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Abstract

We present the use of complex Lie symmetries in variational problems by defining a
complex Lagrangian and considering its Euler-Lagrange ordinary differential equation.
This Lagrangian results in two real “Lagrangians” for the corresponding system of par-
tial differential equations, which satisfy Euler-Lagrange like equations. Those complex
Lie symmetries that are also Noether symmetries (i.e. symmetries of the complex La-
grangian) result in two real Noether symmetries of the real “Lagrangians”. Also, a
complex Noether symmetry of a second order complex ordinary differential equation
results in a double reduction of the complex ordinary differential equation. This im-
plies a double reduction in the corresponding system of partial differential equations.

1 Introduction

Euler-Lagrange (EL) equations, Lie-Bäcklund (LB) and Noether Symmetries (NSs)
play a vital role in the study of invariances in the calculus of variations and differential
equations. LB symmetries are used to reduce the order of an ordinary differential equation
(ODE) or the number of independent variables in a partial differential equation (PDE)
[6, 14]. NSs on the other hand are used to construct conservation laws for systems of EL
equations by using Noether’s Theorem [13, 9]. In this paper these results are extended
to the complex domain by defining complex Lagrangians (c-Lagrangians), complex con-
servation laws and complex EL differential equations. Noether’s theorem in the complex
domain can be stated as follows: for a complex EL differential equation, to each complex
Noether symmetry associated with a c-Lagrangian there corresponds a complex conserva-
tion law, which can be determined explicitly by a formula. A complex NS associated with
a c-Lagrangian can be constructed in the same way as in the real case.

The use of complex Lie symmetries (CLSs) for complex ordinary differential equations
(CODEs) and the system of PDEs was developed earlier [1]. A CLS can also be used to
reduce the order of certain systems of PDEs that correspond to a CODE. The system of
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PDEs corresponding to a CODE admits two real Lagrangian like quantities, which we call
r-Lagrangians, that result from a c-Lagrangian and satisfy EL-like equations which come
from splitting the complex EL equations. The use of a NS in reducing the order of DEs has
been discussed in [9, 10, 11, 12] for example. For real scalar ODEs, a Noether symmetry
that corresponds to a Lagrangian of the scalar ODE results in a double reduction of order.
This result also holds for complex ODEs. It is seen that the order for a system of PDEs
corresponding to a CODE can also be reduced.

The layout of the paper is as follows. In the next section we introduce the notion
of c-Lagrangian and its complex EL equation. Various theorems concerning complex
Noether point symmetries are given in the same section. The third section gives the two
r-Lagrangians and the EL-like equations corresponding to the c-Lagrangian and complex
EL equation. It also states the forms of the conditions on the r-Lagrangians and Noether
point symmetries corresponding to the known results of section 2. In the same section we
give applications of our approach with certain examples. Finally, we summarize the whole
approach in the fourth section.

2 Lagrangians and EL Equations in the Complex Domain

Consider a second-order CODE of a complex-valued function u(z) of the form

u′′ = w (z, u, u′), (2.1)

where w is a complex analytic function of its arguments. The CLSs admitted by the above
CODE and the corresponding RLSs of the respective system of PDEs corresponding to the
CODE have been discussed in [1]. Assume the above CODE arises from a c-Lagrangian
L(z, u, u′), i.e. the above equation is equivalent to the complex EL equation

∂L

∂u
−

d

dz
(
∂L

∂u′
) = 0. (2.2)

Definition 1. Z is said to be a complex Noether point symmetry corresponding to a
c-Lagrangian L(z, u, u′) of (2.1) if there exists a complex function A(z, u) such that

ZL + (
dς

dz
)L =

dA

dz
, (2.3)

where

Z = ς
∂

∂z
+ χ

∂

∂u
+ χ(1) ∂

∂u′
,

d

dz
=

∂

∂z
+ u′

∂

∂u
+ ... . (2.4)

Now we restate Noether’s theorem for complex NSs, and theorems for the first integral and
solvability by quadratures, without proof as there is no difference made by complexity.
Theorem 1. If Z is a Noether point symmetry for a c-Lagrangian L(z, u, u′) of (2.1)
then

I = ςL + (χ − u′ς)Lu′ − A, (2.5)

is a complex first integral of (2.1) associated with Z, i.e., dI/dz = 0 on solutions of (2.1).
Theorem 2. The first integral I associated with the complex Noether point symmetry Z
satisfies the relation

ZI = 0. (2.6)
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Theorem 3. If for a c-Lagrangian L(z, u, u′) of (2.1) there corresponds a Noether point
complex symmetry, then (2.1) is solvable by quadrature.

In the subsequent section, EL-like equations, two conserved quantities and conditions
corresponding to (2.5) and (2.6) are obtained for the system of PDEs.

3 Euler-Lagrange-Like Equations

One obtains the following system of PDEs corresponding to CODE (2.1)

fxx − fyy + 2gxy = 4G(x, y, f, g, h, l), fx = gy, (3.1)

gxx − gyy − 2fxy = 4H(x, y, f, g, h, l), fy = −gx, (3.2)

where

u = f + ig, z = x + iy, w = G + iH, (3.3)

and

h = fx + gy, l = gx − fy. (3.4)

Write L as

L = L1(x, y, f, g, h, l) + iL2(x, y, f, g, h, l). (3.5)

The system of EL-like equations corresponding to (2.2) is

∂L1

∂f
+

∂L2

∂g
− dx(

∂L1

∂h
+

∂L2

∂l
) − dy(

∂L2

∂h
−

∂L1

∂l
) = 0, (3.6)

∂L2

∂f
−

∂L1

∂g
− dx(

∂L2

∂h
−

∂L1

∂l
) + dy(

∂L1

∂h
+

∂L2

∂l
) = 0, (3.7)

where

dx = ∂x + fx∂f + gx∂g + hx∂h + lx∂l,

dy = ∂y + fy∂f + gy∂g + hy∂h + ly∂l. (3.8)

The above system of DEs (3.6) and (3.7) couples the two r-Lagrangians, L1 and L2. Note
that they are not separately Lagrangians as they do not satisfy EL equations separately
but only the coupled system (3.6) and (3.7). The corresponding system of conditions
relative to (2.3) in the real domain is given by

2XL1 − 2YL2 + (dxς1 + dyς2)L1 − (dxς2 − dyς1)L2 = dxA1 + dyA2,

2XL2 + 2YL1 + (dxς1 + dyς2)L2 + (dxς2 − dyς1)L1 = dxA2 − dyA1, (3.9)

where we have set

ς = ς1 + iς2, A = A1 + iA2,

Z = X + iY. (3.10)
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In addition if we set χ = χ1 + iχ2 in (2.4) with χ(1) = χ
(1)
1 + iχ

(1)
2 , then

2X = ς1∂x + ς2∂y + χ1∂f + χ2∂g + χ
(1)
1 ∂h + χ

(1)
2 ∂l,

2Y = ς2∂x − ς1∂y + χ2∂f − χ1∂g + χ
(1)
2 ∂h − χ

(1)
1 ∂l, (3.11)

with

χ
(1)
1 = dxχ1 + dyχ2 −

h

2
(dxς1 + dyς2) +

l

2
(dxς2 − dyς1),

χ
(2)
2 = dxχ2 − dyχ1 −

h

2
(dxς2 − dyς1) −

l

2
(dxς1 + dyς2). (3.12)

The first integral (2.5), I = I1 + iI2, results in two real conserved quantities

I1= ς1L1−ς2L2+(χ1−
h

2
ς
1
+

l

2
ς
2
)(∂hL1+∂lL2) − (χ2−

h

2
ς
2
−

l

2
ς
1
)(∂hL2−∂lL1) − A1,

I2= ς1L2+ς2L1+(χ1−
h

2
ς
1
+

l

2
ς
2
)(∂hL2−∂lL1) + (χ2−

h

2
ς
2
−

l

2
ς
1
)(∂hL1+∂lL2) − A2

(3.13)

which satisfy

dxI1 + dyI2 = 0,

dxI2 − dyI1 = 0 (3.14)

on solutions of (3.1) and (3.2) as well as the coupled equations

XI1 − YI2 = 0,

XI2 + YI1 = 0. (3.15)

We now present some illustrative examples.
Example 1. Consider the complexified free particle equation

u′′ = 0, (3.16)

which admits a c-Lagrangian of the form

L =
1

2
u′ 2. (3.17)

The CODE (3.16) admits an 8−dimensional complex Lie algebra [1]. It has 5 CLSs which
are also the NSs with respect to the c-Lagrangian (3.17) (for simplicity we do not write
the first extension)

Z1 =
∂

∂z
, Z2 =

∂

∂u
, Z3 = 2z

∂

∂z
+ u

∂

∂u
, (3.18)

Z4 = z2 ∂

∂z
+ zu

∂

∂u
, Z5 = z

∂

∂u
. (3.19)

One can reduce the order of (3.16) by two using any one of the above symmetries. For
example, for the NS Z2, the first integral is

I = u′ = a, (3.20)
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by using (2.5). From (2.6), Z2 is also a symmetry of the c-Lagrangian (3.17). The above
equation (3.20) yields the solution

u = az + b, (3.21)

where a and b are complex constants. Similarly, if we use the NS Z3 we obtain

I = u u′ − zu
′2 = c. (3.22)

Since Z3 satisfies (2.6) it is also a symmetry of the above equation (3.22). It can be
transformed into separable form by introducing

w = uz−
1

2 , (3.23)

which is

w2 − 4z2w
′2 = C. (3.24)

Thus, a NS reduces a second order CODE to quadratures. The solution in new coordinates
(z,w) is

w(z) = αz
1

2 + βz−
1

2 , (3.25)

where α and β are complex constants. Inserting (3.23) into (3.25), we easily get the form
of the solution (3.21). The system of PDEs corresponding to the CODE (3.16) is

fxx − fyy + 2gxy = 0, fx = gy, (3.26)

gxx − gyy − 2fxy = 0, fy = −gx. (3.27)

The respective r-Lagrangians L1 and L2 are

L1 =
1

8
(h2 − l2), (3.28)

L2 =
1

4
hl. (3.29)

One obtains the respective system of PDEs (3.26) and (3.27) by replacing the above r-
Lagrangians in (3.6) and (3.7). In order to reduce the order we decompose Z2 into its real
parts

2X2 =
∂

∂f
, 2Y2 = −

∂

∂g
, (3.30)

which satisfy (3.9). From (3.13), setting I1 = c1 and I2 = c2, the two conserved quantities
are (A1 = A2 = 0)

I1 = h = 2c1, I2 = l = 2c2. (3.31)

Using the CR equations one obtains the solution of the system (3.26) and (3.27). Similarly,
Z3 yields (A1 = A2 = 0)

2X3 = 2x
∂

∂x
+ 2y

∂

∂y
+ f

∂

∂f
+ g

∂

∂g
, 2Y3 = 2y

∂

∂x
− 2x

∂

∂y
+ g

∂

∂f
− f

∂

∂g
, (3.32)
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which satisfy (3.9). The conserved quantities from (3.13), setting I1 = c1 and I2 = c2, are
(A1 = A2 = 0)

I1 = fh − gl −
1

2
x(h2 − l2) + yhl = 2c1, (3.33)

I2 = fl + gh −
1

2
y(h2 − l2) − xhl = 2c2. (3.34)

By introducing new coordinates using (3.23) we have

F = r−
1

2 (f cos θ/2 + g sin θ/2), (3.35)

G = r−
1

2 (g cos θ/2 − f sin θ/2), (3.36)

where

r2 = x2 + y2, θ = tan−1(y/x), (3.37)

we obtain the following system

F 2 − G2 − 4r2[(H2 − J2) cos 2θ − 2HJ sin 2θ] = C1, (3.38)

2FG − 4r2[(H2 − J2) sin 2θ + 2HJ cos 2θ] = C2, (3.39)

where

H =
1

2
(Fx + Gy), J =

1

2
(Gx − Fy) (3.40)

and

∂x = cos θ∂r −
1

r
sin θ∂θ, ∂y = sin θ∂r +

1

r
∂θ .

so that Fx = cos θFr − (1/r) sin θFθ etc in (3.40). The solution of the system (3.38) and
(3.39), with α = α1 + iα2 and β = β1 + iβ2, is

F = r
1

2 (α1 cos θ/2 − α2 sin θ/2) + r−
1

2 (β1 cos θ/2 + β2 sin θ/2), (3.41)

G = r
1

2 (α1 sin θ/2 + α2 cos θ/2) + r−
1

2 (−β1 sin θ/2 + β2 cos θ/2). (3.42)

Notice that the above solution cannot be obtained directly without using complex trans-
formations. It also demonstrates the fact that a simple solution may look complicated in
some coordinates. Substituting (3.41) and (3.42) into (3.35) and (3.36), one obtains the
solution of the system (3.26) and (3.27).
Example 2. The complexified oscillator equation is given by

u′′ = −u. (3.43)

The CLS of this CODE have been studied in [1]. An obvious c-Lagrangian admitted by
such an equation is

L =
1

2
u′2 −

1

2
u2. (3.44)
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A simple NS of (3.43) with respect to the c-Lagrangian (3.44) is

Z =
∂

∂z
, (3.45)

which gives the first integral

I =
1

2
u2 +

1

2
u

′2 = c. (3.46)

The solution of the above CODE (3.43) is

u = α cos z + β sin z, (3.47)

where α and β are complex constants. The system of PDEs corresponding to (3.43) is

fxx − fyy + 2gxy = −4f, fx = gy (3.48)

gxx − gyy − 2fxy = −4g, fy = −gx. (3.49)

The respective r-Lagrangians, L1 and L2, are

L1 =
1

8
(h2 − l2) −

1

2
(f2 − g2), (3.50)

L2 =
1

4
hl − fg. (3.51)

The obvious NSs of system (3.48) and (3.49) for the r-Lagrangians (3.50) and (3.51) are

2X =
∂

∂x
, 2Y = −

∂

∂y
(3.52)

which satisfy (3.9). From (3.13) two conserved quantities, I1 = c1 and I2 = c2, are
(A1 = A2 = 0)

I1 = f2 − g2 +
1

4
(h2 − l2) = −2c1, (3.53)

I2 = fg +
1

4
hl = −c2, (3.54)

which, on using the CR equations, yields the solution of (3.48) and (3.49) as

f=α1 cos x cosh y + α2 sin x sinh y + β1 sin x cosh y − β2 cos x sinh y, (3.55)

g=α2 cos x cosh y − α1 sin x sinh y + β1 cos x sinh y + β2 sinx cosh y. (3.56)

This is easier to obtain by utilising (3.47).
Example 3. Consider the complexified Emden-Fowler equation

u′′ +
2

z
u′ = 3u5. (3.57)

It admits a c-Lagrangian of the form

L =
1

2
z2u′2 +

1

2
z2u6. (3.58)
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The complex NS of (3.57) with respect to the c-Lagrangian (3.58) is

Z = 2z
∂

∂z
− u

∂

∂u
. (3.59)

The first integral is

I = −z3u
′2 − z2u u′ + z3u6, (3.60)

by using (2.5). Hence, the reduced equation is

z3u
′2 + z2u u′ − z3u6 = c, (3.61)

which can be put into a separable form on introducing

w = uz1/2, (3.62)

which is

z2w
′2 −

1

4
w2 − w6 = C. (3.63)

This first-order equation (3.63) is variables separable and thus can be reduced to quadra-
ture. The corresponding system of PDEs of the CODE (3.57) is

fxx − fyy + 2gxy +
4x

x2 + y2
h +

4y

x2 + y2
l = 12(f5 − 8f3g2 + 5fg4), fx = gy, (3.64)

gxx − gyy − 2fxy +
4x

x2 + y2
l −

4y

x2 + y2
h = 12(g5 − 8f2g3 + 5f4g), fy = −gx. (3.65)

The c-Lagrangian L (3.58) yields the two r-Lagrangians

L1 =
1

8
(x2 − y2)(h2 − l2) −

1

2
xyhl +

1

2
(x2 − y2)(f2 − g2)(f4 + g4 − 14f2g2)

− 2xyfg(3f4 + 3g4 − 10f2g2), (3.66)

L2 =
1

4
(x2 − y2)hl +

1

4
xy(h2 − l2) + (x2 − y2)fg(3f4 + 3g4 − 10f2g2)

+ xy(f2 − g2)(f4 + g4 − 14f2g2). (3.67)

It turns out that the system of PDEs (3.64) and (3.65) is obtained on inserting L1 and L2

in the EL-like equations (3.6) and (3.7). The two real NSs corresponding to the system of
PDEs (3.64) and (3.65) for the r-Lagrangians L1 and L2, are

2X = 2x
∂

∂x
+ 2y

∂

∂y
− f

∂

∂f
− g

∂

∂g
, (3.68)

2Y = 2y
∂

∂x
− 2x

∂

∂y
+ f

∂

∂g
− g

∂

∂f
. (3.69)
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The conserved quantities are given by (A1 = A2 = 0)

I1 =
1

4
x(x2 − 3y2)(h2 − l2) −

1

2
y(3x2 − y2)hl + (−f − hx + ly)(

1

2
(x2 − y2)h − xyl)

+(g + hy + lx)(
1

2
(x2 − y2)l + xyh) + x(x2 − 3y2)(f2 − g2)(f4 + g4 − 14f2g2)

−2yfg(3x2 − y2)(3f4 + 3g4 − 10f2g2), (3.70)

I2 =
1

4
y(3x2 − y2)(h2 − l2) +

1

2
xhl(x2 − 3y2) + (−f − hx + ly)(

1

2
(x2 − y2)l + xyh)

−(g + hy + lx)(
1

2
(x2 − y2)h − xyl) + 2x(x2 − 3y2)fg(3f4 + 3g4 − 10f2g2)

+y(3x2 − y2)(f2 − g2)(f4 + g4 − 14f2g2), (3.71)

as these satisfy the coupled system (3.13). We introduce

F = r1/2(f cos θ/2 − g sin θ/2), (3.72)

G = r1/2(g cos θ/2 + f sin θ/2), (3.73)

where r and θ are defined by (3.37). One obtains the system

r2[(H2 − J2) cos 2θ − 2HJ sin 2θ] + (12F 2G2 − 1
4 )(F 2 − G2) − (F 2 − G2)3 = C1

r2[(H2 − J2) sin 2θ + 2HJ cos 2θ] − 1
2FG + 8F 3G3 − 6FG(F 2 − G2)2 = C2, (3.74)

where H and J are given by (3.40). The solution of (3.74) and (3.75) can easily be deduced
from the solution of (3.63) by using separation of variables. Then one can revert to the
original variables via the transformation (3.72) and (3.73).

4 Summary and Discussion

An inverse problem [4, 5, 7, 8, 9, 15] in variational calculus is to find a Lagrangian
whose EL equation is that DE. The Lagrangian of a DE is not unique and certain DEs, like
scalar-evolution equations, do not admit Lagrangians [5, 8]. There are several techniques
developed to construct Lagrangians for special classes of ODEs, PDEs and their systems
by various authors [4, 5, 7, 8, 9, 15]. The question of finding a Lagrangian is an open
problem as most of the approaches apply to some special classes of DEs (both ODEs and
PDEs) and their systems. Complex NSs depend on the choice of a c-Lagrangian admitted
by the CODE, as a CODE can admit several c-Lagrangians. Thus, conserved quantities
associated with r-Lagrangians of some system of PDEs are also not unique.

We have presented certain systems of PDEs that admit two r-Lagrangians that satisfy
EL-like equations. It thus provides us with an explicit derivation of Lagrangians, conser-
vation laws and NSs of systems of PDEs. Equations considered here are very important in
this regard as they give us a system of those PDEs that can be handled with CLS analysis.
It may be pointed out that if one takes y (the imaginary part of the independent variable
z) and g (the imaginary part of the dependent variable u) to be zero, one gets the usual
symmetry analysis of real DEs and PDEs.

It would be very interesting to use this approach to find the c-Lagrangians and conser-
vation laws associated with NSs for a system of CODEs. It is worth pointing out that in
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our CLS analysis one always gets systems of an even number of PDEs. Thus, if we have
a system of two CODEs we will get a system of four PDEs.

CLS analysis can also be used to reduce a system of ODEs by taking a complex valued
function of one real variable. It is expected that certain symmetries will be preserved
under this projection, which can then be used for reduction.

The CLS analysis has also been used for linearization of CODEs [2, 3]. Lie’s results
on necessary and sufficient conditions for linearization of a real scalar second-order ODE
are extended to the complex domain. It is found that the linearization of CODEs yield
the linearization of certain systems of non-linear PDEs. An important implication of
such a construction is that the real mappings can be obtained in a nontrivial way from
complex mappings to linearize systems of non-linear PDEs. Also, the linearization of
complex differential equations of a complex function of one real variable can be used to
linearize systems of ODEs and the linearizing mappings are obtained nontrivially from
complex mappings. It is the case that the process of analytic continuation can be used in
a non-trivial way.
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