Journal of Nonlinear Mathematical Physics Volume 15, Supplement 3 (2008), 91-101 ARTICLE

Coupling Nonlinear Sigma-Matter to Yang-Mills Fields:
Symmetry Breaking Patterns

M Calixto ®?, V Aldaya®, F F Lopez-Rui? and E Sanchez-Sastfe

a Departamento de Mateftica Aplicada y Estaidtica, Universidad Polécnica de Cartagena,
Paseo Alfonso XllI 56, 30203 Cartagena, Spain
E-mail: Manuel.Calixto@upct.es

b Instituto de Astrdbica de Andaluia (IAA-CSIC), Apartado Postal 3004, 18080 Granada, Spain
E-mail: valdaya@iaa.es, flopez@iaa.es, sastre@iaa.es

Abstract

We extend the traditional formulation of Gauge Field Thebyyincorporating the (non-
Abelian) gauge group parameters (traditionally simpletgers) as new dynamical (nonlinear-
sigma-model-type) fields. These new fields interact withueal Yang-Mills fields through a
generalized minimal coupling prescription, which resesslthe so-called Stueckelberg trans-
formation [1], but for the non-Abelian case. Here we studycthse of internal gauge symme-
try groups, in particular, unitary groups(N). We show how to couple standard Yang-Mills
Theory to Nonlinear-Sigma Models on cosetsUgfN): complex projective, Grassman and
flag manifolds. These different couplings lead to distirtiif@al) symmetry breaking patterns
andHiggs-lesamass-generating mechanisms for Yang-Mills fields.

1 Introduction

Although there has been many successful applications Niogak Sigma Models (NLSM) in
(Quantum Gauge) Field Theory, String Theory and Statisfidechanics, their basic role in
Fundamental Physics is still rather unexplored. Generglgaking, NLSM consists of a set
of coupled scalar field$?(x*),a=1,...,D, in a d-dimensional Minkowski spacetimi, u =
0,1,2,...,d—1, with the action

Se=A | du(9)049%0,4" (1.1)

whered” = ntvo,,0, = d/0x’, n = diag+, —,...,—) the Minkowski metric and\ a coupling
constant. The field theory (1.1) is called the NLSM with metgis(¢ ) (usually a positive-definite
field-dependent matrix). The fielgs! themselves can also be considered as the coordinates of an
internal Riemannian manifold with metricgap. In particular, we shall consider the case in which
> is a (semisimple) Lie group manifol@.

The relevance of NLSM in Quantum (Gauge) Field Theory oetgs from the paramount
importance of symmetry principles in fundamental physkr®m the String Theory point of view,
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the two-dimensional spadd represents a string world sheet, whergasis identified with the
‘truly’ spacetime metric representing the gravitationackground where the string propagates.
In two dimensions we also have (infinite) conformal symmaeing the possibility of adding new
Wess-Zumino terms to our NLSM.

NLSM also provides a useful field-theoretical laboratory $tudying some two-dimensional,
exactly solvable systems on a lattice, such as the Ising hoddhe Heisemberg antiferromag-
netism, in statistical mechanics. Some partic@an)-invariant two-dimensional NLSM are fre-
guently used in condensed matter physics in connectionamtiferromagnetic spin chains and the
guantum Hall effect. Also, the effective Lagrangian for exfjuid He 3 is described by a NLSM.
In four dimensions, pions and nucleons are described by @it NLSM model, as solitonic
solutions (‘skyrmions’).

We shall concentrate in the role that NLSM plays in$pentaneous symmetry breakimgch-
anism, which is crucial for phenomenological applicatiafQFT like the Higgs-Kibble mech-
anism in the Standard Model of Strong and Electro-Weak aateons, by means of which some
vector bosons acquire mass in a renormalizable way. Acugitdi the well known Goldstone the-
orem (see e.g. [2]), there are as many massless (Nambut@uiiparticles as broken symmetry
generators. If these Nambu-Goldstone fields are scalas,Ithv energy effective action often
appears to be a NLSM. Usually, Goldstone bosons are eliedrfadm the theory by gauge fixing.

Despite the undoubted success of the Standard Model inibiegcstrong and electro-weak
interactions, a real (versus artificial) mechanism of maseeration is still lacking. Needless to
say that the discovery of a Higgs boson (a quantum vibratioanoabnormal Higgs vacuum)
would be of enormous importance; nevertheless, at presentlynamical basis for the Higgs
mechanism exists and, as said, it is purely phenomenologitas true that there is actually
nothing inherently unreasonable in the idea that the sfateiimum energy (the vacuum) may
be one in which some field quantity has a non-zero expectatiure; in fact, many examples
in condensed-matter physics display this feature. Negky#ls, it remains conjectural whether
something similar actually happens in the weak interactiase. Also, the ad hoc introduction
of extra (Higgs) scalar fields in the theory to provide masthé&vector bosons could be seen as
our modern equivalent of those earlier mechanical contdea populating the plenum (the ether),
albeit very subtly. As in those days, new perspectives atessary to explain why it is really not
indispensable to look at things in this way at all.

One of the purposes of this paper is to provide a new fornaratf gauge theory in which the
mass of gauge vector fields enters the theory in a ‘naturgl’'witnout damaging gauge invariance.
In this sense we shall generalize the so-called Stueckghbedel for electrodynamics [1] to ac-
count for a Higgs-less mass-generating mechanism for galds. In our new approach we shall
nearly restrict the external information to the symmetrgugr and, therefore, the group parame-
ters, described by Lagrangians of NLSM type, will acquir@alyical content as ‘exotic’ matter
fieldsl. By the time being, we shall not enter into the possible patsheaning of these-matter
fields. Just to mention that, when this idea is applied to tlegl\§yroup (Poincaré+dilations), and
the corresponding gauge gravitational theory is develppdiklds appear to be a natural source to
account for some sort afark matterintrinsically related to the gauge-group parameter assedi
with scale transformations [5].

Lit is worth pointing out that the incorporation of group paeters into some dynamical framework has already
been considered in other contexts, for example, in [3]. &heonventional Eulerian fluid mechanics is extended to
encompass the possibility of describing a plasma state afkguand gluons produced as the result of high-energy
collisions of heavy nuclei [4] due to the fact that such fluidynposses degrees of freedom indexed by group variables.
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The underlying mathematical framework relies on the idepifjauge groud6] introduced
in Sec. 2. In Sec. 3 we revise the Lagrangian formalism ogaeige groups and generalize the
well known Utiyama theorem [7] which provides a prescriptto ‘minimally’ couple Yang-Mills
fields to o-matter fields. In Sec. 4 we discuss sevetatal gauge symmetry breaking patterns
related to different mass matrices. Sec. 5 is devoted to somenents on the quantization of this
model.

2 Jet-Gauge Groups and Nonlinearo-Fields

Definition 1. (Gauge group) Let G be a (matrix) Lie group (the “rigid” group) antfl the
Minkowski space-time (or any other orientable space-tinamifold). The gauge grouf(M)
(“local” or current group) is the set of mappings

G(M)={g:M — G, x— g(x)} = Map(M, G) (2.1)

with point-wise multiplication(gg)(x) = g(x)g' (x). The corresponding Lie algebfa(M) is the
tensor product? (M) @ 4 = {f2X;, a=1,...,dimG}, where.# (M) is the multiplicative algebra
of (C*) differentiable functionsf on M, and¥ is the Lie algebra o6 with generators<,. The
commutation relations of this local algebra afex X,h® Y] = fh® [X,Y] since, for internal
symmetries, the “rigid” groufs does not act on the space-time manifbld

We shall mainly consider special unitary groups= SU(N), the Lie algebra of whicly =
suN) = (Xa,a=1,...,N>— 1) can be expanded in terms of traceless hermitian matrigs,
whose Lie-algebra commutato(Xa, Xp] = C X. are given in terms of totally antisymmetric
structure constant€,. The generator, can also be chosen to be orthogonal in the sense
Tr(XaXp) = dap. A given group elemeng € G can be written in terms of a (local) system of
canonical coordinate§¢® a= 1,...,dim(G)} at the identity element ag= €%, Thus, the
composition group lawg” = g'g can also be locally written as:

1 .
¢ =+ o2+ Ecgc(p’b(pc + higher-order terms (2.2)

by using the Baker-Campbell-Hausdorff formula. Let us deram elemengj(x) € G(M) simply
by its coordinate®?(x) (the exotic matter o-fields) .

Definition 2. (Jet prolongations) Given a gauge grou@(M), we define the groug!(G(M)) of
the 1-jets ofG(M) as the quotient:

JFHGM)) =G(M) x M/ ~*
where the equivalence relatiest is defined as follows:

X=X,
(9,0~ (¢,X) = { ¢ (x) = ¢'(x),
I (x) = dud’(x)

for all (¢,x), (¢’,X') belonging toG(M) x M. This definition may be easily extended from order
r = 1 tor-th order. A coordinate system fat(G(M)) is {x*, 2, o5}
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The formal definition ofJ}(G(M)) is fully analogous to that of théq, §') phase-space in

Lagrangian Mechanics, @9, wﬁ) in Lagrangian Field Theory, when one desires to vary inde-
pendently coordinates and velocities (momenta) accordinige modified Hamilton principle.

Definition 3. (Jet-gauge group)We define the (infinite-dimensional) jet-gauge gr&j{M) as
the set of mappings from M intd*(G(M)):

GY(M) = Map(M,J1H(G(M))).

It is parametrized by the coordinate syst¢gf(x),¢7(x)} and has the composition group law
(2.2), at each poirnt € M, together with:

1 1 .
02 =2+ 05+ §C§c¢;/1b c4 §C§C¢’b¢ﬁ + higher order (2.3)

In this formalism,¢;; are essentially the standard gauge vector potenti@sd-Mills fields)
Aﬁ or connections, the actual relationship being:

A= 65(9)9), (2.4)

where62(¢) is the (non-constant) invertible matrix defining the (leftwariant canonical 1-form
on the group

6" = 65(¢)d¢" = Tr(ig~'dge), (2.5)
dual to the (left-invariant) vector fields

d g™ (¢’
Fra X§(¢)EM|¢:Q¢/:¢, (2.6)

that is: egxcb = 8. Writing thenA, = ig—lgu, the group law (2.3) for Yang-Mills fields is simply:

AL (X) = g7 AL (X900 +Au(X).

Note that¢} comprises all possible values of derivativesp8f but in generalp] # d,¢?. That s,

not all Yang-Mills fieldsA;, are “pure gauge’d, = ig—ld,lg, except for the particular inmersion
(1-jet-extension) of the gauge gro®§M) into the jet-gauge group:

' G(M) = G'(M), ¢ — jH($) = (9%,0u9?). (2.7)
3 Lagrangian Formalism on Jet-Gauge Groups: Generalized Uyama
Theorem
In the standard formulation of gauge theories, the wellkmadinimal Coupling Principle (or

Utiyama theorem [7], see also [6]) for internal gauge symietestablishes that if the action of
some matter fieldg?, a =1,...,n

S= [ LW 0,4")d%
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is invariant under a rigid internal Lie group, then the modified action
S= [ [%n(W".Dup™) + L0l Ff '

is invariant under the gauge gro@M), where
Duy® = 9uy® — eA(Xa) g YP

is usually known as the covariant derivatiweg a coupling constant), and

Fazl

e
v = <Dy, Dy = GuA] — 0uA; + SCR(ALAS — AVAY)

is known as curvature of the connectiafj.

Here we shall treat the gauge group paramefgrs G(M) as “exotic matter'c-fields, so
that our configuration space is nd&(G(M)), with coordinategx*, ¢% A%}, and Lagrangians are
accordingly functions

g(xu’ ¢aaAlia1 ; av(ba’ aV'A\?,‘[)
We shall proceed to formulate some sort of Minimal Couplimg&ple onJ*(G(M)):

Theorem 1. (Generalized Utiyama's Theorem) If the action
S, = /zg(qya,au(pa)d“x,

of the “exotic matter” o-fields¢?,a = 1,...,dimG is invariant under the global (rigid) internal
Lie group G, i.e.

0Ly OXD

5g|0balga(¢b’au¢b) = Xa d.ﬁfa

36> T a6° %4 500,07

=0,

then the modified action®= Sy + S, with

S = [ 2597 Bu9d'% S [ Z(FA)d (3.1)
is invariant under the gauge (local) group(®), where

Du$?= 0,92 —eA X2
is the “covariant derivative” foro-fields.

Proof. As the local invariance d is already well-known in the standard gauge theory, we shall
focus on the local invariance &;. We must prove that the new Lagrangian describing the gauge-
group parameters as well as their interaction with the géiegis A%, (according to the prescription

of Minimal Coupling, i.e. supposing that the group paramseteteract only with the gauge fields
and not with their derivatives),

Lo (92,0,0%A%) = Lo (92,0,0% — eAXD),
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is invariant under the gauge gro@{M) in the sense that

_ 0.%, axP afa\ 90.%,
a a pay _ fayb9<0 a%”a c b¥ " g
0Lo (9%, 0ud™ AY) = 1953 apP + (f a¢cd“¢ ‘f‘Xaqu) 0(0,9")
afa\ 0.%,
bra pC g _
=+ (gf CbCAH+ aX‘l> aAﬁ Oa

where f2 denote gauge-algebra parameters.
Let us consider the following change of variables:

(pa — ¢a
(pﬁ = dll¢a_eA2Xt?7
B = AL

Then, the partial derivatives related to the old variabks loe expressed in terms of the new
ones:

a 0 cOXbo
992 d¢r  Fagra(gh)’
%, 0
(0.9  9(gp)’
a 0 b0
oA% — 9BR P a(¢h)

After this change of variables it is now straightforward towee at

5@% _ faéglobalgg(q)a’ <01611) —0,

equality which follows from the hypothesis of invariancetloé o-matter action under the global
group. |

As a consequence, the new “minimal coupling;¢® — 9, ¢ — eA*f,Xé" NOwW OcCcurs in an
affine manner. Indeed, the matig is invertible, and therefore the minimal coupling above is
proportional to

62[0,9° — eXPAS] = 6,2 — e/,

where 8-2 is the canonical (left-)invariant 1-form in (2.5). The newnimal coupling, when
written in the form6“ — A, strongly suggests the introduction of “exotic matter” loé t-model

type:

A2 A2
Lo =S5 Tre(6;6") =~ Tra(g 19,09 *9%g). (32)



Coupling Nonlinear Sigma-Matter to Yang-Mills Fields: Syretry Breaking Patterns 97

This Lagrangian i€-invariant (left- and right-invariant, that is, chiral) dthenewminimal cou-
pling gives rise to

2

Ly = %Trg[(eb—eAu)(GL“—eA“)], (3.3)

which is gauge-invarianteven though it containsass terms‘z—zezTrG[A“A“] for the A, fields, a
piece which spoils gauge invariance in the traditional fauork of Yang-Mills theories.

4 Chiral Symmetry Breaking Patterns

The virtue of a kinetic term like (3.2) is the two-side symmggthat is, chirality. In fact, any
function of 8% is of course left-invariant, but only a scalar sum on all theug indicesa =
1,...,dim(G) can provide also right invariance. Therefore, severabtisymmetry breaking pat-
terns are posible by consideringartial trace o-Lagrangian

1

P .p uy u
£ = éTrg)(a,geL )= 5Tra(65"65,). 4.1)
where we have defined
eL = [BL,)\] (42)

the ‘projection’ of 8- by themass matrixA = iA2H,, with A2 € R andH, the Lie algebra gen-
erators of the toral (Cartan, maximal Abelian) subgréupf G (see later on this section for an
example). Defining

A=gAgl geG,
(the adjoint action of5 on its Lie algebra) we have an alternative way of writing Y44
A 1
M = 5Tr6(0uNI¥A),
which is singular due to the constraintgIN?) = Trg(A?) = A,A2 =constant. Introducing La-
grange multipliers, the equations of motion read:

Tre(duAGHA)

HA — _
oo™ Trg(N?) 7

(4.3)

which describe a set of coupled Klein-Gordon-like fiedffs= Trg(AX,) with variable massy =
Tra(9uNOHN) /Tra(N?).

Let us explicitly consider the case of the unitary grdsp= U (N). We shall take, as the Lie
algebra generatops,, the step operators, g defined by the usual matrix elements:

(Xaﬁ)ypzéayéﬁpv a7B7y7p:17"'7N7 (44)
fulfilling the commutation relations:

(Xap: Xyp] = OypXap — SupXyp, (4.5)
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and the usual orthogonallity relations:

Note that the step generatoxXgg are not hermitian bu)z(;B = Xga» whereX' denotes hermi-
tian conjugate. This fact introduces some minor modificetiaith respect to the general theory
exposed before. For example, the canonical left-invarafirm 8- can be written in this Lie-
algebra basis as (we shall drop the upper-sdrifeir convenience):

N
=S 6 Xap, 4.7)
a7B:l

with 898 = 6B in order to makeéd™ = 6 (hermitian). The mass matrik is now
N
A =i A" Xaa, (4.8)
PA

where the complekhas been introduced in order to make the projected 1-form

N
6 =[0.A]=—i 5 67 (Aa—Ap)Xap (4.9
a,5=1

hermitian too.

When minimally coupled, like in (3.3), the partial trageLagrangian (4.1) only assigns mass
Myg = &€(Aa —AB)Z to those Yang-Mills field&\?# living on a certain cose® /G, of the groupG,
whereG, represents the ‘unbroken’ chiral symmetry subgroup. lddése Lagrangiam?fc(,)‘) is
left-invariant under the whole group, but right-invariant under the unbroken subgrdsiponly.

ForG =U(N) we can consider several symmetry breaking patterns acwptdidistinct mass
matrix A choices:

1. For the cas@y # Ag,Va, = 1...,N the unbroken symmetry i€, = U ()N, so that
we give mass to all oN(N — 1)/2 charged (complex) Yang-Mills fielda®? a > B (the
analogue of\, in U (2) invariant electro-weak model [2]) living on tilag manifold(coset)
Fn=G/G, =U(N)/U (1N . The neutral (not charged) vector bos##¢ remain massless.

2. ForAg = Ag,¥a,B =2,...,N the unbroken symmetry 5, =U(N—1) xU (1), so that we
haveN — 1 massive charged Yang-Mills fields“, a > 1 living on thecomplex projective
spaceCPN~"1 =U(N)/U(N—1) xU(1), in addition to(N — 1)(N — 2) /2 massless charged
vector boson&\°? a + B # 1 andN massless neutral vector bosakf& .

3. For other choices like:
M=A= = A F A1 F - FANN, = - = AN

the unbroken symmetry group®, =U (N1) xU (N2) xU (1) giving N; (N1 —1) /2+Na (N2 —

1) /2 massless charged vector bosdwisyassless neutral vector bosons and massive charged
vector bosons corresponding to tbemplex Grasmannia€G(N1,N2) = U (N)/U (Nyg) x
U(N2) x U (1) (see [8] for suitable coordinate systems on these cosetspac
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Note that this ‘partial trace’ mechanism always keepsNheeutral vector boson&?? massless.
However, we could always supply mass to the neutral vecteohg,, related to the central gener-
atorHy = z’;‘:lxaa (which commutes with everything), without spoiling theyiceis mechanism,
using the conventional Stueckelberg model for the Abelese6 =U (1).

These whole scheme agrees with nature, where we find jushtereniediate massive neutral
vector bosork, (inside weak currents); the rest of intermediate neutrelorebosons (photon and
gluons) remain massless.

5 Comments and Outlook

The fact that both the gauge functiopsind the vector potentialsthemselves may be considered
as parameters of a groupl(M), which constitutes the basic symmetry group of the thearyh@
sense that the corresponding Noether invariants parametthe solution manifold), permits to
face the quantum theory under the perspective of a nonspattue group-theoretical framework
(according to the scheme outlined in Ref. [9]) where questisuch as renormalizability, finite-
ness, unitarity, etc., are much better addressed. Thert#pace of our theory will be the carrier
space of unitary irreducible representations of a cegteadtended infinite-dimensional Lie group
G, incorporatingG!(M) and the phase space of our theory.

Let us make a brief discussion of the physical field degredseeflom of our theory. This
analysis of the dynamical content of the theory can be aeHligithout the need of writing down
the explicit expression of the (linearized) field equatiohmotion. Instead, we shall resort again
to a group-representation viewpoint at the Lie algebrallésex [9] for more precise details on
a Group Approach to Quantization of Yang-Mills theories). fact, for pure, massles§SU(N)-
Yang-Mills theory we can fix the (Weyl) gauge and set the temppartAi =0,a=1,..., N2 —1.
The equal-time Lie algebra commutators between non-Ahekator potentiald?, j = 1,2, 3;a=
1,...,N2—1, electric fieIdEj”l and gauge-group generata#d (in naturalh = 1 = c unities) turn
out to be (see e.g. the Reference [10]):

A0.EY)| = i6k8™5(x—y).

E%9,¢°()| = —iCEE()3(x—y),

R00.6°0)] = —ICRABS(x—y) — La*TuB(x-),

$°09.6°)| = —iCE°)3(x—y). (5.1)

From the first commutator we see tbﬁtandEfl are conjugated variables, so that we have in prin-
ciple three field degrees of freedom for each “colour” index1,...,N>—1, thatis,f =3(N2—1)
original field degrees of freedom. Adi-fields ¢2,a=1,...,N2—1, do not have dynamics this
time, so that we can impose all of them as constrapd{s)¥ = 0 (theGauss lay on wave func-
tionalsW in the corresponding quantum field theory. This operatidegaawayc = N2 — 1 field
degrees of freedom out of the originglleaving f’ = f —c = 2 x (N?> — 1). These field degrees
of freedom correspond tdN? — 1) massless vector bosons (remember that transversal fialds ha
two polarizations only).

When we give dynamics to some of thefields ¢ through a partial-trace-Lagrangian like
(4.1), and perform minimal coupling, — 6, —eA,, we introduce new conjugated variables given
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by the new Lie-algebra commutators:

[A8(x),9° ()| = —ICEAG)S(x—y) - iecé‘b/\ “5(x—y). (5.2)

(In the hope that no confusion arises, we mean herd3y) the generator of translations in the
temporal component of the vector potennﬁl.)

It should be stressed that the central term proportiondl°tm the previous commutator can
also be considered as associated with some sort of “symimetaking” in the sense that it can be
hidden into a redefinitiom§ — A+ 2", of AS, which now acquires a non-zero vacuum expectation
value proportional to the magg, that is:

A Cc
(0[AG|0) = 0 — (0]AG|0) = ——-.

e

This is one of the differences between the vacua of the nsssalal the massive theory. Moreover,
o-fields could also acquire non-zero vacuum expectationegal0|¢€|0) = w°®, which could be
mimicked by new central terms in the last commutator of (5.%2¢e Ref. [9] for the physical
consequences of this particular case.

Let us proceed by counting the new physical field degreesetifsm of the massive theory. We
shall restrict ourselves 16 = SU(2) (i.e.,N = 2), for the sake of simplicity, and take=iA3T;
(the “isospin” charge). Let us also use the Cartan bdsis= T, £iT», To = T3), with commutation
relations:

[Te,To] = FTs, [Ty, T-] =2To.

The commutation relations (5.2) say that the temporal ‘pﬁ?tz A} +iA3 (we adopt the usual
notation in the Standard Model of electro-weak interactitor charged weak vector bosons) are
conjugated fields op ™ = ¢ T ¢, since they give central terms proportional to the massimatr
elementA3. On the contrary, the temporal p&g = A3 and theo-field ¢° = ¢> remain without
dynamics. Thus, in addition to the originfi= 3(N2 — 1) = 9 field degrees of freedom connected
to the spatial par&2,a = 1,2,3, we have two additional field degrees of freedom attachehleto
temporal part\;5, which results inf = f +2 = 11 field degrees of freedom. If we wished to be
consistent with the massless case, we should gaugefieids to zero as constraingg(x)¥ =0

in the quantum theory. This operation would take away(N? — 1) = 3 field degrees of freedom
out of the originalf = 11, leavingf’ = f — c=8=2x 1+ 3x 2. These field degrees of freedom
correspond to 1 massless vector boBdtwo polarizations) plus 2 massive vector boswfis. We
could say that the dynamics of tlefields ¢ * has been transferred to the vector potentisis
(the longitudinal part) to conform massive vector bosonsnt¢, we do not need an extra (Higgs)
field to give mass to vector bosons but it is the gauge groaf ighich acquires dynamics and
transfers it to Yang-Mills fields.

A deeper (Lagrangian) analysis of the particular case dfteleveak gauge grouU(2) ®
U(1), in the framework of the Standard Model, is in preparatioh] [1Also, a proper Group
Approach to Quantization of this theory, clarifying the wam and including interaction with
fermions and comparisons with the Standard Model, as welldeeper discussion on the physical
status ofo-fields, is being investigated by the authors.
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