ = 0. The motion of the particle is described by the differential system

{ ‘fl—f = u(z,z,t) (5.1)

with the initial data (z(0), 2(0)) := (xo, 20)-
Making the Ansatz

f(x —t) =cos(2m(z — 1)) (5.2)
from (4.9), the differential system (5.1) becomes
dr — cos(2m(z — 1)) + co

(5.3)
% = 2rzsin(27(z — t))

Notice that the constant cg is the average of the horizontal fluid velocity over any horizontal
segment of length 1, that is,

1 x+1
co = I/ u(s, z, t)ds, (5.4)

representing therefore the strength of the underlying uniform current. Thus, ¢y = 0 will
correspond to a region of still water with no underlying current, ¢y > 0 will characterize
a favorable uniform current and ¢y < 0 will characterize an adverse uniform current.

The right-hand side of the differential system (5.3) is smooth and bounded, therefore,
the unique solution of the Cauchy problem with initial data (zo, zo) is defined globally in
time.

To study the exact solution of the system (5.3) it is more convenient to re-write it in
the following moving frame

X=2n(z—1t), Z==z (5.5)
This transformation yields

% = 21 cos(X) + 2m(cop — 1)

Y — onZ sin(X)

Let us now investigate the differential system (5.6).

5.1 The case co =0

The horizontal component of the velocity u in (4.9), with f(x — t) given by (5.2), has in
the moving frame (5.5), the following expression

u(X, Z,t) = cos(X) + ¢ (5.7)
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Thus, the case ¢y = 0 is obtained for
2m
/ w(X, Z,1)dX = 0 (5.8)
0
This is the Stokes condition for irrotational flows, that is, the horizontal velocity has a

vanishing mean over a period.
In the considered case, we write the first equation of the system (5.6) into the form

/ cos(i?)v —1 2t 9

We use the following substitution (see [17], 1.76, page 308)

sin(X) = % cos(X) = zz - 1 L dX = _y22+ dy (5.10)
In the new variable, (5.9) integrates at

y=2nt+k (5.11)
k being an integration constant. Hence,

X (t) = 2arccot (27t + k) (5.12)
Taking into account (5.10), (5.11), we obtain

sin(X (1)) = 22t +E) (5.13)

T 1+ (2nt+ k)2

Therefore, the second equation in (5.6) yields

Z(t) = Z(0) exp (/0 27 sin(X(s))ds) = Z(0) exp <ln [H(lir—t];k)}> (5.14)

From (5.5), (5.12) and (5.14), we obtain that the solution of the system (5.3), with the
initial data (xg, 29), has the following expression

z(t) =t + Larccot (27t + k)
(5.15)

z(t) = Tk 1+ (27t + k)?]

From the initial conditions, we get k := cot (wzg).
The derivatives of z(t) and z(t) with respect to ¢, have the expressions

1o (2mt+k)2—1
a'(t) = 1+ (2nttk)?

2(t) = £25 (2rt + k)

Therefore

() >0 << 2nt+ k| > 1
Z(t) >0 < 2nt+ k) >0
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the flat bottom being at z = 0, we have zg > 0.

Thus, for ¢ in the intervals (—oo, 75;1‘“‘), (75;1‘“‘, —%), (=& L=E) and (L%, o0), the

derivatives 2/(t), 2'(t), have the following signs

N 11—k k  1-k
) 27 27 27
(5.16)
() >0|2'(t) <0|2/(t) <0]|2'(t) >0
Z(t)<0|2Z(t)<0|Z(t)>0]|2() >0
The limits of z(t), z(t) and % for t — —oo and t — oo are
tli{n z(t) = —o0, tlim z(t) = o0
, lim z(t) = oo, tlim z(t) = o0 (5.17)
z(t) z(t)

)
Thus, taking into account (5.16) and (5.17), we sketch below the graph of the parametric
curve (5.15)

Figure 2. Particle trajectory in the case Co=0

Thus, we get:

Theorem 1. In the case of no underlying current, the particle trajectories beneath the
irrotational shallow water waves are curves which have only one loop like in Figure 2.

5.2 The case co(cop—2) >0

In this case, we write the first equation of the system (5.6) into the form

/ X ot (5.18)
= 4T .

cos(X)+co—1

We use the same substitution (5.10). In the new variable, (5.18) becomes

2 dy

- | ——————= =27t 5.19
coJ y>+ —Cocgz ( )



22 D Ionescu-Kruse

which integrates at

2
—— D arctan ( 0 y) =2t +k (5.20)
Co co — 2 Co — 2

k being an integration constant. Further, we obtain

y = g tan(a(t)), (5.21)
with
Oy (5.22)
co
aft) = _Co—fo(zm k) (5.23)

Hence, returning to the variable X, we get
X(t) = 2arccot [eo tan (a(t))} (5.24)

Taking into account (5.10), (5.21), we obtain

2¢ tan («(t))

sin(X (t)) = 5 (5.25)
1+ [eo tan (a(t))]
The second equation in (5.6) yields
Z(t) = Z(0) exp </0 27 sin(X(s))ds> (5.26)

From (5.5), (5.24) and (5.26), we obtain that the solution of the system (5.3), with the
initial data (xo, 20), 20 > 0, has the following expression

x(t) = t + +arccot [¢o tan (a(t)) }

(5.27)
2(t) = zgexp (fg 4n€o tan(a(s)) 2ds)
1+ |:€0 tan(a(s)))]

The derivatives of z(t) and z(t) with respect to ¢, have the expressions

276
.%'/(t)— (Q:g*l)Sin%a(t))Jrcofl _ 2(Sin2(a(t))7070) | 1
- cos*(a()[1+eG tan*(a(t)] (—co) cos?(af(t))[1+ €2 tan?(af(t))|

(5.28)

S (t) = 2% tan(a(®) oo, <ft Am [Co tan(a(é‘))} 2d3>
1+ [Cotan(oc(t))] ’ 1+|:¢0 tan(a(s)))]



Particle Trajectories in Linearized Irrotational Shallow Water Flows 23

Let us now study the signs of the derivatives in (5.28). We are in the case co(co — 2) > 0,
that is, ¢p € (—o0, 0) U (2, 00).

(a) If co < —1, then ngco > 1. Therefore, sin?(a(t)) — C(%%CO < 0. Thus, we obtain
that 2/(t) < 0, for all ¢.
The sign of 2’(t) will depend on a(t). For a(t) in intervals of the form «(t) € (=5 + I, I7),
| € Z, we get 2'(t) < 0, and for a(t) € (Im,ir+ %), | € Z, we get 2'(t) > 0.

We sketch below the particle trajectory in this case:

TN TN T

Figure 3. Particle trajectory in the case Cr - 1

(b) If =1 < co < 0, then %> < 1. Thus,

for a(t) < —arcsin (\/ C‘QJTCO) + Im, we get 2'(t) > 0, 2/(t) <0,

for a(t) € (— arcsin < 0(2)26()) + Im, l7r>, we get 2/(t) < 0, 2/(t) <0,

for a(t) € (lw, arcsin ( cg;co) + l7r> we get 2/(t) <0, 2/(t) > 0,

cg —co

for a(t) > arcsin < 5 > + Imr, we get 2/(t) > 0, 2/(t) > 0,

where [ € Z. We sketch below the particle trajectory in this case:

Figure 4. Particle trajectory in the case - 1< G 0

(c) If cg > 2, then ngco > 1. Therefore, sin?(«a(t)) — cg%co < 0. Thus, we obtain that
2'(t) > 0, for all t.
The sign of 2/(¢) will depend on «(t). 2(t) < 0 for a(t) € (=% +Im,ix), |l € Z, and
Z(t) >0 for a(t) € (Im,in+ %), L € Z.

We sketch below the particle trajectory in this case:

NN NN

Figure 5. Particle trajectory in the case e 2
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Therefore, we proved:

Theorem 2. In the case that the underlying uniform current is moving in the same
direction as an irrotational shallow water wave and the strength of the current is bigger
than 2, then the particles trajectories beneath the wave are undulating paths to the right
(see Figure 5).

In the case that the underlying uniform current is moving in the opposite direction as
an irrotational shallow water wave and the strength of the current is smaller than -1, then
the particles trajectories beneath the wave are undulating paths to the left (see Figure 3).
If the strength of the adverse current is bigger than -1, then the particle trajectories are
loops with positive drift (see Figure 4).

5.3 The case ¢ € (0, 2]

In this case, we write the first equation of the system (5.6) into the form

dX
/ = 27t (5.29)
cos(X)+co—1

We use the same substitution (5.10). In the new variable, (5.29) becomes

2 dy

2 _ 2—co

= = ot (5.30)
Co Yy %

which integrates at

1 y— [2=co
——/3 U Y © | =ont+k (5.31)
Co —C Y+ /2;000

k being an integration constant. Further, we obtain

 ep(20() 41
Yep(@a(e) —1 o W o
_ g Op26() —1
= OeXp(Qﬁ(t)) 1 f ]y\ < RQ, (532)
where
L 2 — Cp
Ro =[5 (5.33)
8(t) == R ot 4 g (5.34)

Hence, returning to the variable X, we get

X (t) = 2arccot |Rgcoth (B(t)) | or X(t) = 2arccot |Rgtanh (6(75))] (5.35)
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if | cot (5) | > Ko, respectively, | cot (3) | < Ko.
Taking into account (5.10), (5.32), we obtain

2ocoth (1) vy — 2 tanh (3(1)
2 2
1+ [ﬁo coth (B(£)) } 1+ [Ro tanh (3()) ]

sin(X (1)) = (5.36)

Thus, the solution of the system (5.3), with the initial data (xo,29), 20 > 0, has in this
case the following expressions

7

z(t) =t + Larccot [ﬁo coth (ﬁ(t))]
(5.37)
Z(t — zpexp <f0 4w Ry coth(B(s)) 2d8>
1+ [Ro Coth(ﬂ(S)))}
{
or
( z(t) =t + Larccot [ﬁo tanh (ﬁ(t))]
(5.38)
Z(t — zpexp <f0 4w Ry tanh(B(s)) 2d8>
1+ [Ro tanh(ﬂ(S)))}
We derive z(t) and z(t) from (5.37) with respect to t and we get
() =1+ 2—co
sinh?(8(t)) |:1+R(2) cothQ(ﬁ(t))]
(5.39)

Z/(t) _ 4m Ry coth(B(t)) }2 exp <f0 47 Ry coth(ﬁ(s))]2d8>
)

\ N [.&‘0 coth(B(t) 1t [Ro coth(8(s)))

Because we are in the case ¢g € (0,2], we have 2 — ¢g > 0. Thus, the derivative z'(t) > 0
for all ¢. The sign of 2/(t) depends on the sign of (), that is, for S(¢t) < 0 we have
Z'(t) < 0 and for 5(t) > 0 we have z/(t) > 0. Then, the particle trajectory in this case is
like in Figure 6 (a).

For the second alternative (5.38), we get

() (et | 2(smntem)-259) 1
r ( ) B coshQ(ﬁ(t))[lJrﬁg tanhQ(ﬁ(t))] - co cosh2(ﬁ(t))[1+ﬁ(2) tanh2(ﬁ(t))]

Z/(t) — 2 4m Ry tanh(B(s)) S exp <f0 4w Ry tanh(B(s)) 2d8>
1+ |:R0 tanh(ﬂ(s)))] 1+ |:Ro tanh(ﬂ(s)))}

(5.40)

(a) If 1 < co < 2, then we get /() > 0, for all ¢.
The sign of 2/(t) will depend on §(¢). For 3(t) < 0, we get 2/(t) < 0, and for 3(t) > 0, we
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get 2/(t) > 0.
The particle trajectory in this case is like in Figure 6 (a).

(b) If 0 < ¢co <1, then
for sinh(5(t)) < —y/ CO;C(Q), we get z/(t) > 0, 2/(t) <0,

for sinh(3(t)) € <— CO;C(Q), O), we get /() <0, 2/(t) <0,

for sinh(3(t)) € (0, CO;C(Q)> we get /() <0, 2/(t) > 0,

2

for sinh(B(t)) > 1/ 252, we get 2/(t) > 0, 2/(t) > 0,
Thus, the particle trajectory in this case is sketched in Figure 6 (b).

(a) (b)

Figure 6. Particle trajectory in the case 0< ¢y< 2

We thus have:

Theorem 3. In the case that the underlying uniform current is moving in the same
direction as an irrotational shallow water wave and the strength of the current is smaller
than 2, then the particles trajectories beneath the wave are parabolic curves or curves which
have only one loop like in Figure 6.
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