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Abstract

We extend the traditional formulation of Gauge Field Theoryby incorporating the (non-
Abelian) gauge group parameters (traditionally simple spectators) as new dynamical (nonlinear-
sigma-model-type) fields. These new fields interact with theusual Yang-Mills fields through a
generalized minimal coupling prescription, which resembles the so-called Stueckelberg trans-
formation [1], but for the non-Abelian case. Here we study the case of internal gauge symme-
try groups, in particular, unitary groupsU(N). We show how to couple standard Yang-Mills
Theory to Nonlinear-Sigma Models on cosets ofU(N): complex projective, Grassman and
flag manifolds. These different couplings lead to distinct (chiral) symmetry breaking patterns
andHiggs-lessmass-generating mechanisms for Yang-Mills fields.

1 Introduction

Although there has been many successful applications Non-Linear Sigma Models (NLSM) in
(Quantum Gauge) Field Theory, String Theory and Statistical Mechanics, their basic role in
Fundamental Physics is still rather unexplored. Generallyspeaking, NLSM consists of a set
of coupled scalar fieldsϕa(xµ),a = 1, . . . ,D, in a d-dimensional Minkowski spacetimeM,µ =
0,1,2, . . . ,d−1, with the action

Sσ = λ
∫

M
ddxgab(ϕ)∂ µϕa∂µϕb, (1.1)

where∂ µ = η µν∂ν ,∂ν = ∂/∂xν , η = diag(+,−, . . . ,−) the Minkowski metric andλ a coupling
constant. The field theory (1.1) is called the NLSM with metric gab(ϕ) (usually a positive-definite
field-dependent matrix). The fieldsϕa themselves can also be considered as the coordinates of an
internal Riemannian manifoldΣ with metricgab. In particular, we shall consider the case in which
Σ is a (semisimple) Lie group manifoldG.

The relevance of NLSM in Quantum (Gauge) Field Theory originates from the paramount
importance of symmetry principles in fundamental physics.From the String Theory point of view,
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the two-dimensional spaceM represents a string world sheet, whereasgab is identified with the
‘truly’ spacetime metric representing the gravitational background where the string propagates.
In two dimensions we also have (infinite) conformal symmetryand the possibility of adding new
Wess-Zumino terms to our NLSM.

NLSM also provides a useful field-theoretical laboratory for studying some two-dimensional,
exactly solvable systems on a lattice, such as the Ising model of the Heisemberg antiferromag-
netism, in statistical mechanics. Some particularO(n)-invariant two-dimensional NLSM are fre-
quently used in condensed matter physics in connection withantiferromagnetic spin chains and the
quantum Hall effect. Also, the effective Lagrangian for superfluid He 3 is described by a NLSM.
In four dimensions, pions and nucleons are described by a (Skyrme) NLSM model, as solitonic
solutions (‘skyrmions’).

We shall concentrate in the role that NLSM plays in thespontaneous symmetry breakingmech-
anism, which is crucial for phenomenological applicationsof QFT like the Higgs-Kibble mech-
anism in the Standard Model of Strong and Electro-Weak interactions, by means of which some
vector bosons acquire mass in a renormalizable way. According to the well known Goldstone the-
orem (see e.g. [2]), there are as many massless (Nambu-Goldstone) particles as broken symmetry
generators. If these Nambu-Goldstone fields are scalars, their low energy effective action often
appears to be a NLSM. Usually, Goldstone bosons are eliminated from the theory by gauge fixing.

Despite the undoubted success of the Standard Model in describing strong and electro-weak
interactions, a real (versus artificial) mechanism of mass generation is still lacking. Needless to
say that the discovery of a Higgs boson (a quantum vibration of an abnormal Higgs vacuum)
would be of enormous importance; nevertheless, at present,no dynamical basis for the Higgs
mechanism exists and, as said, it is purely phenomenological. It is true that there is actually
nothing inherently unreasonable in the idea that the state of minimum energy (the vacuum) may
be one in which some field quantity has a non-zero expectationvalue; in fact, many examples
in condensed-matter physics display this feature. Nevertheless, it remains conjectural whether
something similar actually happens in the weak interactioncase. Also, the ad hoc introduction
of extra (Higgs) scalar fields in the theory to provide mass tothe vector bosons could be seen as
our modern equivalent of those earlier mechanical contrivances populating the plenum (the ether),
albeit very subtly. As in those days, new perspectives are necessary to explain why it is really not
indispensable to look at things in this way at all.

One of the purposes of this paper is to provide a new formulation of gauge theory in which the
mass of gauge vector fields enters the theory in a ‘natural’ way without damaging gauge invariance.
In this sense we shall generalize the so-called Stueckelberg model for electrodynamics [1] to ac-
count for a Higgs-less mass-generating mechanism for gaugefields. In our new approach we shall
nearly restrict the external information to the symmetry group and, therefore, the group parame-
ters, described by Lagrangians of NLSM type, will acquire dynamical content as ‘exotic’ matter
fields.1. By the time being, we shall not enter into the possible physical meaning of theseσ -matter
fields. Just to mention that, when this idea is applied to the Weyl group (Poincaré+dilations), and
the corresponding gauge gravitational theory is developed, σ -fields appear to be a natural source to
account for some sort ofdark matterintrinsically related to the gauge-group parameter associated
with scale transformations [5].

1It is worth pointing out that the incorporation of group parameters into some dynamical framework has already
been considered in other contexts, for example, in [3]. There, conventional Eulerian fluid mechanics is extended to
encompass the possibility of describing a plasma state of quarks and gluons produced as the result of high-energy
collisions of heavy nuclei [4] due to the fact that such fluid may posses degrees of freedom indexed by group variables.
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The underlying mathematical framework relies on the idea ofjet-gauge group[6] introduced
in Sec. 2. In Sec. 3 we revise the Lagrangian formalism on jet-gauge groups and generalize the
well known Utiyama theorem [7] which provides a prescription to ‘minimally’ couple Yang-Mills
fields toσ -matter fields. In Sec. 4 we discuss severalchiral gauge symmetry breaking patterns
related to different mass matrices. Sec. 5 is devoted to somecomments on the quantization of this
model.

2 Jet-Gauge Groups and Nonlinearσ -Fields

Definition 1. (Gauge group) Let G be a (matrix) Lie group (the “rigid” group) andM the
Minkowski space-time (or any other orientable space-time manifold). The gauge groupG(M)
(“local” or current group) is the set of mappings

G(M) = {g : M → G, x 7→ g(x)} = Map(M,G) (2.1)

with point-wise multiplication(gg′)(x) = g(x)g′(x). The corresponding Lie algebraG (M) is the
tensor productF (M)⊗G = { f aXa, a = 1, . . . ,dimG}, whereF (M) is the multiplicative algebra
of (C∞) differentiable functionsf on M, andG is the Lie algebra ofG with generatorsXa. The
commutation relations of this local algebra are[ f ⊗X,h⊗Y] = f h⊗ [X,Y] since, for internal
symmetries, the “rigid” groupG does not act on the space-time manifoldM.

We shall mainly consider special unitary groupsG = SU(N), the Lie algebra of whichG =
su(N) = 〈Xa, a = 1, . . . ,N2 − 1〉 can be expanded in terms of traceless hermitian matrices,Xa,
whose Lie-algebra commutators[Xa,Xb] = Cc

abXc are given in terms of totally antisymmetric
structure constantsCc

ab. The generatorsXa can also be chosen to be orthogonal in the sense
Tr(XaXb) = δab. A given group elementg ∈ G can be written in terms of a (local) system of
canonical coordinates{ϕa,a = 1, . . . ,dim(G)} at the identity element asg = eiϕaXa. Thus, the
composition group lawg′′ = g′g can also be locally written as:

ϕ ′′a = ϕ ′a+ ϕa+
1
2
Ca

bcϕ
′bϕc +higher-order terms, (2.2)

by using the Baker-Campbell-Hausdorff formula. Let us denote an elementg(x) ∈ G(M) simply
by its coordinatesϕa(x) (theexotic matter σ -fields) .

Definition 2. (Jet prolongations)Given a gauge groupG(M), we define the groupJ1(G(M)) of
the 1-jets ofG(M) as the quotient:

J1(G(M)) ≡ G(M)×M/∼1

where the equivalence relation∼1 is defined as follows:

(ϕ ,x) ∼1 (ϕ ′,x′) ⇐⇒





x = x′,
ϕ(x) = ϕ ′(x),
∂µϕ(x) = ∂µϕ ′(x)

for all (ϕ ,x), (ϕ ′,x′) belonging toG(M)×M. This definition may be easily extended from order
r = 1 to r-th order. A coordinate system forJ1(G(M)) is {xµ ,ϕa,ϕa

µ}.
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The formal definition ofJ1(G(M)) is fully analogous to that of the(qi , q̇ j) phase-space in

Lagrangian Mechanics, or(ψα , ψβ
µ ) in Lagrangian Field Theory, when one desires to vary inde-

pendently coordinates and velocities (momenta) accordingto the modified Hamilton principle.

Definition 3. (Jet-gauge group)We define the (infinite-dimensional) jet-gauge groupG1(M) as
the set of mappings from M intoJ1(G(M)):

G1(M) ≡ Map(M,J1(G(M))).

It is parametrized by the coordinate system{ϕa(x),ϕa
µ (x)} and has the composition group law

(2.2), at each pointx∈ M, together with:

ϕ ′′a
µ = ϕ ′a

µ + ϕa
µ +

1
2
Ca

bcϕ
′b
µ ϕc+

1
2
Ca

bcϕ
′bϕc

µ +higher order. (2.3)

In this formalism,ϕa
µ are essentially the standard gauge vector potentials (Yang-Mills fields)

Aa
µ or connections, the actual relationship being:

Aa
µ ≡ θa

b (ϕ)ϕb
µ , (2.4)

whereθa
b (ϕ) is the (non-constant) invertible matrix defining the (left-) invariant canonical 1-form

on the group

θLa
= θa

b (ϕ)dϕb = Tr(ig−1dgXa), (2.5)

dual to the (left-invariant) vector fields

XL
a = Xb

a(ϕ)
∂

∂ϕb , Xb
a(ϕ) ≡

∂ϕ ′′b(ϕ ′
,ϕ)

∂ϕa |ϕ=0,ϕ ′=ϕ , (2.6)

that is:θa
b Xb

c = δ a
c . Writing thenAµ = ig−1gµ , the group law (2.3) for Yang-Mills fields is simply:

A′′
µ(x) = g−1(x)A′

µ(x)g(x)+Aµ (x).

Note thatϕa
µ comprises all possible values of derivatives ofϕa, but in generalϕa

µ 6= ∂µϕa. That is,
not all Yang-Mills fieldsAµ are “pure gauge”,θµ = ig−1∂µg, except for the particular inmersion
(1-jet-extension) of the gauge groupG(M) into the jet-gauge group:

j1 : G(M) → G1(M), ϕ 7→ j1(ϕ) = (ϕa,∂µϕa). (2.7)

3 Lagrangian Formalism on Jet-Gauge Groups: Generalized Utiyama
Theorem

In the standard formulation of gauge theories, the well-known Minimal Coupling Principle (or
Utiyama theorem [7], see also [6]) for internal gauge symmetries establishes that if the action of
some matter fieldsψα , α = 1, ...,n

S=
∫

Lm(ψα ,∂µψα)d4x,
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is invariant under a rigid internal Lie groupG, then the modified action

Ŝ=
∫

[Lm(ψα ,Dµψα)+L0(F
a
µν)]d4x

is invariant under the gauge groupG(M), where

Dµψα ≡ ∂µψα −eAa
µ(Xa)

α
β ψβ

is usually known as the covariant derivative (e is a coupling constant), and

Fa
µν ≡

1
e
[Dµ , Dν ]a = ∂µAa

ν −∂νAa
µ +

e
2
Ca

bc(A
b
µAc

ν −Ab
νAc

µ)

is known as curvature of the connectionAa
µ .

Here we shall treat the gauge group parametersϕa ∈ G(M) as “exotic matter”σ -fields, so
that our configuration space is nowJ1(G(M)), with coordinates{xµ ,ϕa,Aa

µ}, and Lagrangians are
accordingly functions

L (xµ ,ϕa,Aa
µ ;∂ν ϕa,∂νAa

µ).

We shall proceed to formulate some sort of Minimal Coupling Principle onJ1(G(M)):

Theorem 1. (Generalized Utiyama’s Theorem) If the action

Sσ =
∫

Lσ (ϕa,∂µϕa)d4x,

of the “exotic matter”σ -fieldsϕa, a = 1, ...,dimG is invariant under the global (rigid) internal
Lie group G, i.e.

δ global
a Lσ (ϕb,∂µϕb) ≡ Xb

a
∂Lσ
∂ϕb +

∂Xb
a

∂ϕc ∂µϕc ∂Lσ
∂ (∂µϕb)

= 0,

then the modified action Stot = S̃σ +S0, with

S̃σ ≡

∫
Lσ (ϕa,D̃µϕa)d4x, S0 =

∫
L0(F

a
µν)d4x, (3.1)

is invariant under the gauge (local) group G(M), where

D̃µϕa ≡ ∂µϕa−eAb
µXa

b

is the “covariant derivative” forσ -fields.

Proof. As the local invariance ofS0 is already well-known in the standard gauge theory, we shall
focus on the local invariance of̃Sσ . We must prove that the new Lagrangian describing the gauge-
group parameters as well as their interaction with the gaugefieldsAa

µ (according to the prescription
of Minimal Coupling, i.e. supposing that the group parameters interact only with the gauge fields
and not with their derivatives),

L̃σ (ϕa,∂µϕa,Aa
µ) ≡ Lσ (ϕa,∂µϕa−eAb

µXa
b),
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is invariant under the gauge groupG(M) in the sense that

δL̃σ (ϕa,∂µϕa,Aa
µ) ≡ f aXb

a
∂L̃σ

∂ϕb +

(
f a∂Xb

a

∂ϕc ∂µϕc+Xb
a

∂ f a

∂xµ

)
∂L̃σ

∂ (∂µϕb)

+

(
g fbCa

bcA
c
µ +

∂ f a

∂xµ

)
∂L̃σ
∂Aa

µ
= 0,

where f a denote gauge-algebra parameters.
Let us consider the following change of variables:

φa = ϕa,

φa
µ = ∂µϕa−eAb

µXa
b ,

Ba
µ = Aa

µ .

Then, the partial derivatives related to the old variables can be expressed in terms of the new
ones:

∂
∂ϕa =

∂
∂φa −Bc

µ
∂Xb

c

∂φa

∂
∂ (φb

µ )
,

∂
∂ (∂µϕa)

=
∂
∂ (φa

µ)
,

∂
∂Aa

µ
=

∂
∂Ba

µ
−Xb

a
∂
∂ (φb

µ )
.

After this change of variables it is now straightforward to arrive at

δL̃σ = f aδ global
a Lσ (φa,φa

µ) = 0,

equality which follows from the hypothesis of invariance oftheσ -matter action under the global
group. �

As a consequence, the new “minimal coupling”∂µϕa → ∂µϕa − eAb
µXa

b now occurs in an
affine manner. Indeed, the matrixXa

b is invertible, and therefore the minimal coupling above is
proportional to

θa
b [∂µϕb−eXb

c Ac
µ ] ≡ θLa

µ −eAa
µ ,

whereθLa is the canonical (left-)invariant 1-form in (2.5). The new minimal coupling, when
written in the formθL −A, strongly suggests the introduction of “exotic matter” of theσ -model
type:

Lσ =
λ 2

2
TrG(θL

µ θLµ
) = −

λ 2

2
TrG(g−1∂µgg−1∂ µg) . (3.2)
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This Lagrangian isG-invariant (left- and right-invariant, that is, chiral) and thenewminimal cou-
pling gives rise to

L̃σ =
λ 2

2
TrG[(θL

µ −eAµ)(θLµ
−eAµ)], (3.3)

which isgauge-invarianteven though it containsmass termsλ
2

2 e2TrG[AµAµ ] for theAµ fields, a
piece which spoils gauge invariance in the traditional framework of Yang-Mills theories.

4 Chiral Symmetry Breaking Patterns

The virtue of a kinetic term like (3.2) is the two-side symmetry, that is,chirality. In fact, any
function of θL is of course left-invariant, but only a scalar sum on all the group indicesa =
1, . . . ,dim(G) can provide also right invariance. Therefore, several chiral symmetry breaking pat-
terns are posible by considering apartial traceσ -Lagrangian

L
(λ)

σ =
1
2

Tr(λ)
G (θL

µ θLµ
) ≡

1
2

TrG(θL
λ

µθL
λ µ), (4.1)

where we have defined

θL
λ ≡ [θL,λ ] (4.2)

the ‘projection’ ofθL by themass matrixλ = iλ aHa, with λ a ∈ R andHa the Lie algebra gen-
erators of the toral (Cartan, maximal Abelian) subgroupH of G (see later on this section for an
example). Defining

Λ ≡ gλg−1, g∈ G,

(the adjoint action ofG on its Lie algebra) we have an alternative way of writing (4.1) as

L
(λ)

σ =
1
2

TrG(∂µΛ∂ µΛ),

which is singular due to the constraint TrG(Λ2) = TrG(λ 2) = λaλ a =constant. Introducing La-
grange multipliers, the equations of motion read:

∂µ∂ µΛ = −
TrG(∂µΛ∂ µΛ)

TrG(Λ2)
Λ, (4.3)

which describe a set of coupled Klein-Gordon-like fieldsφa = TrG(ΛXa) with variable massm2 =
TrG(∂µΛ∂ µ Λ)/TrG(Λ2).

Let us explicitly consider the case of the unitary groupG = U(N). We shall take, as the Lie
algebra generatorsXa, the step operatorsXαβ defined by the usual matrix elements:

(Xαβ )γρ = δαγδβρ , α ,β ,γ ,ρ = 1, . . . ,N, (4.4)

fulfilling the commutation relations:

[Xαβ ,Xγρ ] = δγβ Xαρ −δαρXγβ , (4.5)
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and the usual orthogonallity relations:

Tr(Xαβ Xγρ) = δαρδγβ . (4.6)

Note that the step generatorsXαβ are not hermitian butX†
αβ = Xβα , whereX† denotes hermi-

tian conjugate. This fact introduces some minor modifications with respect to the general theory
exposed before. For example, the canonical left-invariant1-form θL can be written in this Lie-
algebra basis as (we shall drop the upper-scriptL for convenience):

θµ =
N

∑
α ,β=1

θαβ
µ Xαβ , (4.7)

with θαβ = θ̄βα in order to makeθ† = θ (hermitian). The mass matrixλ is now

λ = i
N

∑
α=1

λ αXαα , (4.8)

where the complexi has been introduced in order to make the projected 1-form

θλ = [θ ,λ ] = −i
N

∑
α ,β=1

θαβ (λα −λβ )Xαβ (4.9)

hermitian too.
When minimally coupled, like in (3.3), the partial traceσ -Lagrangian (4.1) only assigns mass

mαβ = e2(λα −λβ )2 to those Yang-Mills fieldsAαβ living on a certain cosetG/Gλ of the groupG,

whereGλ represents the ‘unbroken’ chiral symmetry subgroup. Indeed, the LagrangianL (λ)
σ is

left-invariant under the whole groupG, but right-invariant under the unbroken subgroupGλ only.
For G = U(N) we can consider several symmetry breaking patterns according to distinct mass

matrix λ choices:

1. For the caseλα 6= λβ ,∀α ,β = 1. . . ,N the unbroken symmetry isGλ = U(1)N, so that
we give mass to all ofN(N−1)/2 charged (complex) Yang-Mills fieldsAαβ ,α > β (the
analogue ofW± in U(2) invariant electro-weak model [2]) living on theflag manifold(coset)
FN = G/Gλ =U(N)/U(1)N . The neutral (not charged) vector bosonsAαα remain massless.

2. Forλα = λβ ,∀α ,β = 2, . . . ,N the unbroken symmetry isGλ =U(N−1)×U(1), so that we
haveN−1 massive charged Yang-Mills fieldsA1α ,α > 1 living on thecomplex projective
spaceCPN−1 = U(N)/U(N−1)×U(1), in addition to(N−1)(N−2)/2 massless charged
vector bosonsAαβ ,α 6= β 6= 1 andN massless neutral vector bosonsAαα .

3. For other choices like:

λ1 = λ2 = · · · = λN1 6= λN1+1 6= · · · 6= λN−N2 = · · · = λN

the unbroken symmetry group isGλ =U(N1)×U(N2)×U(1) giving N1(N1−1)/2+N2(N2−
1)/2 massless charged vector bosons,N massless neutral vector bosons and massive charged
vector bosons corresponding to thecomplex GrasmannianCG(N1,N2) = U(N)/U(N1)×
U(N2)×U(1) (see [8] for suitable coordinate systems on these coset spaces).
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Note that this ‘partial trace’ mechanism always keeps theN neutral vector bosonsAαα massless.
However, we could always supply mass to the neutral vector bosonZ0, related to the central gener-
atorH0 = ∑N

α=1Xαα (which commutes with everything), without spoiling the previous mechanism,
using the conventional Stueckelberg model for the Abelian caseG = U(1).

These whole scheme agrees with nature, where we find just one intermediate massive neutral
vector bosonZ0 (inside weak currents); the rest of intermediate neutral vector bosons (photon and
gluons) remain massless.

5 Comments and Outlook

The fact that both the gauge functionsϕ and the vector potentialsA themselves may be considered
as parameters of a group,G1(M), which constitutes the basic symmetry group of the theory (in the
sense that the corresponding Noether invariants parametrizes the solution manifold), permits to
face the quantum theory under the perspective of a non-perturbative group-theoretical framework
(according to the scheme outlined in Ref. [9]) where questions such as renormalizability, finite-
ness, unitarity, etc., are much better addressed. The Hilbert space of our theory will be the carrier
space of unitary irreducible representations of a centrally extended infinite-dimensional Lie group
G̃, incorporatingG1(M) and the phase space of our theory.

Let us make a brief discussion of the physical field degrees offreedom of our theory. This
analysis of the dynamical content of the theory can be achieved without the need of writing down
the explicit expression of the (linearized) field equationsof motion. Instead, we shall resort again
to a group-representation viewpoint at the Lie algebra level (see [9] for more precise details on
a Group Approach to Quantization of Yang-Mills theories). In fact, for pure, massless,SU(N)-
Yang-Mills theory we can fix the (Weyl) gauge and set the temporal partAa

0 = 0,a = 1, . . . ,N2−1.
The equal-time Lie algebra commutators between non-Abelian vector potentialsAa

j , j = 1,2,3;a=

1, . . . ,N2−1, electric fieldEa
j and gauge-group generatorsϕa (in naturalh̄ = 1 = c unities) turn

out to be (see e.g. the Reference [10]):
[
Aa

j (x),E
b
k (y)

]
= iδ jkδ abδ (x−y),

[
~Ea(x),ϕb(y)

]
= −iCab

c
~Ec(x)δ (x−y),

[
~Aa(x),ϕb(y)

]
= −iCab

c
~Ac(x)δ (x−y)−

i
e

δ ab~∇xδ (x−y),
[
ϕa(x),ϕb(y)

]
= −iCab

c ϕc(x)δ (x−y). (5.1)

From the first commutator we see thatAa
j andEa

j are conjugated variables, so that we have in prin-
ciple three field degrees of freedom for each “colour” indexa= 1, . . . ,N2−1, that is,f = 3(N2−1)
original field degrees of freedom. Allσ -fields ϕa,a = 1, . . . ,N2− 1, do not have dynamics this
time, so that we can impose all of them as constraintsϕa(x)Ψ = 0 (theGauss law) on wave func-
tionalsΨ in the corresponding quantum field theory. This operation takes awayc = N2−1 field
degrees of freedom out of the originalf , leaving f ′ = f − c = 2× (N2−1). These field degrees
of freedom correspond to(N2−1) massless vector bosons (remember that transversal fields have
two polarizations only).

When we give dynamics to some of theσ -fieldsϕa through a partial-traceσ -Lagrangian like
(4.1), and perform minimal couplingθµ → θµ −eAµ , we introduce new conjugated variables given
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by the new Lie-algebra commutators:

[
Aa

0(x),ϕb(y)
]

= −iCab
c Ac

0(x)δ (x−y)−
i
e
Cab

c λ cδ (x−y). (5.2)

(In the hope that no confusion arises, we mean here byAa
0(x) the generator of translations in the

temporal component of the vector potentialAa
µ .)

It should be stressed that the central term proportional toλ c in the previous commutator can
also be considered as associated with some sort of “symmetrybreaking” in the sense that it can be
hidden into a redefinition,Ac

0 →Ac
0+ λ c

e , of Ac
0, which now acquires a non-zero vacuum expectation

value proportional to the massλ c, that is:

〈0|Ac
0|0〉 = 0−→ 〈0|Ac

0|0〉 = −
λ c

e
.

This is one of the differences between the vacua of the massless and the massive theory. Moreover,
σ -fields could also acquire non-zero vacuum expectation values,〈0|ϕc|0〉 = ωc, which could be
mimicked by new central terms in the last commutator of (5.1). See Ref. [9] for the physical
consequences of this particular case.

Let us proceed by counting the new physical field degrees of freedom of the massive theory. We
shall restrict ourselves toG = SU(2) (i.e., N = 2), for the sake of simplicity, and takeλ = iλ 3T3

(the “isospin” charge). Let us also use the Cartan basis〈T± = T1± iT2,T0 = T3〉, with commutation
relations:

[T±,T0] = ∓T±, [T+,T−] = 2T0.

The commutation relations (5.2) say that the temporal partW±
0 ≡ A1

0 ± iA2
0 (we adopt the usual

notation in the Standard Model of electro-weak interactions for charged weak vector bosons) are
conjugated fields ofϕ∓ ≡ ϕ1∓ϕ2, since they give central terms proportional to the mass matrix
elementλ 3. On the contrary, the temporal partB0 ≡ A3

0 and theσ -field ϕ0 ≡ ϕ3 remain without
dynamics. Thus, in addition to the originalf = 3(N2−1) = 9 field degrees of freedom connected
to the spatial part~Aa,a = 1,2,3, we have two additional field degrees of freedom attached tothe
temporal partW±

0 , which results inf̃ = f + 2 = 11 field degrees of freedom. If we wished to be
consistent with the massless case, we should gauge fixσ -fields to zero as constraintsϕa(x)Ψ = 0
in the quantum theory. This operation would take awayc = (N2−1) = 3 field degrees of freedom
out of the originalf̃ = 11, leaving f̃ ′ = f̃ −c = 8 = 2×1+3×2. These field degrees of freedom
correspond to 1 massless vector bosonB (two polarizations) plus 2 massive vector bosonsW±. We
could say that the dynamics of theσ -fields ϕ± has been transferred to the vector potentialsW±

(the longitudinal part) to conform massive vector bosons. Hence, we do not need an extra (Higgs)
field to give mass to vector bosons but it is the gauge group itself which acquires dynamics and
transfers it to Yang-Mills fields.

A deeper (Lagrangian) analysis of the particular case of electro-weak gauge groupSU(2)⊗
U(1), in the framework of the Standard Model, is in preparation [11]. Also, a proper Group
Approach to Quantization of this theory, clarifying the vacuum and including interaction with
fermions and comparisons with the Standard Model, as well asa deeper discussion on the physical
status ofσ -fields, is being investigated by the authors.
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