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Abstract

We construct the free energy associated with the waterbatghod dToda. Also, relations
for conserved densities are investigated.

1 Introduction

The dispersionless Toda hierarchy (dToda) is one of the ingsbrtant 2+1-dimensional inte-
grable models. The dToda hierarchy appears in several afeaathematics and physics, such
as the integrable structure of interface dynamics [16, 88, solution of Dirichlet boundary
value problems [15], multi-slit conformal mappings of thatuisc (the radial Lowner equation
[24, 25]), two-dimensional string theory [22], the largdiit of normal matrix models [1, 27, 25]
and the WDVV equation coming from topological field theory. [®@n the other hand, the dToda
equation (see below) is also known as the Boyer-Finley émuaaind can be used to generate a
scalar-flat Kahler metric with a Killing field [5]. It also apprs in the classification of self-dual
Einstein metrics [3, 5] and in the twistor construction ofi§ein-Weyl spaces [11, 26].

We quickly review some facts about the dToda hierarchy. deifsned by [23]

oA oA -

d_tn = {Bn(p)a)\}) d_fn = {Bn(p)a)\})

oA 5 oA s a

— = {Bn(p),A}, —= ={Bn(p),A}, n=123 -, (1.2)
ot, ot

where the Lax operators andA are
A = P+ Z)unﬂe‘”p,
n=
AT = Gee P+ zoome“p,
n=

and

Ba(p) = [A"z0, Bn(p)=[A "< 1.
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Here|---]>pand[- - -]<_1 denote the non-negative part and negative pakfiaindA " respectively

when expressed as Laurent seriesinFor example,
Bl(p) =eP+ ug, él(p) = Ooefp.
Finally, the Poisson Bracket in (1.1) is

of dg df dg

One can view the complex-valued quanttyas a local coordinate near andA as a local

coordinate near 0 [13].

According to dToda theory [23], there exist wave functi@$§ and the dispersionlessfunc-

tion F (or free energy), with

(o) ) 0t F .
SA) = th A" +toInA — o ,
nzl nZ;L n
S < 3 ~ O0F 2 & F~
SA) = FYEA T +onA+———F AT,
n=1 " oty nZl n
such that
B()\) QS(A) AN i dtﬁthA—m
n - n = — _nhm ,
m=1 m
5 5 © 0% F .
— & __ 72 _ thtm m
Bn()\) - atns()\) — atOtnF ngl —m A R
G0 = A= 3 HaFyom
= fn e )
i rr;l m
< 5 PR © 92 F.
Bn()\) = afnS()\) :Afn_l_atifnlz_ Z thlm Am
=L
In particular, we have
> 04 F
PA) = &SA)=InA— 5 A ™,
m=1 m

o) — a8A)=Ini+d2F-S gk 31m
toto ng m .
2
e A

_ 1 /-~ 1 [~_,dé

(1.2)

(1.3)
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are the conserved densities of the dToda hierarchy, whertn &. Then the dToda hierarchy (1.1)
can be expressed as

dp(A) _ 9Bn(pP(A))  dp(A) _ 9Bn(p(A))

oty o ot ’ 0fn oty ’
Ip(A) _ 9Bn(p(A))  9p(A) _ 9Bn(p(A)) (1.4)
o, oo | oh oty '

AL A being fixed. The systems (1.4) for allare the conservation laws for the dToda hierarchy.
From (1.2),o0ne knows that

Bi(p) =€’ +uy =€’ + 05, F, By(p)=loe P=¢ ForoF P,
Then from (1.4), one has
2
P, = 0to [eat0t0F67 p]’ Py = 0to [ep + at?tlF]'
Thenpg, = e, Will imply

0% F =— ‘?‘0‘0
11ty

The latter is the dToda equation, also known as the Boydeygguation.

This paper is organized as follows. In the next section, westract the waterbag model of
dToda type from the Hirota equation. Section 3 is devotedntdirig the free energy associated
with the waterbag model from the Landau-Ginzburg formaolain topological field theory. Also,
equations for the conserved densities are obtained. Inrbedection, we discuss some further
problems to be investigated.

2 Dispersionless Hirota Equation and Symmetry Constraints

The dToda hierarchy (1.1) (or (1.4)) is equivalent to theedisionless Hirota equation [10]:

Dup(A) = —d,In[e’®) —ePM] Byp(A) = =4, In[1— P -PA)]
Dup(A) = —dtoln[l—ep(“>‘p(>], Dup(A) = —a, In[eP™) — P(B)],
where
© “—m R © i:l
D,=Y 5 — Dy=§S —
H ng m m7 H mZ m
We can also express them in terms of iinction
p(A) _ gh(H) . i
DuSA) = —In[%}, DaS(A) = —In[1— ePB)-PA)]
&3 3 . p(A) _ gp(i)
DuS(A) = —In[1—ePW-PA)] DﬂS(A):—In[%], 2.1)

Next, we consider the symmetry constraints. These symnuatngtraints relate the “non-
isospectral symmetry” , to the “isospectral symmetry” gsine wave functiors and the disper-
sionlessrt function F, similar to the case with dispersion [14]. The point is thattsa symmetry
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constraint can reduce a 2+1-dimensional dispersionlasatien to a set of 1+1-dimensional sys-
tems of integrable hydrodynamic type with a finite number epehdent variables. The details
can be found in [2]. From this integrable hydrodynamic systene can find the exact solutions
using the generalized hodograph method [18, 21].

Given the infinitesimal symmetried-, the symmetry constraints can be written as [2]

N

OF = leis, where S = S(A)).

e Case(l)R,=5N,&S
Nearc we have, by (2.1),

N
p = INA-DyR,=InA— DAZL &S
= InA— ZE,D)\S
= InA— Zﬁm h' = p(A)

= InA— le,ln (

Let (YN, &) = 0. Then one gets

g)InA.

;Mz

N _
A=eP[(eP—€&") 8,
I
Moreover, near O we also hadd, F = 3, gh'. Then
pP(A) = InA+d3F —DsR,

N N .
= MA+Z§H+Z§mu—@W“]

= In)\+zls.h'+zls.lne pA) _ e M

Then one obtains

LV)

;Mz

N _
} = epiziNzlsihl r!(efp _ e*hl )7£i .
=
Actually, we can see that

}\ — epe_(ZiN:lei)pe_ ZiNzlgi h

[ =

—~
@

o
@

>
N—

-

= ef Iﬂl(ehi —eP) s =P ﬁ(ep —d')ya =, (2.2)
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Also,

H,f = isiehi, H = —ezileihi(isiehi).

1= i=
Thet; andf; evolutions are
i R i
o = gle +i;€ieh],
Oh = g leERAN), (2.3)

We can also express them in Hamiltonian form as

AH;" OHT
ht IhL ht It
h2 ) oHy h2 ) oHy

:nljdto oh2 ’ . :nljdto oh? ’
N om Nl M-
"y B " s B
where
1
1+ & 1 1
y 1 1+%: 1 1
r] =
: : .o 1
1
1 1 .01 1+ ™

As in the case of dispersionless discrete KP hierarchy [&e(]) is called the waterbag
model.
Once (I) has been done, we similarly have the following cases

Case(ll):R, = YN, &S.
In that case

N
Bm()\) = )\m—D,\th =A"— ZIEiD,\S

= AT isiln(ep—ehi).

i=
Hence the Lax operator is

Am = emp+ Um_]_e(mil)p + um_ze(mfz)p 4.4 ulep (24)

+uo+.isi In(e” — ).
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e Case ()R, =35N,&S.
In that case

~ ~ A~ ~ N ~
Bm()\) = )\_m+at§fm|:—DXFfm:)\_m-'—atgfmF_ZSIDXS
i=
A 2 L h
= A"+ 95; F —_Z\siln(e*p—e* )-
=

Hence the Lax operator is

Afm — Ome*mp_k Om_le*(mfl)p_i_Om_zef(mfz)p_k... (25)

N )
+01e7 P+ Gp+ lei In(e P—e™).
i=

3 Residue formula and free energy

In this section, we compute the free energy associated héthvaterbag model of case (l) in the
last section, given by equation (2.2). Also, relations Far tonserved densities are investigated.
The free energy is a functidf(t®,t2,--- ,t") such that the associated functions

9°F
otiotigtk
satisfy the following conditions.

Gijk =

° T_he matrixn;; = cyj is constant and non-degenerate. This together with theseveatrix
n' are used to raise and lower indices.

e The functionsc‘jk = n'"¢jx define an associative commutative algebra with a unity ektme
(Frobenius algebra).

The equations of associativity give a system of non-lind2E®forF(t)

BF(t) A, O°F(t)  F1) ,, 9°F()
Ot tB At OtHOtYOte  ataatyoth OtHotBato”

These equations constitute the Witten-Dijkgraaf-Vedinderlinde (or WDVV) equations. In gen-
eral, two dimensional topological field theories (TFTs) tenclassified by the solutions of the
WDVYV equations of associativity [7, 8, 29] in the sense thaiaaicular solution of the WDVV
equations provides the primary free energy of some topoddgnodel. In fact, various classes
of solutions to the WDVV equations have been obtained (se&913] and references therein),
which turn out to be the tau-functions of dispersionlesegrdble hierarchies. Accordingly, inves-
tigating the solution space of the WDVV equations will deeper understanding of 2d TFT.

The geometrical setting in which to understand the freeggngft) is the Frobenius manifold
[8]. Given any solution of the WDVYV equation, one can constialFrobenius manifolt associ-
ated with it. One way to construct such a manifold is deriviedtive Landau-Ginzburg formalism
as the structure on the parameter sgdoef the appropriate form

A=A(pth 2 ).
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The Frobenius structure is given by the flat metric

100.0) =~ S resn of T 1Py @)

and the tensor

(Adp)d’'(Adp)d”(Adp)
dA(p)dp

defines a totally symmetri(3, 0)-tensorcx .
Geometrically, a solution of WDVV equation defines a muitiation

c(9,9',9") = —Zresm:o{d } (3.2)

0o:TMxTM —TM
of vector fields on the parameter spadei.e.
Gra © 0t,3 = CgB(t)dtv.

From cg B(t)’ one can construct integrable hierarchies of hydrodynaypie whose corresponding
Hamiltonian densities are defined recursively by the foa8| 9]

2y opy Y
otigti gtk

(3.3)

wherel > 1,a = 1,2,---,n, and /9 = nq.té. The integrability conditions for this systems are
automatically satisfied when thﬁ are defined as above.

In the proof of the following theorem, to make the computationore easilypne usesinA to
replace A.

Theorem 1. Let the Lax operator be defined as(ih2). Then

(1) n(0n,0n)=nij =—&¢gj, i#],
(1) n(3y.0)=ni=—¢&"+s,
(M) ¢y, 0hi,0k) = Cijk = &Ej&, 17 ]#K,

cH :
$|+m] , 1#Kk
N £|eh' ]
I=TT4i - |

(IV)  c(0hi,0h,0mk) = Ciik = & &

(V) c(6y,04,04) =CGii = £i3—|—€i 1-5-—

Proof. We see thagjt! = sisfh—;,, wherep=Iné&. Also, we have

dinA Nt (- w)
halubid N = )
dp kzlgkf - L€ —€)

(3.4)



Waterbag Model of dToda 119

In the following proofs, we use the formula (3.4) and the thet the residue at infinity is zero.

(1

dInA an)
N(Gn.0) = Res Ty —dé
arix=o  &°qp
& o ¢
&€t 3
= 5 Res e 74 @k dé
dinx=0 E(l—zlﬁlzlskﬁ)

g M, (8-
— Res J_ kkl
dIn;:O © (€ —e”)({ — &) MLa(E — )
aeie e ML (€ —€)
E(E—M)(E—)MRL(E — )

= —Res_g =—&g, 1#].

(I

g2 (8 — )

0, i,di = Res i

M) = & R P -
g2 N, (£ - &)
= —(Res_p+Res Res '
(Rego+ e%:éq)dln;:o ef(f—ehl)zﬂ’l:l:l(f_m‘)

sizeZhi. I‘IE:l,k;éi_(ehi —d"

N (& — @)

i1
= _SiZ_giZeh w = —8i2+£i'
—C

= —& -

(1
g e ad M, (8 —&)
O, 0hi,0k) = Res - ! . =1
- dhi) = 2 RESFET NG —a)& - &) L€ —a)
s e e d" [V, (& — &)

— _Res_ - ) \ 1=1 d

ROEE € I)E - @)
= ¢&&j&, i#£j#k

dé

(V)

g2 g [, (€ — &)

Oh,0h,0kK) = Res i K d
C(Ohi, O, Ok dIn;:O ef(f_@)Z(E—eh)I_lll\lzl(f—M) ¢
g2 e V(5 &)
= —[Res_y+R | i
RetotRet ol e —erpie—e i - a)
s 2 g d Ny (€ — & )]

& — M, (¢ —w)

Kk

E—

dé

— —[-&a

2 Eié'kehk
= —[-&&— m] = &l +
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(V)

2 N 4 (& &)
04,04,0h) = Res—! i d
Wndvdi) = 3 R P, —a)

g2 ity (E —¢)

(E—PMliE—w)

4 3, 3ad |_|||\|:1,|¢i(f—ehl) _

= —{-¢g+¢’% df[fl‘l{\':l(f—m)”f:@'}
A1-&-3L i?;ehn

= g+ izle;l‘# &-o

N s|eh' )

e -

dé

= —[Res_o+ Re§:ehi] 3

= &+g(l—g—

Let's defineQ = 5N %. Then we can verify directly that

N
n (dhi s ahj ) = C(dhi s dhj s Q) = Z C(ahi s ahj s ahk). (35)
k=1

Also, from the Theorem, it's not difficult to check directliye compatibility (or Egorov’s) condi-
tion

ahic|mn:ahlcimn, |,I,m,n:lN

Hence one can get the free energy associated with (2.2) as

R - 1 N .
F(hy = gejah Wbk + 2 5 (g — 2+ %) (h)3
l§|<jz<k<N i 62\ DR
1 2 i\ 21k
+ E.;(gi Sk(h) h
|
1 . . i
AP g&Lis(€" ™) +Lis(e" M), (3.6)
1<i<k<N

whereLiz(e) = zf:l% is the poly-logarithmic function. Moreover, from (3.5),@knows that
=N, h.

This solution looks like (but is different to) the formuldaged to classical Lie algebras in [19].
In [6], the solution of the WDVV equation associated with thaterbag reduction for dispersion-
less KP(dKP) is found and, using this solution, one can coosthe recursive operator of the
conserved densities in (3.3). Hence the bi-Hamiltoniancttire of the waterbag reduction of the
dKP hierarchy can be found. For more solutions of the WDV Vagiqun associated with integrable
hydrodynamic systems, one should refer to [17]. We remaakttie free energy (3.6) is invariant
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under any permutation ¢h*, 2, ---hN), which is different from the formula in [8].
Furthermore, we have

ehﬂ
hp = O AFBAY Caa=fag 5 A#B;
g’ g
f.o= g a#B A =1-Y & (3.7)
ap = Bgr_gr aa =17 ) Erge gy
If we defineq = 404 = siep%ieh, , then we have
ainA
(R(P—C”(ﬂ"'Qlj on (3.8)
where
A —-qQ, |:J7
Q'J_{o, i£].

From (3.5), one knows th& is the unit element of the associative algebra (3.8).
Now, we have the following

Theorem 2. Let H and H; be the conserved densities definelir8). Then one has

O*HT  OH 0°Hy  , OHy
) 3ron = %ignc (1 aran =% rc
Proof. (1)
HF 0 ) N G, 0InA g
ohiohi ﬁfi)‘(f) onhi df‘ﬁfi)‘(f) A ohi ¢ d¢
_ J Ne. ehj -1
- mfm ot
ehj 9 ehj

B 1 a ehJ 1
_ ]{A (o g tdg + /\ 7{)\ € gn)E
~ nd f A(f)“qq(sfldf+n£A(5)”f1QijdA

f
- A g e s

J

-1
B 'J&hk}'{}‘n‘f dé - ]{0p ehJ]
oH "
= cf dhE’ n>1.

(1) The calculation is similar. |
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4 Concluding remarks

We find the free energy associated with the waterbag modg) (&ing the Landau-Ginzburg
formulation. From the free energy, one can establish thatemns for the conserved densitids
andH,, . Unlike the waterbag model of dKP [6], here one can't cortittiue recursive operator for
H or H, from Theorem 3.2. Therefore, the bi-Hamiltonian structof€2.3) is still unknown.
On the other hand, we can construct an integrable hierareh{8\3) and (3.7); however, it won't
be the dToda hierarchy. Finally, finding the free energie®aated with (2.4) and (2.5) would
also be very interesting.
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