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Abstract

Type II hidden symmetries of partial differential equations (pde) are extra symme-
tries in addition to the inherited symmetries of the differential equations which arise
when the number of independent and dependent variables is reduced by a Lie point
symmetry. (Type I hidden symmetries arise in the increase of number of variables.)
Unlike the case of ordinary differential equations, these symmetries do not arise from
contact symmetries or nonlocal symmetries. In fact, we have previously shown that
they are symmetries of other differential equations. However, in determining the ori-
gin of these symmetries we show that finding the origin of any symmetry of a pde

is a non-trivial exercise. The example of the Korteweg–de Vries equation is used to
illustrate this point.

1 Introduction

Lie point symmetries provide a useful route to finding particular solutions of pdes [5].
These, group–invariant, solutions are invariably physically important and include the ‘soli-
ton’ solutions for evolution equations. However, in this approach, the symmetries of each
subsequent equation are important to determine the group to which the final solution
belongs.

It has been discovered, that, in a similar manner to that of ordinary differential equa-
tions odes, pdes also exhibit the phenomenon of “hidden symmetries” [6, 1]. These are
symmetries that arise unexpectedly in the reduction (or increase) of order of an ode. In
the case of pdes, the symmetries arise in the reduction (or increase) of the number of
variables. Unlike the ode case where these symmetries have their origin in contact or
nonlocal symmetries, the origin of hidden symmetries in the pde case is a point symmetry
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of another equation. However, determining the “master pde” which gives rise to these
symmetries is a difficult task, though we have made some progress [2, 3, 4].

It is the purpose of this paper to indicate the difficulties of resolving the problem of the
determination of the origin of hidden symmetries for pdes. In the case of odes, it is a fairly
simple matter to reverse the transformations to obtain the original symmetries. However,
in the case of pdes, the problem is complicated by the fact that parts of symmetries can
“disappear” after defining new reduction variables. As a result, obtaining these symmetries
by reversing the transformations is no longer a straighforward task. (Note that this is
different from merely obtaining equations invariant under a particular symmetry - that is
indeed a straightforward task.)

We further illustrate that some preconceptions from odes need to be reviewed before
undertaking this search. We start by depicting the phenomenon of hidden symmetries
using the 2–d Burgers’ equation. Thereafter, we indicate the route to find solutions of
the Korteweg–de Vries equation which are invariant under translation of the independent
variables and show that it is a non trivial task to obtain the original symmetries (even
when we know what they are!). Finally we show why a more systematic approach needs
further development.

2 Hidden symmetries

The two-dimensional Burgers’ equation is

ut + uuz = uxx + uzz, u = u(x, z, t). (2.1)

The Lie group generators of (2.1) are

U1 =
∂

∂x

U2 =
∂

∂z

U3 =
∂

∂t

U4 = t
∂

∂z
+

∂

∂u

U5 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
− u

∂

∂u
. (2.2)

We reduce the number of variables of the two-dimensional Burgers’ equation by the trans-
formation

u = w(t, ρ), ρ = z −
x

a
(2.3)

found from the symmetry Ua = aU1 + U2 . The reduced PDE is the one-dimensional
Burgers’ equation

wt + wwρ =
1 + a2

a2
wρρ. (2.4)
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The symmetries of (2.4) are

X1 =
∂

∂ρ

X2 =
∂

∂t

X3 = t
∂

∂ρ
+

∂

∂w

X4 = 2t
∂

∂t
+ ρ

∂

∂ρ
− w

∂

∂w

X5 = t2
∂

∂t
+ tρ

∂

∂ρ
+ (ρ− tw)

∂

∂w
. (2.5)

The symmetries Xj , j = 1, . . . , 4 are inherited symmetries of the two-dimensional Burgers’
equation but X5 is a Type II hidden symmetry. We have previously shown [3] that X5

(along with X1–X4) is inherited from the equation

ut + uuz =
1 + a2

a2
uzz, u = u(x, z, t) (2.6)

which reduces to (2.4) via an obvious transformation.

3 The Korteweg–de Vries equation

The Korteweg–de Vries (KdV) equation

ut + uxxx + uux = 0 (3.1)

has the four Lie point symmetries [8]

X1 = ∂x (3.2)

X2 = ∂t (3.3)

X3 = t∂x + ∂u (3.4)

X4 = x∂x + 3t∂t − 2u∂u. (3.5)

In order to obtain the so–called travelling wave solutions, we take the following combi-
nation of symmetry operators:

V1 = X2 + cX1 = ∂t + c∂x. (3.6)

This combination defines

y = x− ct v = u (3.7)

as reduction variables for the pde. The reduced equation is

vyyy + vvy − cvy = 0 (3.8)



On the Origins of Symmetries of PDEs: the KdV Equation 63

V1 X2 X3 X4

V1 0 0 (V1 −X2)/c V1

X2 0 0 (V1 −X2)/c 3X2

X3 −(V1 −X2)/c −(V1 −X2)/c 0 −2X3

X4 −V1 −3X2 2X3 0

Table 1: Commutation relations for symmetries of the KdV equation

which has

G1 = ∂y (3.9)

G2 = y∂y + 2(c− v)∂v (3.10)

as the only symmetries and clearly, no Type II hidden symmetries exist in this case. In
order to find solutions to the KdV equation invariant under scalings of the independent
variables, we need to solve (3.8) [11].

However, that is not our goal here. We wish to determine the fate of the symmetries
(3.3)–(3.6) (where (3.6) has taken the place of (3.2)) and the origins of (3.9)–(3.10). If we
apply the original symmetry operators (3.3)–(3.6) to the transformation (3.7) we obtain

V1 =
∂y

∂t
∂y +

∂v

∂t
∂v + c

(

∂y

∂x
∂y +

∂v

∂x
∂v

)

= 0 (3.11)

X2 −→
∂y

∂t
∂y +

∂v

∂t
∂v

= −c∂y (3.12)

X3 −→ t

(

∂y

∂x
∂y +

∂v

∂x
∂v

)

+
∂y

∂u
∂y +

∂v

∂u
∂v

= t∂y + ∂v (3.13)

X4 −→ x

(

∂y

∂x
∂y +

∂v

∂x
∂v

)

+ 3t

(

∂y

∂t
∂y +

∂v

∂t
∂v

)

− 2u

(

∂y

∂u
∂y +

∂v

∂u
∂v

)

= x∂y − 3ct∂y − 2u∂v

= (y − 2ct)∂y − 2v∂v (3.14)

then the origins of the symmetries of (3.8) are easily seen as

G1 ←− −X2/c (3.15)

G2 ←− 2cX3 + X4. (3.16)

If we look at Table 1 though, the fate of the original symmetries is surprising. We will
return to this later.

In trying to determine the origin of hidden symmetries, we need to investigate the
form of the resulting symmetries in the original variables. Once we have obtained this
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information, we are then in a position to determine the form of the equation that produced
them. We utilise the same approach here to see if, ‘working backwards’ we can still obtain
the results (3.15)–(3.16), or indeed (3.3)–(3.6).

Firstly, since the variables are defined as in (3.7), we must start off with a symmetry
of the form

U0 = ∂t + c∂x (3.17)

(which is V1). However, our first bit of ambiguity immediately imposes itself as we could
also have

U1

0 = f(x, t, u)(∂t + c∂x) (3.18)

but we will adopt Occam’s razor and settle for (3.17).
In order to determine the origins of the symmetries (3.9)–(3.10) we start with

U = ξ∂x + τ∂t + η∂u (3.19)

which becomes (ξ− cτ)∂y + η∂v in the new variables. A comparison with G1 ensures that

ξ − cτ = 1 η = 0 (3.20)

and so, in the original variables we must have

U1 = (1 + cτ1)∂x + τ1∂t (3.21)

Since the Lie brackets relations must close (as the symmetries form a Lie algebra) we
require

[U0, U1] = c(cτ1

x + τ1

t )∂x + (cτ1

x + τ1

t )∂t

= k0U0 + k1U1

= (ck0 + k1(1 + cτ1))∂x + (k0 + k1τ
1)∂t

(3.22)

which implies that

τ1 = k0t + q(x− ct, u) (3.23)

and

k1 = 0. (3.24)

Thus we have

U0 = c∂x + ∂t (3.25)

U1 = (1 + c(k0t + q(x− ct, u)))∂x + (k0t + q(x− ct, u))∂t (3.26)

with

[U0, U1] = k0U0. (3.27)
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The result (3.24) is not surprising from our expectations from reductions of odes as (3.27)
is necessary for U1 to be a symmetry of the new equation.

In the case of G2 the coefficient functions in (3.19) must take the form

ξ − cτ = y = x− ct η = 2(c− v) = 2(c− u) (3.28)

and so

U2 = (x− ct + cτ2)∂x + τ2∂t + 2(c− u)∂u. (3.29)

Now requiring

[U0, U2] = k3U0 (3.30)

implies that

τ2 = k3t + r(x− ct, u). (3.31)

Thus far, we have obtained

U0 = c∂x + ∂t (3.32)

U1 = (1 + c(k0t + q(x− ct, u)))∂x + (k0t + q(x− ct, u))∂t (3.33)

U2 = (x− ct− c(k3t + r(x− ct, u)))∂x + (k3t + r(x− ct, u))∂t + 2(c− u)∂u(3.34)

which is far more general than the symmetries (3.3)–(3.6) even taking the simplified form
(3.17) over the more general form (3.18). Thus it is clear that the symmetries G1 and G2

could have originated from more general symmetries than those obtainable from the KdV
equation.

4 A Cautionary example

Let us take the model equation

uxxx + u(ut + cux) + uxuxx = 0 (4.1)

with symmetries

Y1 = ∂t (4.2)

Y2 = ∂x (4.3)

Y3 = 3t∂t + (x + 2ct)∂x. (4.4)

Reduction via

y = x− ct w = u

yields

wyyy + wywyy = 0 (4.5)
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with

Z1 = ∂y (4.6)

Z2 = y∂y (4.7)

Z3 = ∂w (4.8)

as symmetries. In the above, Z3 is a Type II hidden symmetry.
Here, instead of proceeding via the complicated route in the previous section to obtain

the origins of the Zi, i = 1, . . . , 3 symmetries we adopt a more ‘systematic’ approach. We
observe that the only nonzero Lie bracket relationship is

[Z1, Z2] = Z1 (4.9)

which is the Lie algebra A2,1 ⊕ A1 (We use the classification scheme of Mubarakzyanov
[9, 10] as explained by Patera et al [12, 13].). An obvious choice for the 4–d Lie algebra
from whence this algebra arose is A2,1 ⊕ 2A1 in three variables.

If we examine the tables in [14] we have the four choices

∂y, y∂y, ∂w, ∂t (4.10)

∂y, y∂y + t∂t, ∂w, t∂y (4.11)

∂y, y∂y + φ(t)∂w, ∂w, t∂w (4.12)

∂y, y∂y + w∂w + t∂t, w∂y , t∂y. (4.13)

However, none of (4.11)–(4.13) work, and (4.10) corresponds to the obvious assumption
of a second independent variable in (4.5).

The reason for this behaviour is that, unlike in odes, where

[Z1, Z2] = 0 (4.14)

implies that reduction via either Z1 or Z2 means that the other symmetry (extended) is
a symmetry of the reduced in equation, the situation for pdes is different [7]. If we take
the simple example of

W1 = ∂x (4.15)

W2 = f(t, u)∂x (4.16)

with

[W1,W2] = 0 (4.17)

we see that W1 defines

p = t q = u (4.18)

as reduction variables. This means that

Z2 −→ f(p, q)∂x (4.19)

which will have no relevance for the reduced equation! Thus due care must be taken in
examining the Lie bracket relationships of symmetries of pdes. The information obtained
from them is not sufficient to draw conclusions about the fate of the symmetries of pdes
(This is also true for the 2–d non-commuting Lie algebra.). The full form of the symmetry
must be analysed.



On the Origins of Symmetries of PDEs: the KdV Equation 67

5 Discussion

While the origin and fate of symmetries of odes has been well established, the same cannot
be said for pdes. In section 3 we showed that the origin of symmetries of reductions of
the KdV equation were far more general that expected. In section 4 it was indicated that
why it was difficult to determine the origin of symmetries (hidden or otherwise) of pdes.
A ‘systematic’ approach, as followed in that section was not able to provide us with any
useful results (beyond the obvious). Indeed, this does caution us in the approach followed
for the KdV equation. There we assumed that the Lie bracket relations could provide us
with useful usable information. Even there though, the results were far more general and
only knowledge of the symmetries of the KdV equation allows us to recover them. Due
caution must be taken when working with symmetries of pdes.
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