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Abstract

We present a mathematical model, in the form of two coupled ordinary differential equations,
for the heart rate kinetics in response to exercise. Our heart rate model is an adaptation of the
model of oxygen uptake kinetics of Stirling et al. [21]; a physiological justification for this
adaptation, as well as the physiological basis of our heart rate model is provided. We also
present the optimal fit of the heart rate model to a set of raw unaveraged data for multiple
constant intensity exercises for an individual at a particular level of fitness.

1 Introduction (Physiological basis of the model)

The heart rate,hr, is closely related to the rate of change of oxygen uptake,V̇O2: as exercise
intensity increases so does the rate of change of oxygen uptake. This rate of increase is determined
by the rate at which oxygen is transported to the tissues, theblood’s oxygen carrying capacity and
the amount of oxygen extracted from the blood. Mathematically the relationship betweeṅVO2

andhr can be expressed [5] in the following way

V̇O2 = hr Vs (a−v)O2 (1.1)

where

• Vs is the amount of blood ejected from the left ventricle per cardiac contraction and

• (a−v)O2 is the difference in oxygen content between the coronary arteries and the coronary
venous sinus [13].

It should be noted thathr, Vs and(a−v)O2 are variables which are functions of time and exercise
intensity [2, 5], hence the relationship betweenV̇O2 andhr is not as simple as it may appear from
equation (1.1). The time series of the heart rate can be observed to be geometrically very similar
to those of thėVO2 (i.e. approximately exponential), however the kinetics orrates of increase of
these two variables for a given exercise intensity are different.
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Due to the similarities in the basic response patterns of theoxygen uptake and heart rate kinetics
in response to exercise, we adapt the model of Stirling et al.[21], which was developed to model
oxygen uptake kinetics in response to exercise. The tools used in this model are similar to those
used by the authors (see [22, 23, 24]) to model a variety of other nonlinear phenomena. It should
be noted here that the model currently used in the literatureto model heart rate kinetics is a curve
fitting model, called the 3 (orn) phase model, after its 3 (orn) discrete phases (for details regarding
the 3 phase model see [3, 6, 8, 12, 14, 15, 18, 21, 25, 26, 27, 28]).

Our model assumes that the heart rate,hr, is a function of timet and the intensityv of the
particular exercise. The difference between the model we propose here and the one used in [21] is
with the functionD(v, t). When modelling oxygen uptake kinetics,D(v, t) represents the oxygen
demand and, for values ofD(v, t) ≥ V̇O2max, the excess represents the anaerobic part of the oxygen
demand. With heart rate however there is no anaerobic equivalent, hence the function we use
does not have the same meaning as in the model presented in [21]. We continue to use a similar
mathematical function however as it allows us to model the heart rate kinetics as they approach the
maximum heart ratehrmax for intense levels of exercise. In particular it will allow us to model the
phenomena whereby the heart rate increases more rapidly to attain the maximum heart ratehrmax

the greater the exercise intensity is above the minimum intensity necessary to achievehrmax [1].
This functionD(v, t) will be equivalent to the demand however for values below themaximum
heart rate,hrmax. In practical terms the function will describe how the exercise intensity effects
the heart rate kinetics, and of course it makes sense to thinkof having exercise intensities greater
than the minimum exercise intensity to elicithrmax.

There is alwaysD(v, t) ≥ 0. We note that there will beD(v, t) ≥ hrmax for values of severe
or very high intensity exercise and this will result in a peakhr(v, t) equal tohrmax, assuming the
exercise can be continued for a sufficiently long time period. An exercise at the minimum value of
the speed or intensity for which we can achievehrmax inclusive of the so called slow component
[3, 6, 8, 12, 14, 15, 18, 25, 26] will giveD(v, t) = hrmax. The value of this speed is found to be
slightly (ie. somewhere before the next speed increment) above that of the so called critical speed
[4, 10]. Above the critical speed (i.e. during high intensity exercise) thehr(v, t) is not stabilized
and hence thehr(v, t) continues to rise until it reaches thehrmax unless fatigue sets in beforehrmax

can be achieved.
For exercises where the heart rate demand is such thatD(v, t) ≪ hrmax it is believed that the

value of the demandD(v, t) is, to a good approximation, constant and equal to the end of exercise
steady state,hrss, which can be obtained from the time series of thehr(v, t). Note that for higher
values ofD(v, t) especially for the cases wereD(v, t) > hrmax the heart rate demand is probably
a function of time. As the intensity of the exercise becomes closer to our absolute speed limit
we will become less efficient the longer we exercise at that intensity. This could result in a time
dependant behavior in the heart rate demandD(v, t).

2 Modelling the heart rate kinetics as a dynamical system

2.1 The model

We assume that the rate of change of heart rated
dt hr(v, t) is a function of the current value of the

heart rate, the intensity of the exercise (ie. the speed,v) and timet. This is supported by the
observation [1, 14] that the amplitude of the rapid part of the heart rate response (the part where
there is a steep increase in heart rate before the steady state or slowly increasing part) increases
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more rapidly the heavier the work load imposed. Heart rate isalso shown to increase rapidly with
virtually no delay at the start of exercise [11, 14]. It is shown, however [7, 14], that for the off-
transient response following very intense work loads the heart rate persists at these high values for
some seconds before the rapid drop off occurs.

The heart rate as a variable lies always within the physiological limits,

hrmin ≤ hr(v, t) ≤ hrmax .

We make use of and focus on the physiological fact that, for anexercise demand such that
hrmin ≤ D(v, t) ≤ hrmax, the rate of increase of the heart rate kinetics goes to zero on three specific
occasions:

• when the heart rate has its minimum value, i.e. whenhr = hrmin,

• when the heart rate has its maximum value, i.e. whenhr = hrmax and

• when the heart rate has reached the heart rate demand of the particular exercise, i.e. when
hr(v, t) = D(v, t).

It should be noted here that, whenD(v, t) ≥ hrmax then d
dt hr(v, t) → 0 ashr(v, t) → hrmax.

We denote asI(t) the rate of change of intensity or speed. It is worth noticingthat, for linear
changes of exercise intensities,I(t) = c wherec is a constant, withc = 0 for the case of constant
speed.

Our model for the heart rate kinetics is given by the following system of equations

d
dt

hr(v, t) = A

[

hr(v, t)−hrmin

]B[

hrmax−hr(v, t)

]C[

D(v, t)−hr(v, t)

]E

(2.1)

d
dt

v = I(t) (2.2)

The parametersA,B,C,E in equation (2.1) control the shape of the curve. ParameterA has
dimensions of(beats/min)1−B−C−Emin−1 whilst parametersB,C andE are dimensionless. It is
the combined effect of all these parameters which controls the shape of the curve, however the
individual parameters mainly effect the following features of the curve:

• ParameterA modifies the magnitude of the rate of change ofhr(v, t) and as a result the time
taken to reach the steady state valuehrss.

• ParameterB controls how quickly we leave or approach the minimum valuehrmin.

• ParameterC controls how quickly we approach or leave the maximum valuehrmax.

We note here thatE cannot be even or a fraction. If we putB = C = 0 we get the plateau-type
curves that are classically expected below the lactate threshold. B 6= 0 andC 6= 0 however give a
curve which takes much longer to reach a steady state for values ofhr(v, t) close tohrmax or hrmin.
This is very similar to the effect the so called slow component has on thehr(v, t) kinetics.

It is important to remember that all of the parametersA, B, C and E are constants and by
definition do not change with exercise intensity hence they give information of fundamental phys-
iological importance for an individual’s current level of health and fitness across the continuum of
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exercise intensities and not just for one exercise intensity. When it is understood that health and
fitness effect the manner in which we approach the heart rate limits, either during exercise or in
recovery, then we can also see the important physiological information that the parametersB and
C would give. As one can now easily see there is much physiological information to be found
from the parameters of the model presented in equations (2.1) and (2.2).

We note here that in the special case ofv = c, wherec is a constant, then for that particular
intensity the heart rate demand is a function of time only,D(v, t) = D(t) and equations (2.1) and
(2.2) become uncoupled. This is not the case, however, for time dependent exercise intensities
where the coupling of equations (2.1) and (2.2) arises from the fact that thehr = hr(v, t). Further-
more we note that, if we assume that the exercise intensity isconstant and sufficiently far from
maximal or, for the case of recovery, it does not follow a veryheavy exercise period, we can make
the usual approximation thatD(v, t) = D, i.e. the demandD is a constant for a constant velocity,
v = c.

2.2 Solution of fixed points

In a model of coupled ordinary differential equations such as the one given by equations (2.1) and
(2.2), fixed points occur whenddt hr(v, t) = d

dtv = 0, for d
dt D(v, t) = 0.

For the conditions we model here there are three solutions:

• hr(v, t) = hrmin,

• hr(v, t) = hrmax and

• hr(v, t) = D(v).

We solve for the linear stability of these fixed points to find how it is that orbits nearby behave.
This can be used to fix the value of the parametersA,B,C,E.

The eigenvaluesλ of the Jacobian matrix of the system are

λ =

∂
∂hr

(

d
dt hr

)

+ ∂
∂v

(

d
dt v

)

±

√

[

∂
∂hr

(

d
dt hr

)

− ∂
∂v

(

d
dt v

)

]2
+4

[

∂
∂v

(

d
dt hr

)

][

∂
∂hr

(

d
dt v

)

]

2

As however the time derivative of the velocityv is neither a function ofhr nor v then there is
∂

∂hr

(

d
dt v

)

= 0 and ∂
∂v

(

d
dt v

)

= 0 hence

λ1 = 0,

λ2 = A[hr(v, t)−hrmin]
B−1 [hrmax−hr(v, t)]C−1

· [D(v)−hr(v, t)]E−1 [Bα(v, t)−Cβ (v, t)−Eγ(v, t)]

where
α(v, t) ≡ [hrmax−hr(v, t)] [D(v)−hr(v, t)] ,

β (v, t) ≡ [hr(v, t)−hrmin] [D(v)−hr(v, t)]

and
γ(v, t) ≡ [hr(v, t)−hrmin] [hrmax−hr(v, t)] .
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For B 6= 1, C 6= 1, E 6= 1 then we haveλ2 = 0 for our fixed point solutionshr(v, t) = hrmin,
hr(v, t) = hrmax andhr(v, t) = D(v) respectively. This means that the solutions for the three fixed
points in our system would all haveλ1,2 = 0 and hence they are neutral fixed points. If we decide
we need non neutral solutions however we need at least one ofB, C and E to be equal to 1
depending on which solutions we need to be attracting. Depending on the data we model however
it may be more important to be able to manipulate the vector fields by changing the values ofB,C
andE than to be concerned with the fact that the three solutions are neutral withλ1 = λ2 = 0. What
we choose for the values of the parameters therefore will depend on the data we are modelling.

2.3 Solutions forλ2 when B 6= 1, C 6= 1, E = 1.

For the data modelled in this paper we fix the parameterE = 1, as this best fits the data (see also
[21]), and hence in this case there isλ2 = 0 for hr(v, t) = hrmin andhr(v, t) = hrmax, whilst for
hr(v, t) = D(v) we have

λ2 = −A[D(v)−hrmin]
B [hrmax−D(v)]C (2.3)

ForA> 0 and exercise intensities wherehrmin < D(v) < hrmax, equation (2.3) gives us an attracting
solution. For exercises of higher intensities, however, where there isD > hrmax the eigenvalueλ2

becomes a complex number, the real part of which is required to be negative, for the solution to be
attracting athr(v, t) = D(v). Since the real part of[hrmax−D(v)]C for D > hrmax is

Real
{

[hrmax−D(v)]C
}

= [D(v)−hrmax]
C cos(Cπ)

then parameterC has to be within the range

cos(Cπ) > 0 .

3 Fitting the model to sets of heart rate data

3.1 The case whereD(v, t)=D(v)

In the work that follows, the heart rate demand is assumed to be a function of velocity only, i.e.
D(v, t) = D(v) and for a particular constant velocity (d

dt v = 0) there isD(v, t) = D =constant. We
show that this assumption is valid for exercise intensitieswhich are not too close to maximal, and
recoveries which do not follow very heavy exercise intensities.

3.2 Experimental protocol

The data was collected from a healthy male subject (age 33, height 1.83m and weight 82 Kg,
maximum heart ratehrmax= 185beats/min and minimum heart ratehrmin = 40beats/min). The
experiment, which was carried out on a tartan track, followed to as good an approximation as
possible, a square wave protocol consisting of five work periods, of four laps each (i.e. 1600
meters), with a speed ofvon

1 = 13.4 Km/h, von
2 = 14.4 Km/h, von

3 = 15.7 Km/h, von
4 = 17.0 Km/h

and von
5 = 17.9 Km/h respectively. The superscripton refers to the on-transient exercises, the

speed of each one of which was assured to be constant, by assuring constant 50m split times.
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The numerical values of each exercise speed were measured with the traditional way (recording
the time for each 400m lap) as well as with the use of a Garmin Forerunner 201 GPS system
(Garmin [9]) and a calibrated Polar S625x speed-distance heart rate monitor (Polar [16]). The
subsequent static recovery between the work periods lasted10 minutes, during which the subject
lay horizontally and still on the floor (vo f f

i = 0, for i = 1, · · · ,5 where the subscripto f f refers to
the off-transient recovery period).

The heart rate data were recorded on a beat-to-beat basis using a Polar S810i heart rate monitor
(Polar [17]). Care was taken to ensure that the experimentalenvironment was free of any additional
electromagnetic signals which can interfere with the signal.

3.3 Normalized equations

For simplicity and numerical reasonshr(v, t) was normalized such that 0≤ hrn(v, t) ≤ 1, ie.
hrminn = 0 andhrmaxn = 1.

The normalized variablehrn(v, t) is derived from thehr(v, t) as follows

hrn(v, t) =
hr(v, t)−hrmin

hrmax−hrmin
(3.1)

Equation (2.1) hence takes the normalized form

d
dt

hrn(v, t) = An

[

hrn(v, t)

]B[

1−hrn(v, t)

]C[

Dn(v, t)−hrn(v, t)

]E

(3.2)

whereAn is the normalized parameter

An ≡ A(hrmax−hrmin)
B+C+E−1, (3.3)

Dn(v, t) is the normalized demand and the other parametersA,B,C and E are as in the non-
normalized case.

3.4 Fitting the model to the basic response pattern of the data

If we assume that the values of the parametersA,B,C andE of equation (3.2) are known and so is
the value of the heart rate demandD of each data set, then the time series{hrm

k }
N−1
k=0 that models

the heart rate response are obtained from the integration ofequation (3.2) in respect to timet. It
should be noted here that, in accordance with the results of the analysis of the model presented in
[20, 21] the value of the parameterE was kept constant and equal toE = 1 during the modelling
process.

In this present study we derived a smooth curve describing the basic response pattern of the
data through Fourier low-pass filtering (for a discussion see [21, 27, 28]). The curve described by
the points{hrm

k }
N−1
k=0 that the model provides is considered to be an optimal fit to the smoothed

data curve{hr f
k}

N−1

k=0 if the sum of the vertical distances between the two curves (residuals) is
minimum. This is an optimization problem where the parameters A,B andC of the model are the
variables of the minimization. For the constant exercise intensity case of the present study, where
the demand is assumed to be constant, its valueD was considered to behave as a parameter and
hence also be a variable in the optimization process.

The optimization is described in detail in [28]. The aim was to achieve an optimum fit via
appropriately modifying the shape of the curve provided by the model, i.e. via the appropriate
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Table 1 Estimated values of the demand for the data sets.

Exercise DemandD(v) (beats/min)
1on 146
1o f f 62
2on 156
2o f f 72
3on 166
3o f f 72
4on 175
4o f f non constant
5on 177
5o f f non constant

changes in the values of the variablesA,B,C and the value of constant demandD. For the numeri-
cal optimization, the stochastic optimization algorithm ALOPEX (see also [29]) was successfully
implemented in order to calculate the parameter values of the model that best fit the data sets. The
choice of the particular optimization algorithm was based on the algorithm’s effectiveness and
speed of convergence and, most importantly, on the fact thatfor the particular optimization pro-
cess no knowledge is required of the functional dependence of the system on the variables under
optimization (i.e. the parametersA,B andC of the model and the heart rate demandD).

We note here that all numerical computations of the present study were performed by algo-
rithms developed and implemented by the authors, via the useof C programming language.

4 Results

As described in section 3.2, the particular data sets of the present study correspond to exercises of
constant velocity, i. e. in our case there isd

dtv= 0. For the exercise intensities we studied the heart
rate demand can be estimated, to a good approximation, to be constant, as the exercise intensity of
each data set was constant and not sufficiently high to inducea time dependent demand. Table 1
shows the constant values of the demandD that were obtained using the optimization routine for
the on-transient data sets.

It is worth noticing that the values of the demands predictedby the optimization routine were,
as expected, identical to the observed asymptotic values ofthe heart rate time series, for each
on-transient data set. Regarding the heart rate demands of the off-transient data sets that follow
a sufficiently high on-transient exercise (data sets 4o f f and 5o f f ), the analysis was not able to
estimate a constant value of demandD(v), especially in the initial stages of the off-transient. The
heart rate in these two off-transient data sets is obviouslyheavily affected by the magnitude of
the previous on-transient exercise intensity and therefore the corresponding off-transient heart rate
demands can no longer be considered constant (i.e. they are functions of time) for these two data
sets.

The optimization routine also revealed the following optimum parameter values:

An = 0.54,B = 1.63,C = 1.75,E = 1.0
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Figure 1. Exercise 2, optimal model fit. 402s on-transient and 600s off-transient.

Figure 2. Exercise 3, optimal model fit. 368s on-transient and 600s off-transient.

and for parameterA, equation (3.3) gives the value

A = 3.217·10−8(beats/min)−3.38min−1.

Figures 1,2 and 3 present the model curves (using the optimalparameter values given above)
together with the data points. In these figures, the thick curves represent the model and the thin
curves are the result of the low-pass filtering of the data. The raw data is plotted as points. In the
same graphs the time series of the speed can also be seen.

It can be seen that the parameter values found via the optimization routine provide an excellent
fit for the range of demands we have data for and that the model can describe changes in the heart
rate kinetics for different exercise intensities by only changing the demand and not the values of
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Figure 3. Exercise 4, optimal model fit. 338s on-transient and 600s off-transient.

the parameters. The model’s parameters are in fact a characterization of the particular subject and
their current fitness level as by definition these parameterswill only change with changes in an
individuals fitness (see [20] for an example of such a change following a period of training).

In figures 1 and 2 it can be seen that when the on-transient demands are sufficiently low, the
standard approximation of a square wave for the demand is reasonable. This assumption breaks
down however for higher demands, as can be seen in the off-transient of figure 3. As can clearly be
seen in figure 3, the curve produced by the model for the off-transient does not follow the data in
the early stages of the recovery. Initially both the data andthe model drop rapidly from the end of
exercise heart rate, however the model drops substantiallybelow the data as they approach the new
demand. This is because the demand for the model is assumed tobe a constant, whilst in reality the
demand following the previous heavy bout of exercise has notdropped to the new recovery value
sufficiently quick to assume an instantaneous transition between the on-transient demand and the
off-transient recovery demand (see also[7, 14]). For an off-transient following a sufficiently high
intensity on-transient, the off-transient recovery demand would need to be modelled as a function
of time, where the demand changes with time between the final on-transient level of the demand
to eventually the off-transient recovery level of the demand. In the case of oxygen uptake it has
been shown [19] that following intense or exhaustive exercise the oxygen uptake remains elevated
and may not return to resting levels the same day the exercisewas carried out, in contrast to the
behavior following light exercise.

5 Conclusions

By finding the optimal parameter values for an individual andchanging only the demand we can
model the heart rate kinetics for the different demands we have data for, both on- and off-transient
kinetics. This shows that the parametersA,B,C,E as we stated in our model don’t change with
exercise intensity, see [20] for an example of how the parametersA,B,C andE change following
an improvement in fitness levels of the subject after a periodof training. This is one of the main
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advantages of our model as the parameters give fundamental information about the condition of
the individual subject across the spectrum of exercise intensities, not just a particular exercise
intensity.

There exist exercise intensities where the demandD is no longer to a good approximation con-
stant and instead changes with time (i.e. the demand is a function of time, D(t)). In the data
we modelled this was seen to occur for an off-transient following a sufficiency high intensity on-
transient, see figure 3. In particular it was seen that in the initial stages the predicted (constant
demand) curve drops too early, hence indicating that the demand changes with time. The data
shows that, following very high intensity exercise, the demand takes time to reduce from the final
on-transient value to the off-transient recovery value, and the assumption that this happens approx-
imately instantaneously is no longer valid for such exercise intensities. Such findings, regarding
time-dependent demands, also have important implicationsin oxygen uptake kinetics, when es-
timating the oxygen deficit and debt and hence the aerobic andanaerobic energy contributions
[21]. The usual approximation that the demand is constant could lead to invalid estimations of the
oxygen deficit and debt and hence misleading interpretations regarding the aerobic and anaerobic
energy contributions.
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