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Abstract

The equations that describe the classical problewater waves — inviscid, no surface tension and
constant pressure at the surface — are non-dimalisied and scaled appropriately, and the two
examples: traditional gravity waves and edge waaesintroduced. In addition each type of wave is
allowed to propagate over an existing flow fieldttis rotational and also admits a shoreline; some
examples of such background flows are presentedn,Ttor each problem, a suitable asymptotic
solution is constructed; for gravity waves, thici®sen to be that which gives a balance between
nonlinearity and dispersion far from the shore f{zat a soliton-type problem is recovered there),
and then the behaviour of this solution is examiagdhe shoreline is approached. Sufficiently close
to the shore, the asymptotic expansion is not ya#dulting in the formulation of a new, scaled
problem. It is then shown — not surprisingly — thlaé wave, close inshore, is dominated by
nonlineaity, with the amplitude of the wave growicrording to Green’s law. The problem of edge
waves is formulated in a similar fashion, althotigé relevant scales are different; in particullae, t
background flow must be roughly of the same sizéhasedge wave itself, for a self-consistent
asymptotic theory of the type presented here. Téneeldpment follows closely that used in the
absence of a background flow, but with the backgdotiow now appearing in the solution to
leading order. This has the effect of distortirgy, éxample, the run-up pattern of the edge waves at
the shoreline, to the extent that, under certamditmns, the two solutions of the earlier theoanc
now be replaced by one (unique) solution.

1. Introduction

The extension of classical, simple models in flméchanics to encompass more realistic
flow scenarios has been an enduring challenge. ample of this, of particular interest
here, is how the familiar problems that lead theoty for nonlinear surface gravity waves,
or for edge waves, can be developed to accommaateneral background flow that is
described by some distribution of vorticity. Furthia the case of edge waves, any such flow
must also allow the existence of a shoreline he.ftee surface and the bottom profile must
intersect, thereby producing a run-up pattern enbiach. In order to permit a comparison of
these two types of waves — one incoming towardbases say, and the other propagating
along the shoreline — we shall superimpose each onahee fpackground state: a vortical
flow-field with a shoreline.

The two wave-types that we discuss here each héwegaand worthy history, although we
shall describe this only in outline in this papemany texts and research papers give far
more information for the interested reader. In fingt, which was initially analysed in any
detail by Stokes, we have a plane wave propagateg finite, but constant, depth; in the
small-amplitude approximation, this is the famil@tokes wave; see [16]. Following this
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seminal work, one direction eventually led Kortewagd de Vries, [13], to consider the
approximation that represented a balance betweeatl amplitude and weak dispersion; to
leading order (in some sense, which we shall clyeduplain later), this produces the now-
very-famous Korteweg-de Vries (KdV) equation fanrface waves. (This work was
prompted, in part, by the debate in the 1870s -nipdietween Rayleigh and Boussinesq —
over the existence and properties of John Scots@lis observations of solitary waves.) In
the decades since the introduction of the KdV aqonatve have seen the developments that
have become ‘soliton theory’ i.e. inverse scattgtmansform theory; these have, in turn, led
to many additional and deep ideas, not to mentiereppearance of vastly many equations —
some with significant practical applications — thah be solved by these soliton techniques.
Finally, there have been attempts to embed thegersoesults within more complete and
accurate models for wave propagation, even thohighig often at the expense of generating
non-soliton-type problems. Indeed, typically, timel @esult is an approximate system that can
be characterised as some perturbation of a stasdétan problem.

In the context of a plane gravity wave, incomingvdods a shoreline over an existing
flow with vorticity, both the background flow ande variable depth will distort any soliton
or solitary wave (i.e. a solution based on the eotional KdV equation). It is already
known that a background flow that admits a genéiatribution of vorticity, but over
constant depth, does give rise to a suitable Kdiaggn: only the constant coefficients of
the equation are affected by the presence of tderiying flow field; see [6]. (We comment
that we shall not pursue here the possibility ofiical layer appearing in the flow, but this
can be investigated; see [8].) On the other hdreirclusion of variable depth does give rise
to a distortion of the corresponding KdV problempqucing one that, at best, can be
interpreted as a perturbation of the classical kedMation. At worst, a KdV-type equation is
recovered, but one that contains variable coeffisieand then, for general depth profiles, no
headway is possible within classical soliton thedoy further general background to these
types of problems, see [9]. The combination of otlackground flow and variable depth, in
the context of a KdV approximation, is describedl@], where a problem of flow, such as
that over a weir, is discussed; this has some atimmewith the results that we shall present
here.

The second problem, whose study was also initije8tokes (see [15]), but which has
had a slightly more chequered history, is that dfeewaves. These are waves that, in the
shoreline context, propagate along the beach (andaviiich a non-zero beach slope is an
essential requirement). For many years, these wages thought to be merely mathematical
curiosities (but with many intriguing propertieges for example, [5, 17, 18] and [12] for an
overview). However, over the last two decades oresilge waves have been recognised as
providing an important mechanism in erosion proegssar a shoreline, by contributing to
the movement of sand and pebbles along the shorecékt development, [11], based on an
important presentation, [2], of observations finsade in [14, 19], showed that a scaling
consistent with a transformation of Gerstner's g¢xaon-trivial solution of the classical
water-wave problem, [7], gave a new form of theuBoh for the edge wave over variable
depth. This analysis produced, at leading ordex suitable asymptotic formulation, a fully
nonlinear theory (with an exact solution) for tltge wave; this recovered both the essential
features of the edge wave, and also the run-ugrmpatypically seen when such waves are
present. The inclusion, within this version of ##ge-wave problem, of some pre-existing
background vorticity can be expected to distort dulge-wave profile and, probably, the
shape of the run-up pattern; we shall explore tpessibilities.
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The plan, therefore, is to present the general tepsafor the classical water-wave
problem (expressed in a suitable non-dimensionah¥oand then the relevant and possible
background states consistent with these equatiitisough for each problem these states
take the same form, the scalings (and sizes) turmoobe different. Then, in the two cases of
interest, this background state is appropriatelgtupeed to produce either the familiar
gravity wave approaching a shore, or the correspgnoroblem for edge waves propagating
along the shoreline. The essential technique tlatdopt in order to accomplish all this is
the familiar one based on the construction of aggtigpexpansions in a suitable parameter.
In the former case, it is to be expected that ev&dV-type theory — and we will arrange for
this to be the appropriate underlying problem - wit be valid as the depth continues to
decrease as the beach is reached; the correspopdibfem close inshore will carefully
described. On the other hand, the latter probleon éddge waves) is dominated by the
existence of a beach and a shoreline, so in tlEs wa& might expect only relatively minor
adjustments due to the presence of the underlyidgee-existing flow field.

2. The governing equations

We consider an incompressible, inviscid fluid whishbounded above by the free surface
z=H(x y,t), and below by a fixed, impermeable bed- S(X (which is given as a

function of onlyx, for simplicity, here); we elect to describe th@lgem in rectangular
Cartesian co-ordinatex & (X, y, 2)), with z measured vertically upwards. In the absence of

waves, the flat free surface =0, and this intersects the bed profile alaxng O; the fluid,
undisturbed by waves, extends int& 0. (We comment that when an underlying flow field,
with some prescribed vorticity, is included, thedrsurface even in the absence of waves is
not, in general, a flat surface.) Although we asswan inviscid fluid (which is an acceptable
model for water waves, because it is observeddhett waves form and evolve long before
viscous dissipation can start to have a significgffect), the flow field may be rotational;
that is, we allow some general vorticity in thewloAlso, in the absence of viscous stresses,
we can impose no more than a normal stress autfece; we take this to be simply pressure
= constant ( = atmospheric pressure) here, becaeisdso ignore surface tension — which is
relevant only if very short (capillary) waves acebte included in the model. The governing
equations are therefore: the Euler equation, thetgan for incompressible fluids, surface
and bottom kinematic conditions, and a dynamic d@@rd — constant pressure — at the
surface. All these together constitute the classveder-wave problem. The equations are

Du__1p,f (whereF = (0,0-g ))
Dt o

2.1)
O =0,

whereu = (u,v, w) is the velocity field, and

D _o0 0 0 0
— = H+U—+V—+ W—
Dt ot ox ody 0z
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is the familiar material derivative (amds time). The boundary conditions are

P = B, =constant

both onz=H (x,y,t) (2.2
oH oH OoH
w= +tu—+v
ot 0x oy
and W=U3—'B onz=/L£(X%, (.3
X

where p = constan is the density of the wateg,is the constant acceleration of gravity and
P, is the constant air pressure above the watercirtashould be noted that the second

boundary condition in (2.2), and that in (2.3),@esthat the two appropriate surfaces remain
boundaries of the fluid.

At this stage, it is convenient to introduce a ahi# non-dimensionalisation of these
equations and boundary conditions (although theiees required for our two problems
differ slightly). Let A be a typical wavelength of the waves that we dlialtuss — although
we are not restricted to this choice in the sotutihat we describe — and takg,

correspondingly, as a typical or average depthhefwater. A suitable speed scale is that
associated with the (approximate) speed of propamaf waves over the deptty,, namely,

\Jghp ; this, in turn, produces the time scaH;/«/gI"b. Thus far, we have the non-
dimensionalisation represented by the transformatio

(xy) = A z- Bz(uy- @ uy ¢ (A @), 2

where, for examplex - Ax is to be read as(the original, dimensional variable) is replaced
by Ax, wherex is now the non-dimensional version»fThis specification, (2.4), does not
however complete the process: the non-dimensiaiais of w requires a little care.
Consider, for simplicity, the two-dimensional eqaatof mass conservation:

ou ow

—+—=0

ox 0z

which implies the existence of a stream functignix, z, t), such that

oy

u=s—"0—, w=-

w
X

The scalings already chosen forand z show that the non-dimensionalisation fgr is

Y - (m@)w, and hence that fav becomesw - (erg_rb/A) w. Finally, we define the

pressure as the sum of that due to the hydrogtatiesure distribution and that due to the
passage of the wave:
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P=PR-pgztp b F. (2.5)

where p is the non-dimensional pressure perturbation.(2%), z is still in the original,
dimensional form.)

It is convenient to definel and 3, following the scheme just described, as

H =hyh(x v, t) and 8=hgh(X),

respectively. The problem represented by equati¢hs)-(2.3), now written in non-
dimensional variables, becomes

Du__dp. Dv__op ngv:_ﬂ)_ ou ov 0w

—=-—; —= ; ;, —+—+—=0, (2.6)
Dt ox Dt ay Dt dz O0x 0y 0z
with p=handw:@+u%+v@ onz=hxy?M (2.7)
ot ox oy
and w= u% onz=Nnx, (2.8)
X

where d=hy/A is the shallowness, or long-wavelength, param@eércourse, a complete

prescription of the problem involves the inclusisihsome appropriate initial data; for the
purposes of the discussion that we present herg,stifficient to suppose that initial data
exist which will give rise to the types of wave tthae investigate.

At this stage, we make the final, overall adjusttaeto this formulation which will
enable us to discuss, separately, the two probleimsterest (and will also lead to the
specification of the background state). So first, the wave approaching a shoreline (from
the deep ocean, say), we restrict the motion tihdskeof a plane wave approaching the beach;
thus we choose to suppress the dependence with v=0. Further, we shall allow the
bottom profile to evolve on a suitable scale — thit provide the basis for the parameter that
we use in the developments described here. Wedimntb(x) =-B(og X, whereo is a
parameter (and the minus sign is no more than getoence). Thus we obtain, from (2.6)-
(2.8), the set

U + UL+ W == P 07 (W + U, + Wig) = = py; U +W, =0,
with  p=h & w=h+uh onz=h(x1,andw=-0B(gX onz=-B(c X,

where we have used subscripts to denote partialadimes and the prime denotes the
derivative with respect to the argument of the fiomc Now we rescale the variables to

remove &2 in favour of a new parametes (which will be defined below). Thus we
transform according to
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) ) Je

X o =X, t o> —=1, W ~—W,
Je )

Je

and the rest of the variables are unchanged; thishe familiar scaling used in any
comprehensive derivation of the KdV equation. Tivesobtain

Up + UL+ WU = = B & (W + U+ W) = = 5 Uy + W, =0,

with p=h& w=h+uh onz=hx1,
oo go go

and w=—-——B'|—= x| on z=-B| — X].
Je (\/E j (JE j

Finally, we choose, for giveno andd, so that

P giee= (05)23,

NG

but with the requirement thatd — 0 (which may be interpreted in any way consisterihwi
this condition); this produces the form of the doue that we shall use for our first
problem:

Up +Ul+ Wl == B e( W+ uwer ww)=- gy w=0,
with p=h & w=R+ul on =z [ x} (2.9)
and w=-cuB Ex) on z=- BE x).

For the second problem, involving a study of edgees, we first choose to use only one
scale length (which may be anything appropriate) smo =1. However, we make the same
choice of the depth profile as used above: webégt=—-B(¢ X, for £ - 0, and in this case

we shall defines as the slope at the beach ilg(0) = . Equations (2.6)-(2.8) therefore
become

DU_ _mp, om=o

Dt
with p=h & w=Rh+ul+ vI;; on =z Hxyrt (2.10)
and w=-cuB Ex) on z=- BE X),

where we have reverted to the familiar notatiomgshe operator®/Dt and O (with the
velocity vectoru).

The intention is to construct solutions of each (29) and (2.10), based on suitable
asymptotic expansions ia, which represent perturbations of a backgrounte staand this
state we now describe.
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3. Thebackground state

The background state is an exact solution of theegong equations that is steady (time
independent) and, in this context, depends on dhlysx andz For the problem given by
the set (2.9), we write this state as

u=U(X,ze), w=eW X z), F R X E), A K ¥), (3.1)

which therefore satisfies the problem described by

UUy +WU, =-Py; €3(UWy+WW)=- B  Ux+ W=0,
with P=H & W=UH on z=H X¢) (3.2)
and W=-UB on z=-B(X).

On the other hand, the problem of edge waves destiy (2.10) — for reasons that will
become evident later — requires a slight adjustrteetite system given in (3.2). In this case,
we must work with a background flow that possessggitable weak (in the senseofs 0)

vorticity; this is defined by a further transfornwat on (3.2) (but also note that there is
replaced byf2 becaused =1):

U,W) ~ JVe(U,W); (P.H) - &(P H) (3.3)

to give the set

UUy +WU, =-Py; &2(UWy+WW)=- B  Ux+ W=0,
with P=H & W=¢cUH on z=eH X&) (3.4)
and W=-UB on z=-B(X).

This implies that we can obtain solutions of (3wuith error 0(52), by rescaling solutions
of (3.2) according to (3.3).

The possibility, and nature, of solutions of thé (&2) (and, equivalently, of (3.4)) are
discussed at some length in [3], where a carefulvaliion and proofs are presented. In
particular, it is shown that flow that possesseas-nero vorticity and a shoreline must have a
non-flat free surface. Although it is possible &sdribe the general structure, and conditions
for the existence, of relevant solutions of (3@) drbitrary &£, explicit, simple solutions are
not available. However, we shall be concerned wWithcase described kg - 0, and then

we can write down various solutions of (3.2), waifn errorO(£3) (and it is straightforward

to confirm that the higher-order correction termeraty contribute small adjustments in a
uniformly valid asymptotic description of the baokgnd state). The general discussion and
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underlying principles resulting in the constructioihsolutions need not be rehearsed here —
the details can be found in [3] — but we do presbrge simple, although important and
illuminating, examples.

From (3.2), withe — 0, we obtain the reduced problem for the backgratate as
UUy +WU,=-Py; P,=0; Ux+W,=0,

with P=H & W=UH on z= H X¢) (3.5)
and W=-UB on z=-B(X),

where the shoreline (in the absence of waves) is8=aHH =—B=0, which we fix to be at
X =0. We note that the vorticitymE(O,Uz—gz\Nx,O) -~ (0U,,0 as £-0. The

constant-vorticity solutionp = (0, 2k, 0), of (3.5) is

U =2kz+ k(B- H, W=-KB- H) z k BH

with  P=H =—(B+ij+i\/l+ 2K B,

k2 ) K2

(3.6)

for given B(X). (In this case, the stream function 8 = kZ2 + k( B- H = kBF, with
U=¥,, W=-Wy, zO[-B H].) An example of the free surface, and intern@astilines,
is shown in figure 1 (for a suitable choice BfX) ).

A simple example of a flow with variable vorticity provided by the stream function

W= sinh[fz: N B)]{Sinh[f(H +B)| - sinf{¢ g+ B} + sinfiy &= H)}, (3.7)

where/ anda are constants; the free surface is describedébgdtution of the equation

2,2 cosf{M—HB]—lz__ZH -
a sinf[¢H+B)] | ’ (38)

for given B(X) . In this case, the vorticity is

2cosl{£(z+% B-3 H)}

,01, zUO|—-B, H|. 3.9
cosk{%M—HB)} zO[-B H] (3.9)

o=|0,—-a/l
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Two examples of the free surface for this varialieticity are shown in figure 2 (for the
same choice oB(X) as used for figure 1); an associated vorticityrdigtion is given in
figure 3.

Although it is of less interest in the context W fields — and waves — near a beach, we
comment that there are also solutions that exfsblated regions of vorticity, outside which
the vorticity is zero. This requires, however, @spl topography: a region of finite extent
between two points of equal depth (at, say,= X;, X =X,). Further, we require

B'(X) = B(Xp)= B(X)= B( %)=0 with B(X)=B(X)=B and B>B, for
X O(Xq, X5); an example of such a stream function is

%JZ[B(X)—%]Sih{%(H B(X))] X< X %, - B 2 H

Y= (3.10)
0 otherwise,

and the corresponding free surface is

Bp—B(X), X< X< X
H(X) = (3.11)
0, otherwise.

In figure 4, we present an example of streamlimestich an isolated region of vorticity, for
a suitable choice oB( X) .

Finally, as we have already commented, we may oactssolutions of the set (3.4) by
rescaling solutions of (3.2). Thus, in the casecafstant vorticity described in (3.6), we

choose to write/ =+/eL and then, invoking the transformation (3.3), wgeha solution of
(3.2):

U=2Lz+L(B-¢H), W=-LZB-¢ H)+¢ (BY, P H
(3.12)

where &H =- B+i +i\/}|- Z12B  andsél ~112B? ,
£L2 £L2 2

for given B(X), all defined for—-B(X) < z< H( X). The solution that corresponds to (3.7)

and (3.8), for variable vorticity, is obtained IBtting @ =vVeA (with (3.3) and¥ — JeW)
to yield
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- sinh[/ (Q+ cH )]{Sinh[g (B+&H)]-sinh[ (z+ B)]+ sinhf (z- € H)}
with p22| cosht @ +eH )i 1 . -2H (3.13)
sinh[/ (B+&H)] :
and so H —2a22 Wf
2 sinh(B)

With the description of the background state incelawe may proceed to consider
perturbations of these states that admit waveddtations.

4. Nonlinear, disper sive waves approaching a shor eline

The first problem that we address is that of a @lgravity wave, moving over a vortical,
variable-depth flow, which approaches a beach. phiblem makes use of the equations
given in the set (2.9), together with a backgrostade described by a solution to the set (3.2)
or, with an errorO(£3), to the set (3.5). To proceed, we assume that #rasts a solution of

(2.9) for which the perturbation can be expressa@nms of a suitable characteristic variable
(for waves moving to the right over variable depdimd a corresponding (slow) evolution
variable; these are conveniently defined by

X
4k J' X ond our originalX = £x, (4.1)
£ X, X")

respectively. Here, we have yet to determafeX’), and we have elected to consider the
problem in which there is, we shall suppose, canistepth for someX <0, which is where
the wave is initiated X = —Xg is in this region of constant depth. We now sesklation of

(2.9) written in the form, which follows our earlieonvention in the use of- ',

u-U(X, ze)+eUé, X z8), wWoe( W X Z2)+ @, X&)

p- P(X ze)+e [é, X ) (4.2)
with h - H(X;&)+ehé, X;¢).

We see thatl, w, p andh are now used to represent the perturbations dbdkground state.
The equations for this perturbation, given the lgaogknd state, are therefore
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—u5+(U+£u)(lu5+£ux)+£(W+ Wyte uh+ wy=-1 p-g [k
{—Wg(U+£u)( W5+£V\5<)+£(W+ v)rvy+£ uV;(}=— B (4.3)

EU5+Wz+5Ux =0

with the boundary conditions

P+ep=H+eh & W+ w= i +( U+£m( H+1 p+£ ;4)

bothon z=H+¢h (4.4
and w=-¢guB on z=-B(X).

The two boundary conditions at the free surfaces H+&h, are mapped to the
corresponding conditions on the known surface H( X; ) ; this is equivalent to generating

Taylor expansions abowt= H, valid asymptotically ag - O.
It is now a routine exercise to seek a solutionhef set (4.3), with boundary conditions
(4.4), in the form of an asymptotic expansioreinwe write
q(& X, ze)~ Y "¢ X 2, (4.5)

n=0

whereq (and correspondingly, ) represents each of w andp; the asymptotic expansion
for his then

h(&, X;e)~ 3 e (&, X). (4.6)

n=0

At leading order ins, we find that

1 2 dz
= -U, X);
o (U(X,Z)—O(X) _J-B[U(X,z’)—c()()]z o(X)
(4.7)
__(,_U(X.2) dz L
"o ( (x)jIbg Iwua (g oT

(for zO[-B H]), with
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H(X) ,
| dz S =1, (4.8)
g0 [U(X, D)~ ( X]

which is a version of the Burns condition, [1];slietermines(X), givenU (X, 2), B(X)
and H(X). It is convenient to introduce a compact notationthe various integrals that
appear here, so we define

Z ’
Ih(X.2)= | dz _~ (forn=2,3,4,.) (4.9)
_ei0[U(X, )~ ( X]

and I ,5(X) =1 (X, H (X)) is used to denote evaluation at the surface H( X) ; the Burns
condition then becomes$,s =1. We note that, at this order of approximation, kseve
interpreted the background state as a solutiohefét (3.5), and so there is an e|¢I(E3)

implied here (although we could, formally, elect use an exact solution of (3.2) e.g.
H =H(X;&)). At this order, the first approximation to therfsce wave, hy(¢, X), is

unknown.

At the next order, which is considerably more imaal (but, nevertheless, fairly routine
to analyse), we find, for example

He U(x,2)
M:q{j(l— 00 le(x,z)dz o

z

and eventually we obtain the equation Fgr(leaving the equation fon to be determined at
the next order):

1
2c —|3S(c,/—|3sh0)x +3ladidir +5 e = 0 (4.10)

This takes the form of a Korteweg-de Vries (KdVuation, but with variable coefficients by
virtue of 1,4(X) and

34(X) = H(jX) H(jX) } [U(X’zz)"(x)]z _dZdZdz (4.11)
o % &= LU X 3~ € X

related problems that give rise to similar variasftthe KdV equation can be found in [6, 9,
10]. Thus, as we intended, we have used scaleat-ighwe have selected an appropriate
region of physical space defined in terms of thepeters — for which we have a leading-
order balance between nonlinearity and dispergidthough our KdV-type equation, (4.10),
cannot be solved in any general sense (because ofitiable coefficients), we may surmise
that waves satisfying this equation will propagaeards the shore, and that these can be
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expected to exhibit solitary- or soliton-like chetexistics. (Certainly, in the case of constant
depth and zero vorticity, we recover the classf@V equation for water waves:

2hox +3Mphee +3 hoeze = 0,

for which the whole panoply of soliton theory ispépable; for example, see [4].) Any such
solution, we observe, is valid whei&=0(1) (a coordinate that follows the wave) and

X =0(1); we are not concerned here with any difficultibattmight be encountered as
|X| - o0, an issue that must be addressed in more conwahtikdV applications. Indeed,

the wave is initiated in a region whedé =0O(1), and we are particularly interested in the

development of a solution — expressed by the asytmpxpansion — aX — 0, which is in
the neighbourhood of the shoreline (defined moexipely by the region where the local
depthD=B+H - 0).

It is an altogether straightforward exercise tovjde the details of this problem for the
simple choices of background flow; for example, dmmstant-vorticity solution (given in
(3.6)) yields, first,

c(X) =V D+KD? (D(X)=B(X)+ H(X)) (4.12)

from the Burns condition, (4.8), for right-runnifospcoming) waves. Then the appropriate
form of the KdV equation, (4.10), becomes

c\¥2( 32 3+4Kk2D D? ~
?3) (Wh"]x{_D Jue | Jre 0019

3c?(c+ kD)?

where ¢( X) is that given in (4.12). An avenue of further exption might be to construct
numerical solutions — the only viable approachhis situation — of (4.13), perhaps using
solitary-wave initial data aX =-Xg, for various choices df (which represents the given
constant vorticity) and oB( X) , with

D(X) = B(X) + H( X) :k—lz(—1+\/1+ 218 B X)); (4.14)

see (3.6). However, the main interest here is taneme the nature of the problem for
D - 0, corresponding to the shoreline whd&e- 0.

It is particularly straightforward to find the asptotic form of (4.13), asD - O,
together with the corresponding results for otleems in the expansion (such ldsU, u,
etc.). Indeed, we find that
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c~vD,lzg ~—¥D Iz ~ID (aD -~ 0)

(4.15)
H~-1k?B% (asB- 0)
so that the KdV equation, (4.13), takes the appnaxe form asD - O:
20Y4(D¥4y) +> hyhye + 2 hygge =0, (4.16)
x D 3

which is more conveniently expressed in terms diI]/4ho=A0(E,)(), with

X =IX D_7/4(X')dX' , to give

20y +3Rg Pog + 1094 Pogge = 0, (4.17)

where A(y) = D[X()()]. This last form of the KdV equation, (4.17), derstvates that, as

D - 0, the amplitude of the wave is dominated by bev4 growth, usually known as
Green’s law; the dispersion effects, we note, dishirin this same limit. Further, this also
shows that the asymptotic expansion for the surfeee, for example (and the others follow
the same pattern), based on the first two terntisarexpansion, possesses the property

2R2 -1 4
h--1Kk2B2+eD7 144
asD - 0 (and soB - 0); this can be recast in terms[of

h~-1k?D?+sD7 %4, (4.18)

becauseB=D-H ~ D+% k’B? ~ D+—% k’D? as D - 0. This asymptotic expansion is

therefore not uniformly valid a - 0 where D:O(£4/9), which is the region close

inshore that we shall need to explore in a littlerendetail. However, this conclusion is based
on the specific result: a constant-vorticity backgrd state. What is the situation for more
general background flows?

It is surprisingly straightforward to estimate thehaviour of the various functions and

integrals in the caseH =-B+ D, as D - 0, for any background flow. We find that (on
noting thatD — O corresponds t® — 0 andH — O near a shoreline)

¢~Ug+vD, I35 ~=¥D ,I4s ~1D J s <1D?

(and all these results agree with the special qaséed above, withUg beingU evaluated
on z=-B). Indeed, for an arbitrary vorticity distributiont,is possible to find the general
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solution of equations (3.5) valid & - 0 (and hence a® - 0). To accomplish this, we
introduce ¢ =z/ B(X) and then solve folV, constructing an asymptotic form driven by
B - 0; this gives

‘P~yBZ(Z+Zz) andH ~-1°8?, (4.19)

where y is an arbitrary constant. Then we find that
U ~yB@l+ 2 )andW ~—yBBZ, (4.20)

both expressed in terms af; thus Ug ~yB —yD and soc~+/D as D - 0. The
vorticity in the background flow (at this order)riscessarily constant close to the shoreline:

U,~2y asB - 0. (4.21)

The upshot is that the description of the problem,D - 0, embodied in equations (4.16)-
(4.18), is the appropriate description for any wast (other that zero vorticity, for which
W =0). The breakdown of the asymptotic expansion, preed by the condition

D=0(*9), 28)
is therefore generic (and this, we note, corressdncB=O(£4/9)); this provides the basis

for a suitably rescaled version of the problem n@hd close inshore. (An examination of
the behaviour of the magnitudes of the next tetmshe expansions of each function, as
D - 0, shows that this breakdown encompasses all pessibh-uniformities in the
expansions, for reasonable initial data.)

5. KdV gravity wavesvery near ashoreline

The behaviour of the solution, a® —» 0 (or, equivalently, asB - 0), both for the
background state and its perturbation, shows tleatwst rescale according to the scheme

H=e¥% B=e¥B U=V W=c8W pP=cB%
with (5.)

c=5196, h:(s_wh p:(s_igAp u:(s_lau Wzg_/lgv,v

and z=£%92. Under this scaling transformation, the free stefhecomesZ = H+h (so
that the background state and its perturbationtte@esame size), and the bottom is simply

Z =-B. The full set of equations, with the scaling (54dre readily written down, but they
are lengthy and — it might appear — overly compdidalt is sufficient to outline the main
results that we obtain here (mainly because theeena surprises); thus we seek an
asymptotic solution based on expansions of the form
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G(¢,X,Z;€) ~ i 2%, (€, X, 2), (5.2)
n=0

for each of(i, w and p (and likewise forh, with the dependence @omitted, and also for
c(X;&)). The background is exactly as described eadidtpugh now rescaled according to
(5.1).

We find, at leading order, that

~ 1

(g =-2, wo=—%(z+“|3)?bg, w=th (-& =0, (5.3)

£)>|5T>

with & =+/B(X) , but hg(&, X) is undetermined. At the next order (i& %), we obtain

A=A—2“,A=VA——:}AJZ+A,A=“, 5.4
ulﬁymwl(fémgw(%aq (5.4)

=

with ¢ =0 and where we have usdaz =2y, the vorticity close inshore. Finally, at

0(54/9), we generate an equation fﬁ@(f, X) (leaving ﬁl to be determined at the next
order):

2é5/4( BY %)X +3iyhy = 0, (5.5)

which corresponds precisely with the first two terim our KdV equation, (4.16) (when we

remember thatD~B as B - 0). Indeed, when we introduceé]/4l"b =/A and
X =Ix B~74(X") dX', we obtain

2Ay; + 3Ry Pgs = 0, (5.6)

which will, in general, represent a breaking wawetke sense of allowing discontinuous —
jump — solutions) sufficiently close to the shameli Further, it is immediately clear that
solutions of (5.6) will match to solutions of (4)la@s D - 0, the dispersive effects now
being dominated by the nonlinearity of the wavesdmmary, therefore, we have confirmed
that a solution of our KdV equation, valid in thegion defined byX =0O(1) where

D =0(1), will evolve into a purely nonlinear, non-dispeesiwave, with an amplitude that

grows like D™¥4 (with D ~ B) as the depth decreases. The region where thisohas also
been determined: it is where the depth is as meﬂl(s“/g).

6. Edge waves propagating over a background flow

We now turn to an investigation of our second watave example: edge waves. The plan in
this case is to take the development of this pratds described in [11], which is based on a



Water Waves near a Shoreline in a Flow with VaigicTwo Classical Examples 149

new choice of scales suggested by the work ingd@¢ then superimpose this on a suitable
background state. We start with the situation okdge wave that is propagating (in the
direction) in stationary water; this is describeg & solution of equations (2.10), scaled
according to

(U, v, W) — Ve (u vew and(p,h) — £(p h,

together with the choice of new independent vaesbl

X
E=ty-aet, 6’=%ja(X';5)dX’, X=X (6.1)

we leavez unchanged, andr and w (= constant) are to be determined, given the wave
number /. Now the inclusion of the background state wouldgest that we transform

according to, for exampley - U(X, z£)+JE ué,0, X&), but this implies, at leading
order ase - 0, that du/d8=0; such a requirement would negate the existencanof

appropriate edge-wave solution. The only consisteay forward — consistent, that is, with
the solution in [11] — is to restrict the backgrduflow-field to be no larger than the
perturbation of it that describes the edge wavés tiequires that the stream function

representing the background stat@i(s/z). Then, correspondingly, we see that bp#mdh
in the background state must B4¢).

With the foregoing observations in mind, we procd®d scaling equations (2.10)
according to the scheme

Uv,w) - Ve(U+uve(W+ W), (ph-se(P pH (6.2)

where the set{U(X,z;e),W(X 2e), R X ), H Xs)} represents a solution of the
background state described by equations (3.4).efnations defining the sat, v, w, p, h) —

the perturbation — then become

—alg +VUs +euly +(U+ Q(a y+eu)+e( W+ wy+ wy)
=—(apg+epx);

~aVg +IwWg +(U+ U (ap+ex ) +e(Wk Wy=~/ p;

ef ~awg + v + U +(U+ (@ wre w)+e(( Wi+ wgll = p

aug + (Vg +£(uy + W) =0, (6.3)
with P+p=H+h & W+ w-wh+(va+( U Je K +a p+e h)
both ;m z=&(H + h),

and w=-uB on z=- B(X).
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We now seek an asymptotic solution of this seB)(@y assuming that a solution exists of
the form

q(é,6,X,ze)~ Y e"q (.6, X, 2,
n=0

whereq, and correspondingly,, represent each of v, w andp; h(£,8, X;¢) is similarly
expanded. Although we may, in general, also exgaotth «w(g) and a(X;¢), this extra

freedom — and minor complication — is unnecessase.hThe procedure follows that
described in detail in [11] (and given in outline[iL2]), with the one adjustment that the
background state is included here, and given.

At leading order, we generate a nonlinear systegqaations:

—algg + (VoUgs +a(U+ Ug) Uy =—a P; —WVog +VoVos +a(U+ Ug) Vg =1 Py
QUgg *+ Vg =0; Pz =0, with pg =hy on z=0,

which constitute a version of the nonlinear, shvll@ater equations. This set has an exact
solution, relevant to edge waves:

U+u0=£A0eesinf, voz—éAog cog

alldefined for-B<z< 0 (6.5

po=m=Aoe9co§—§§A%é‘9+co,

where we have setr =/, and Ag(X) and Cy(X) are yet to be determined. At the next
order, we recover precisely the problem describgd 1], when we choos€; = H(X) ; this
then represents a uniformly valid asymptotic solufprovided thatAy( X) is a solution of

AOB'+ZBA@):—% A, (6.6)

and so

_ 1 X '
%(X)‘m‘“p{ 21 800

(6.7)

At a beach, we haveB X )—X as X - 0, which gives Ay~ K(—X)'B,
ﬂ:%((wz/é)—l), whereK is a constant (which is fixed by specifying thepditnde of the
edge wave for some& <0). Further, if we ask thatyy(X) and all its derivatives exist as

X - 0, then we must choosg=n (n=0,1,2,..), and thena? =(1+2n)¢, which is the
classical dispersion relation for edge waves. (b is developed in [11, 12] — we need only
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the basic results here — but we do add the obsenv#tat a non-uniformity exists in our
solution asB - 0, unless the casa=0 is omitted.) Thus we claim that, with relatively
minor adjustments, the theory of edge waves ovsioaly varying depth as presented in
[11], carries over to the situation where a (wdadgkground flow is allowed to pre-exist the
passage of the edge wave — although we shouldthatéoth the background flow and its
perturbation are essentially the same size.

We complete this discussion by examining one intng aspect of edge waves: the run-
up pattern on a beach. This is described by theecur

z=-B=¢g(H+h, (6.8)
where H+h~H+ Ay’ cosf—iﬁ % & (6.9)
2 o

and then, forX - 0 (which is where the beach exists), we may td&keX (—X~and
H~ —%yzx2 (see (4.19)). Usingy ~ K(—X)ﬁ, the run-up pattern, (6.8) with (6.9), can be
written

2
x~—ﬁ X2+ K(- X)BeX cosf ——— K2 £ X 8 &%, (6.10)
2 207
which, upon the exclusion of the solutiot= X =0 and electing to seB=n (n=1,2,..),
can be expressed in the normalised form

2
-1y H 1 2Y_
1+vX - u(-Y)"te cosf+—2(1+ )(—Y? = | (6.11)

Here, we have writterlY =/x, u= Kgn/é”"l and v:£2y2/2€; both Y and u relate
precisely to the equation discussed in [11, 124l anis the new parameter representing the
presence of any background flow in the vicinitytbé beach. This version of the run-up
pattern can be examined to decide whether thisuoeptthe essential features of what is
observed on beaches; this is therefore no moreghaxtension of the approach adopted in
[11]. The solutions of (6.11), withv =0, are discussed in the papers already cited; in
particular, it is shown that there exist, for certparameter ranges @nd ), two possible
run-up patterns. When such solutions do not etis, pattern comprises periodic, closed
regions that either do, or do not, contain watareither of which is a possible solution.
(Either there is no water extending seawards, aetieewater extending to infinity inland,
respectively.) An acceptable pair of solutionshiswen in figure 5 — and there appears to be
no mechanism for deciding which may be an apprtgsalution for water waves. (Indeed,
there is some evidence to suggest that either ggreaa on a beach, under suitable
conditions.) The inclusion of the term in changes all this; for a givanand w, for which
two solutions exist, there is a critical valuelofabove which only one appropriate solution
exists; below this value, the familiar two appeasr{esponding to the pair associated with
v =0). An example of this phenomenon is shown in fighire
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7. Conclusions

The classical problem of water waves has been pexbera two different sets of scalings on
the standard governing equations and boundary ttonsi These have been selected to
enable us to describe both the familiar probleng@vity waves and that of edge-wave
propagation. In each case, we have shown how threddems can be formulated to allow
the waves to move over a pre-existing flow fieldttboth possesses non-zero vorticity and
admits a shoreline. Some examples of such backgrdlows have been presented.
Furthermore, each problem for the motion of the egavs, even at leading order,
appropriately nonlinear. In the first case, thelisga have been chosen to recover the
relevant KdV-type equation for the gravity wavetttgapproaching a beach; thus the wave
exhibits, at a reasonable distance from the shuwalinearity and dispersion, adapted to
accommodate the (slow) variation in depth and bexkgd flow. The resulting asymptotic
solution has been shown — not surprisingly — t@bkmown (the expansion is not uniformly
valid, and this is the case for any non-zero viydi@s the beach is approached. The problem
has been suitably rescaled in the neighbourhoothefoeach, resulting in the wave now
being dominated, at leading order, by the nonlineffects. The solution in this region
matches to an appropriate solution of the KdV-tgoeation; in general, the solution will
now take the form of a ‘breaking’ wave close inghowith an amplitude that grows
according to Green’s law.

The corresponding problem for edge waves requirggyhtly more careful formulation,
although the underlying principles are the samehils case, the background flow had to be
the same size — in the parametric sense — as gevealve. However, once this selection is
incorporated, it was demonstrated that the devedmprof the solution-technique followed
that of [11] (which presented the problem of th@esdvave in the presence of a slowly-
varying depth, but with a zero background state THading-order description of the edge
wave mirrors very closely that already given in][lthere is an appropriate exact solution
that recovers all the essential features of thee edgve, but this is now combined with a
contribution from the background flow. This new iedient enables a significant re-
interpretation of the edge-wave solution previoudbyained, in particular as it relates to the
run-up pattern, as we shall comment below.

The main results from our analysis can be summaaseullows. For the gravity wave,
we have derived a variable-coefficient KdV equation

2D]/4(D1“‘r~0)X +%fbh:)g+% hysee =0, (7.1)

and one avenue of investigation, perhaps worthgavhe effort, is to obtain (numerical)
solutions for hy(¢, X). This would enable the effects of various backgd@iows, and

choices of variable depth, to be itemised and stidive comment that the process of
increasing amplitude as the depth decreases, d¢tsthe shoreline, has already been
discussed in our asymptotic solution. Although thits a little short of a fundamentally new
result — something close to this is given in [1@guation (7.1) does encapsulate a number of
important properties: nonlinear, dispersive (sohtgpe) wave propagation with variable
depth in a flow with vorticity. Nevertheless, ouork has now shown that we can allow the
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background flow-field to represent depth profilesd flows, relevant to beaches — a
possibility not envisaged before.

On the other hand, the equation

2
w1y H 1 2Y_
1+vX - u(=Y)"te cosf+—2(1+m) fyyprigy= (7.2)

for the run-up pattern produced by an edge wave, (lay implication, other properties of an
edge wave) is new. This work has built on the equagbreviously obtained in the cage=0
(which was first reported in [11]) and, forz 0, seems to go some way towards addressing a
problem encountered in this earlier work. Althouglwas argued (in [11]) that solutions
corresponding to the observed run-up patternsem@vered fov =0, such solutions always
come in pairs; there is no immediate and obvioushaeism for selecting one rather than the
other. However, the inclusion of a background flGamd near a shoreline, this is generic)
offers a way forward: for a givem and 4, there is a critical value af above which only

one relevant solution exists. Further, if this solu is identified, and traced back as
decreases, then one of the pair is selected. Agthan the work reported here, we have only
begun the investigation of the problem with a backgd flow and of the solutions of
equation (7.2), this would seem to be an areaishaorthy of further investigation.

Figure 1. An example of a flow field with constant vorticitshowing the surface streamline
and bottom topography (heavy lines), and somenatetreamlines. The bottom profile is

B(X)=1in X <-3 and B(X) =1- (X+3)%2/9in -3< X <0.
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0.4

0.8

Figure 2a
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Figure2b

Figure 2: Two examples of the free surface with variableieiyt as described by equations
(3.7)-(3.9) with: (a)a=¢=1; (b) a =3, ¢=1. The bottom profile is the same as that used
for figure 1.
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Figure 3: An example of the variable vorticity, given in (B.8or a =3, ¢ =1, in the region
of constant depthE( X) =1; see figure 2b).
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Figure 4: An example of an isolated flow field with vorticjtgescribed by equation (3.10);

the bottom profile is proportional t(X3(1— X)3, for 0< X <1. The heavy lines at the top
and the bottom are the free surface and the bqttofile, respectively.
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Figure 5: Solution of equation (6.11), for the run-up pattedisplaying the two viable
solutions in the case=2, ¢ =25 (andv =0).
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Figure 6: Solution of equation (6.11), for the run-up patterthe presence of a background
flow, in the casen=2, p =25, v =0[2; for these values af and x, the critical value of/

is approximately0[1185E.
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