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Abstract

We obtain a complete invariant characterization of scalar linear (1+1) parabolic equa-
tions under equivalence transformations for all the four canonical forms. Firstly semi-
invariants under changes of independent and dependent variables and the construc-
tion of the relevant transformations that relate the two parabolic equations are given.
Then necessary and sufficient conditions for a (1+1) parabolic equation, in terms
of the coefficients of the equation, to be reducible via local equivalence transforma-
tions to the one-dimensional classical heat equation and the Lie canonical equation
ut = uxx + Au/x2, A a nonzero constant, are presented. These invariant conditions
provide practical criteria for reduction to the respective canonical equations. Also the
construction of the transformation formulas that do the reductions are provided. We
further show how one can transform a (1+1) parabolic equation to the third and fourth
Lie canonical forms thus providing invariant criteria for a parabolic equation to have
two and one nontrivial symmetries as well. Ample examples are given to illustrate the
various results.

1 Introduction

The scalar linear (1+1) parabolic partial differential equation (PDE) of one space variable
and one time variable

ut = a(t, x)uxx + b(t, x)ux + c(t, x)u, (1.1)

where a, b and c are continuous functions in t and x, arises in several applications and is an
essential part of fundamental courses on PDEs. Indeed, the well-known one-dimensional
Fokker-Planck (FP) PDE (see, e.g., the books Gardiner [9] and Risken [23])

∂u

∂t
= −

∂

∂x
[A(t, x)u] +

1

2

∂2

∂x2
[B(t, x)u], (1.2)

in which u is the probability density and A and B are the coefficients of drift and diffusion,
is contained in (1.1). This equation (1.2) models many phenomena (see, e.g., [1, 2, 8, 11,
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16, 25]). The FP PDE is also called a forward Kolmogorov equation and in this sense
describes the evolution of the transition probability density for diffusion processes. The
Kolmogorov [17] equation is

ut + α(t, x)uxx + β(t, x)ux = 0, α(t, x) > 0, (1.3)

where u is the transition pobabability density function of a Markov process.
The Black-Scholes [3] as well as the bond-pricing equations (see, e.g. [27]) are also

subsumed in the family (1.1).
Algebraic properties of the FP equation (1.2) were considered before, for example, in

[24] and [26]. We point out that sequences of drifts for the FP equation were derived in
Bluman [6]. Notwithstanding, necessary and sufficient conditions for mapping by means of
point transformations of the Kolmogorov equation (1.3) into the ‘backward’ heat equation
ūt̄ + ūx̄x̄ = 0 were obtained in Bluman [4]. These conditions were shown to be equivalent
to invariance of equation (1.3) under a six-dimensional Lie algebra of point symmetries in
addition to the trivial infinite dimensional algebra of superposition operators. Moreover,
Bluman and Shtelen [7] provided an extension of the Kolmogorov problem of determining
classes of Kolmogorov equations which are transformable to the backward heat equation
via nonlocal transformations by embedding (1.3) in an auxiliary system of PDEs. The
symmetry transformation approach was employed in Pooe et al [22] to reduce one-factor
bond pricing parabolic equations to the classical heat equation. Fundamental solutions of
two zero-coupon bond-pricing PDEs were derived. Gazizov and Ibragimov [10], and Goard
[12] also used the Lie group approach for the Black-Scholes and bond pricing equations
respectively, that admit six nontrivial symmetry operators. In [10], reduction formulas to
the heat equation were constructed.

Lie [18] gave the complete group classification of the parabolic PDE (1.1). He provided
all the canonical forms of the PDE (1.1) for which (1.1) admits nontrivial point symmetry
algebras of dimensions 1, 2, 4 and 6 (apart from the infinite dimensional algebra of trivial
point symmetries of the superposition operators).

The parabolic equation (1.1) was further studied by Ovsiannikov [20] by utilising the
reduction to the fourth Lie canonical form which corresponds to a = 1 and b = 0 in (1.1).
Bluman [5], inter alia, developed a mapping algorithm based on analyzing the symmetry
generators of the parabolic PDE (1.1). The equation (1.1) was first reduced to the fourth
Lie canonical form for this purpose.

We now turn to the notion of semi-invariants and invariants of the PDE (1.1). Equiva-
lence transformations of the equation (1.1) are transformations that map the family (1.1)
into itself. Ibragimov [13] obtained the semi-invariants of equation (1.1) under linear
changes in the dependent variable only (a subgroup of the equivalence group). Semi-
invariants of PDE (1.1) under transformations of just the independent variables were
derived in Johnpillai and Mahomed [21]. These authors also found the joint invariant
equation for the family (1.1) under both changes of the independent and dependent vari-
ables thereby providing necessary and sufficient conditons for equivalence of the family
(1.1) under point transformations to the classical heat PDE. The results obtained were
in terms of the coefficients of the equation (1.1) and provides practical criteria for reduc-
tion to the heat equation. Further work on joint invariant equations for PDE (1.1) and
reducibility to the heat and second Lie canonical form ut = uxx + Au/x2 were reported
briefly in Mahomed and Pooe [19]. Herein, a refinement of the invariant condition for
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reduction to the heat PDE was given. However, some unfortunate errors in the trans-
formation formulas have crept into [19] which we remedy here in addition to presenting
better statements of the results on reducibility to the heat and second Lie canonical forms.
Furthermore we extend the results of [21] and [19] as far as semi-invariants and reducibility
criteria for the third and fourth Lie canonical forms. As a matter of fact we present here a
complete characterization of the parabolic equation (1.1) in terms of the invariants and its
reduction to the four Lie canonical forms. We have also, together with co-workers, done
some work for (1+1) linear hyperbolic equations (see [14, 15]).

The outline of this work is as follows. In the next section we present results on the
transformation formulas that relate two parabolic PDEs (1.1) which have the same values
of the semi-invariants. This provides a complete picture on semi-invariants for the family
(1.1) and reductions. Then in Section 3 we provide necessary and sufficient conditions for
equivalence of PDE (1.1) to the classical heat PDE in terms of the coefficients of (1.1). The
transformation formulas are given too. Section 4 deals with invariant criteria for reduction
to the second Lie canonical form and the associated transformations. Section 5 is devoted
to the third and fourth Lie canonical forms and invariant conditions for reducibility to
these forms. Concluding remarks are made in Section 6.

2 Semi-invariants and related transformations

In this section we present results on the semi-invariants of the subgroup of the group of
equivalence transformations that map the parabolic PDE family (1.1) into itself.

It is indeed well-known from Lie [18] that the equivalence transformations of the
parabolic PDE (1.1) is an infinite group which comprises linear transformations of the
dependent variable given by

ū = σ(t, x)u, σ 6= 0 (2.1)

and invertible transformations of the independent variables

t̄ = φ(t), x̄ = ψ(t, x), φ̇ 6= 0, ψx 6= 0, (2.2)

where φ, ψ and σ are arbitrary functions, with the stated restrictions for invertibility, and
ū is the new dependent variable. Two parabolic PDEs of the form (1.1) are equivalent
to each other if one can be mapped to the other by appropriate combinations of the
equivalence transformations (2.1) and (2.2).

We quickly review the situation when equation (1.1) is transformed into the same family
via changes of both the independent and dependent variables (2.1) and (2.2). By means
of the transformations (2.1) and (2.2), PDE (1.1) becomes (see, e.g. [21])

L̄ū ≡ ūt̄ − ā(t̄, x̄)ūx̄x̄ − b̄(t̄, x̄)ūx̄ − c̄(t̄, x̄)ū = 0, (2.3)

where

L̄ =
∂

∂t̄
− ā(t̄, x̄)

∂2

∂x̄2
− b̄(t̄, x̄)

∂

∂x̄
− c̄(t̄, x̄) (2.4)

and the transformed parabolic PDE has coefficients

ā =
aψ2

x

φ̇
,



Invariant Characterization of Scalar Linear (1+1) Parabolic Equations 115

b̄ =
ψx

φ̇
(b− 2a

σx

σ
+ a

ψxx

ψx
−
ψt

ψx
),

c̄ =
1

φ̇
(c− a

σxx

σ
− b

σx

σ
+ 2a

σ2
x

σ2
+
σt

σ
). (2.5)

We are now in a position to study the case when equation (1.1) is mapped into the
same family by a subgroup of the equivalence transformations consisting just of changes
in the independent variables (2.2). The second-order semi-invariants for c 6= 0,

g1 =
ac2x
c3
, c 6= 0; g2 =

2

c2
(ct + caxx − 2cbx − bcx) +

a2
xcx
c2

− 2
at

ac
+ 2

bax

ac
−
a2

x

ac
(2.6)

were determined in [21]. However, the transformations in terms of the coefficients of (1.1)
and L̄u = 0,

φ̇ =
c

c̄
, ψx = ±(

āc

ac̄
)1/2, ψt = ±b(

āc

ac̄
)1/2 ± a[(

āc

ac̄
)1/2]x − b̄

c

c̄
. (2.7)

were not attempted in [21]. These are easily derivable from (2.5) by setting σ = 1 since
we are interested in changes in the independent variables here only.

Note that the semi-invariants (2.6) and the transformations on the independent vari-
ables (2.7) are valid for c 6= 0. Hence the case c = 0 was omitted in [21] (see p 11036 of
this paper). This gap is not onorous to fill. In fact we have for c = 0 the second-order
semi-invariants

a,

h =
1

2
at +

1

4
a2

x −
1

2
axb−

1

2
axx + abx. (2.8)

The allowable transformations determined from (2.5) with σ = 1, c = c̄ = 0 are no more
than translations

t̄ = t+ a1, x̄ = x+ a2, (2.9)

where a1 and a2 are constants. So they are quite restrictive. The point to be made though
is that we now have all the semi-invariants under changes of the independent variables
(2.2). As a consequence of the foregoing, we have the following theorem.

Theorem 1. (a) The parabolic equation (1.1) for c 6= 0 is equivalent to the parabolic
PDE L̄u = 0 for c̄ 6= 0, under the transformations of the independent variables (2.2) for
which φ and ψ satisfy the overdetermined system (2.7) if and only if g1 = ḡ1 and g2 = ḡ2,
where g1 and g2 are given by (2.6) and

ḡ1 =
āc̄2x̄
c̄3
, c̄ 6= 0; ḡ2 =

2

c̄2
(c̄t̄ + c̄āx̄x̄ − 2c̄b̄x̄ − b̄c̄x̄) +

ā2
x̄c̄x̄
c̄2

− 2
āt̄

āc̄
+ 2

b̄āx̄

āc̄
−
ā2

x̄

āc̄
. (2.10)

(b) The parabolic equation (1.1) for c = 0 is equivalent to the transformed PDE L̄u = 0
for c̄ = 0 via the translations (2.9) if and only if a = ā and h = h̄, where h is given in (2.8)
and

h̄ =
1

2
āt̄ +

1

4
ā2

x̄ −
1

2
āx̄b̄−

1

2
āx̄x̄ + āb̄x̄. (2.11)
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We now illustrate the use of Theorem 1 by two examples.

Example 1. The parabolic equation ut = tuxx − xux/2t + u has c 6= 0 and g1 = 0 = g2.
This PDE is equivalent to ut̄ = ux̄x̄ + u which has also ḡ1 = 0 = ḡ2. A transformation
that does the reduction is easliy obtained from system (2.7) and is t̄ = t, x̄ = t−1/2x. One
merely substitutes in the coefficients of the respective PDEs into equations 2.7) in order
to construct it.

Example 2. The PDE ut = (t + A)uxx + (x + B)2ux, where A and B are constants,
has c = 0 and a = t+A, h = 1/2+2(t+A)(x+B). The target equation ut̄ = t̄ux̄x̄ + x̄2ux̄

has semi-invariants ā = t̄, h̄ = 1/2 + 2t̄x̄ which respectively equal a and h of the original
equation. Thus the transformation that does the reduction is t̄ = t + A, x̄ = x + B.
Of course this could have easily been guessed without knowledge of the semi-invariants!
However, the explanation is that the semi-invariants have the same values.

We next turn to the case for which the parabolic PDE (1.1) is transformed into itself
via the linear transformations of the dependent variables (2.1) only. The semi-invariants
were found in [13]. We can write them more conveniently as

a,

k =
∂

∂x

(

c− a

(

b

2a

)

x

−
b2

4a

)

+

(

b

2a

)

t

(2.12)

in which k is related to the K of [13] by means of the equation K = −2a2k. However,
the determination of σ in (2.1) for the transformation in u that relates the two parabolic
PDEs (1.1) and L̄ū = 0, with t̄ = t and x̄ = x in L̄, was not given in [13]. The σ in (2.1)
in terms of the coefficients is obtained by solving the system of two equations

σx

σ
=

b

2a
−

b̄

2ā
,
σt

σ
= c̄− ā

(

b̄

2ā

)

x

−
b̄2

4ā
− c+ a

(

b

2a

)

x

+
b2

4a
. (2.13)

These are deduced from equation (2.5) by setting φ = t and ψ = x. We state the
following theorem which captures the results above.

Theorem 2. The parabolic equation (1.1) is equivalent to the parabolic PDE L̄ū = 0,
with t̄ = t and x̄ = x in L̄, under the transformations of the dependent variables (2.1) in
which σ satisfies the overdetermined system (2.13) if and only if a = ā and k = k̄, where
k is given in equation (2.12) and k̄ is

k =
∂

∂x

(

c̄− ā

(

b̄

2ā

)

x

−
b̄2

4ā

)

+

(

b̄

2ā

)

t

. (2.14)

We present an example to illustrate Theorem 2.

Example 3. The parabolic equation ut = uxx + xux + x2u/4 has a = 1 and k = 0.
The equation ūt = ūxx + ū has ā = 1 and k̄ = 0 as well. Hence, one can transform the
original equation to the target PDE via changes of the dependent variable. This linear
transformation is constructable from equations (2.13) and is ū = u exp(3t/2 + x2/4).
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3 Reduction to the classical heat PDE

We provide the necessary and sufficient conditions for the parabolic equation (1.1) to
be reducible to the classical heat equation under the equivalence group comprising the
transformations (2.1) and (2.2). Previously in Johnpillai and Mahomed [21] the practical
criterion, in terms of the coefficients of the equation, of reducing the parabolic PDE (1.1)
to the clasical heat equation was given. A compact form of this criterion was mentioned
briefly in Mahomed and Pooe [19]. The transformation formulas in [21] though were for
the autonomous case as a nontrivial symmetry of the heat equation was utilised to show
the existence of the transformations once the invariance condition was satisfied. In [19]
there were unfortunate misprints in the formula (10) upon which Theorem 1 of that paper
was based. Here we present refined conditions which improve both the results of [21] and
[19] which of course is largely inaccessible being the proceedings of a conference.

The canonical forms of the linear parabolic PDE (1.1) in Lie’s [18] classification are

ut = uxx,

ut = uxx +
A

x2
u, A 6= 0

ut = uxx + c(x)u, c 6= 0, A/x2,

ut = uxx + c(t, x)u, c 6= 0, A/x2. (3.1)

The heat equation has six nontrivial point symmetries in addition to the infinite number
of trivial superposition symmetries. The second canonical form in (3.1) has in general four
nontrivial symmetries and the third has two. The last PDE in (3.1) has in general one
nontrivial symmetry. The precise conditions under which the third and last canonical
PDEs possess more point symmetries are given by Theorems 3 and 4 below. Some of
these are stated as restrictions in (3.1). The others are given as Examples 5 and 7 later.

The point transformations that reduce the parabolic equation (1.1) to the Lie canonical
form

ūt̄ = ūx̄x̄ + c̄(t̄, x̄)ū (3.2)

is given by

t̄ = φ(t),

x̄ = ±

∫

[φ̇a(t, x)−1]
1/2

dx+ β(t),

ū = ν(t)|a(t, x)|−1/4u exp

{

∫

b(t, x)

2a(t, x)
dx−

1

8

φ̈

φ̇

(
∫

dx

a(t, x)1/2

)2

−
1

2

∫

1

a(t, x)1/2
∂t

(
∫

dx

a(t, x)1/2

)

dx∓
1

2

β̇

φ̇1/2

∫

dx

a(t, x)1/2

}

, (3.3)

where φ̇ and a have the same sign, and φ, β and ν satisfy

φ̇c̄ = J + ∂t

∫

b(t, x)

2a(t, x)
dx−

1

2

∫

1

a(t, x)1/2
∂2

t

(
∫

dx

a(t, x)1/2

)

dx
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+f(t)

(
∫

dx

a(t, x)1/2

)2

+ g(t)

(
∫

dx

a(t, x)1/2

)

+ h(t), (3.4)

in which

J = c−
bx
2

+
bax

2a
+
axx

4
−

3

16

a2
x

a
−
at

2a
−
b2

4a
(3.5)

and

f(t) =
1

16

φ̈2

φ̇2
−

1

8

(

φ̈

φ̇

)

t

,

g(t) = ±
1

4

φ̈

φ̇

β̇

φ̇1/2
∓

1

2

(

β̇

φ̇1/2

)

t

,

h(t) =
1

4

φ̈

φ̇
+

1

4

β̇2

φ̇
+
ν̇

ν
. (3.6)

The transformations (3.3) and conditions (3.4) to (3.6) can be deduced by a straightforward
albeit tedious computation. This is done by invoking relations (2.5) and equations (3.2).

The invariant condition for the reduction of a parabolic equation (1.1) to the heat PDE
was determined in [21] by projecting the generator

X = p(t)
∂

∂t
+ q(t, x)

p

∂x
+ µ

∂

∂a
+ ν

∂

∂b
+ · · · (3.7)

into the space of semi-invariants a, at, ax, att, atx, axx and K as

X = X(a)
∂

∂a
+X(at)

∂

∂at
+ · · · , (3.8)

that is

X = µ
∂

∂a
+ µt

∂

∂at
+ µx

∂

∂ax
+ µtt

∂

∂att
+ µtx

∂

∂atx
+ µxx

∂

∂axx
+ Γ

∂

∂K
, (3.9)

where

µ = 2aqx − apt,

µt = (−2at)pt + (−a)ptt + (−ax)qt + (2at)qx + (2a)qtx,

µx = (−ax)pt + (ax)qx + (2a)qxx,

µtt = (−3att)pt + (−3at)ptt + (−a)pttt + (−2atx)qt + (2att)qx

+(−ax)qtt + (4at)qtx + (2a)qttx,

µtx = (−2atx)pt + (−ax)ptt + (−axx)qt + (atx)qx

+(ax)qtx + (2at)qxx + (2a)qtxx,

µxx = (−axx)pt + (3ax)qxx + (2a)qxxx,

Γ = (−3K)pt + (aaxx − at − a2

x)qt + (3K)qx + aqtt + (aax)qtx

+(−2a2)qtxx + (a2ax)qxxx + a3qxxxx. (3.10)
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The joint invariant equation

λ ≡ 4a(2aKxx − 5axKx) − 12K(aaxx − 2a2

x) + ax(4aatt − 9a4

x) − 12atax(at + 2a2

x)

+4a(3at + 6a2

x − 5aaxx)atx + 2aax(16ataxx − 12aa2

xx + 15a2

xaxx) − 4a2attx

−12a2axatxx − 4a2axxx(2at − 4aaxx + 3a2

x) + 8a3atxxx − 4a4axxxxx = 0.(3.11)

was found in [21] by extending the operator X in (3.9) thrice and then solving for its
invariants. What transpired was the invariant equation λ = 0 above.

We re-write (3.11) compactly. Moreover, we provide the general transformations that
do the reduction of the parabolic equation (1.1) to the classical heat PDE. We utilise the
formulas (3.4) to (3.6) in order to achieve this. Therefore, we have the following theorem.

Theorem 3. The following are equivalent statements:
(a) the scalar linear (1+1) parabolic PDE (1.1) has six nontrivial point symmetries in

addition to the infinite number of superposition symmetries;
(b) the coefficients of the parabolic equation (1.1) satisfies the invariant equation

2Lx + 2Mx −Nx = 0, (3.12)

where

L = a1/2[a1/2Jx]x, M = a1/2[a1/2∂t(b/2a)]x, N = a1/2∂2

t (1/a1/2), (3.13)

and J is given by equation (3.5);
(c) the linear parabolic equation (1.1) is reducible to the classical heat PDE ūt̄ = ūx̄x̄

via the transformations (3.3) for which φ, β and ν are constructed from equations (3.6)
with the functions f , g and h constrained by the relation

J+∂t

∫

b

2a
dx−

1

2

∫

1

a1/2
∂2

t

(
∫

dx

a1/2

)

dx+f(t)

(
∫

dx

a1/2

)2

+g(t)

∫

dx

a1/2
+h(t) = 0 .

(3.14)

The following examples illustrates its utility.

Example 4. The constant coefficient parabolic PDE ut = auxx +bux +cu has J = c−b2/4a
which is constant as the coefficients are constant in the PDE. The invariant condition of
Theorem 3 is thus satisfied and we get reduction to the heat equation. The relation (3.14)
then gives f = 0, g = 0 and h = −J . Two cases arise depending on a positive or negative.
For a > 0 we get the transformation t̄ = t, x̄ = a−1/2x and ū = u exp[bx/2a+(b2/4a− c)t]
and for a < 0 we have that x̄ = (−a)−1/2x with the remaining transformations in t, t̄ = −t,
and u the same as for a > 0.

Example 5. The PDE ut = uxx + c(t, x)u which is the fourth Lie canonical form has
J = c(t, x). Thus L = cxx and the invariant condition (3.12) easily gives that c must
be at most quadratic in x of the form c(t, x) = α(t)x2 + β(t)x + γ(t). The constraining
relation (3.14) then results in f = −α(t), g = −β(t) and h = −γ(t) which means that the
transformations depend upon the solution of a Riccati equation for the transformation in
t. The others are then consequences of this.

There are several other examples given in [21] including equations of Finance. In the
next section we study the reduction to the second Lie canonical form in a similar vein.
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4 Reduction to the second Lie canonical form

We now state the conditions for the parabolic PDE (1.1) to be equivalent to the second
Lie canonical equation (3.1b) which has four nontrivial point symmetries. The approach
utilised is the same as that given in the Theorem 3 above.

Theorem 4. Necessary and sufficient conditions for the reduction of the scalar linear
(1+1) parabolic PDE (1.1) to the second Lie canonical form ūt̄ = ūx̄x̄ + Aū/x̄2, where
A is a nonzero constant, by means of the transformations (3.3) with β = 0, are that the
coefficients of equation (1.1) and φ and ν of the transformations (3.3) defined by f(t) and
h(t) with β = 0 in equation (3.6) satisfy the invariant condition, provided that condition
(3.12) does not hold,

20Lx + 20Mx − 10Nx + 10[a1/2Mx]x

∫

dx

a1/2
− 5[a1/2Nx]x

∫

dx

a1/2

+10[a1/2Lx]x

∫

dx

a1/2
+ [a1/2[a1/2Lx]x]x

(
∫

dx

a1/2

)2

+[a1/2[a1/2Mx]x]x

(
∫

dx

a1/2

)2

−
1

2
[a1/2[a1/2Nx]x]x

(
∫

dx

a1/2

)2

= 0, (4.1)

in which L, M , N and J are as in (3.13) and (3.5), as well as the constraining relation,
with β = 0 in h(t),

A =

(
∫

dx

a1/2

)2

[J+∂t

∫

b

2a
dx−

1

2

∫

1

a1/2
∂2

t

(
∫

dx

a1/2

)

dx+f(t)

(
∫

dx

a1/2

)2

+h(t)] .

(4.2)

The transformations used in the above conditions (4.1) and (4.2) are more restrictive than
those for the heat equation equivalence in Theorem 3 as should be expected.

We look at the two examples.

Example 6. Consider the parabolic equation ut = uxx + ux + (1/4 + 1/x2)u. Here we
have that J = 1/x2 and thus the condition (4.1) holds. Moreover we have from (4.2)
that A = 1, f = 0 = h. It is easy to then get the transformation t̄ = t, x̄ = x and
ū = u exp(x/2) that does the reduction to the second Lie form.

Example 7. A more interesting test for this Theorem 4 is again the fourth Lie canoni-
cal form and this time reduction to the second Lie form is sought. Here J = c(t, x). The
condition on c from (4.1) is 20c3x + 10c4xx+ c5xx

2 = 0 which has solution c = α(t)x−1 +
β(t)x−2+γ(t)x2 +ω(t)x+δ(t) for as yet arbitrary functions of α to δ. The constraining re-
lation (4.2) then forces α = 0, ω = 0 and β = A finally giving c = Ax−2+γ(t)x2+δ(t) with
obviously A 6= 0. The determination of the transformations again requires the solution of
a Riccati equation.

These examples amply illustrate Theorem 4. We now proceed to reducibility criteria
for the third and fourth Lie forms.
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5 Reduction to the third and fourth Lie forms

The criteria for reducibility to the third and fourth Lie canonical forms follow by de-
fault from the previous results contained in Theorems 3 and 4. These are simply that the
parabolic PDE (1.1) does not satisfy the conditions of Theorems 3 and 4 in order to be
transformable to the third and fourth Lie forms which admit at most two nontrivial point
symmetries. Pecisely we have the following statement that characterizes reduction to the
third Lie form.

Theorem 5. The scalar linear (1+1) parabolic equation (1.1) which does not sat-
isfy the conditions of Theorems 3 and 4 is equivalent to the third Lie canonical form
ūt̄ = ūx̄x̄ + c̄(x̄)ū, via the transformations

t̄ = ǫt+ a1, ǫ = ±1, a1 = const.

x̄ = ±

∫

[ǫa(t, x)]−1/2dx,

ū = ν0|a(t, x)|
−1/4u exp

{
∫

b(t, x)

2a(t, x)
dx

−
1

2

∫

1

a(t, x)1/2
∂t

(
∫

dx

a(t, x)1/2

)

dx

}

, (5.1)

where ν0 is a constant, if and only if the condition

∂

∂t

(

J + ∂t

(
∫

b

2a
dx

)

−
1

2

∫

1

a1/2
∂2

t

(
∫ x

0

dx

a1/2

)

dx

)

= 0 (5.2)

holds. The c̄ in the transformed PDE is

ǫc̄ = J + ∂t

(
∫

b

2a
dx

)

−
1

2

∫

1

a1/2
∂2

t

(
∫

dx

a1/2

)

dx . (5.3)

If a > 0, then ǫ = 1, otherwise ǫ = −1. The transformations in the above theorem
are more restrictive than those of the higher symmetry cases as they should be. These
transformations and condition follow from (3.3) to (3.6).

Hence if Theorems 3, 4 and 5 are not satisfied, then the parabolic PDE (1.1) is reducible
to the fourth Lie form with appropriate c̄. That is we must have c̄t 6= 0 in equation (5.3)

We consider the following examples.

Example 8. The equation ut = uxx + xux + αx5u, where α is a constant, has J =
αx5 − 1/2 − x2/4 and satisfies the condition (5.2). Therefore this equation can be trans-
formed to the third Lie form with c̄ = αx5 − 1/2 − x2/4. A transformation that does the
trick is ū = u exp(x2/4). If α was a function of t, then one would get reduction to the
fourth Lie form as c̄t 6= 0 in this case.

Example 9. The PDE ut = x2uxx + 3xux + (1 + α(t)x5)u has J = α(t)x5 and does
not satisfy (5.2) unless α is a constant. So in general it is reducible to the fourth Lie form.
The transformation to the form ūt̄ = ūx̄x̄ + α(t̄) exp(5x̄) is t̄ = t, x̄ = lnx, ū = xu.
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6 Concluding remarks

Lie in 1881 [18] completely classified scalar linear (1+1) parabolic equations according
to their point symmetry groups. Lie derived the four canonical forms, viz. the classical
heat equation which admits six nontrivial point symmetries (apart from the infinite su-
perposition symmetries), the second Lie form having four nontrivial symmetries, the third
one possessing two symmetries and the fourth Lie form with one symmetry. Subsequently,
algebraic properties and reductions of parabolic equations to the classical heat equation
have been studied by many authors (see [4, 5, 7, 10, 12, 22, 24, 26]). Invariant criteria too
were investigated for such equations with reduction to the heat equation [21]. The second
Lie canonical form was considered for invariants under equivalence transformations briefly
in [19]. We have presented refined criteria for reduction to the first two Lie canonical
forms. Moreover we derived conditions for reductions to the third and last Lie forms.
Thus we have obtained a complete description of scalar linear (1+1) parabolic equations
in terms of semi-invariants and invariants under equivalence transformations. These pro-
vide practical criteria, in terms of ceofficients of the parabolic equation, for reduction to
simpler form.
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