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Abstract

We present a mathematical model, in the form of two coupldéary differential equations,
for the heart rate kinetics in response to exercise. Outt haigmodel is an adaptation of the
model of oxygen uptake kinetics of Stirling et al. [21]; a plofogical justification for this
adaptation, as well as the physiological basis of our heaet model is provided. We also
present the optimal fit of the heart rate model to a set of ramweraged data for multiple
constant intensity exercises for an individual at a palgicievel of fithess.

1 Introduction (Physiological basis of the model)

The heart ratehr, is closely related to the rate of change of oxygen upt&k®;: as exercise
intensity increases so does the rate of change of oxygehkeuptis rate of increase is determined
by the rate at which oxygen is transported to the tissuesltusl’'s oxygen carrying capacity and
the amount of oxygen extracted from the blood. Mathemdyidhk relationship betweexi O,
andhr can be expressed [5] in the following way

VO, = hrVs(a—v)o, (1.1)
where
e Vs is the amount of blood ejected from the left ventricle ped@sr contraction and

e (a—V)o, is the difference in oxygen content between the coronagyieg and the coronary
venous sinus [13].

It should be noted thdir, Vs and(a— V), are variables which are functions of time and exercise
intensity [2, 5], hence the relationship betwa&®, andhr is not as simple as it may appear from
equation (1.1). The time series of the heart rate can be wxbéo be geometrically very similar
to those of th&/ O, (i.e. approximately exponential), however the kineticsates of increase of
these two variables for a given exercise intensity are rdiffe
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Due to the similarities in the basic response patterns aixiiggen uptake and heart rate kinetics
in response to exercise, we adapt the model of Stirling ¢2al, which was developed to model
oxygen uptake kinetics in response to exercise. The to@d imsthis model are similar to those
used by the authors (see [22, 23, 24]) to model a variety aratbnlinear phenomena. It should
be noted here that the model currently used in the literdtuneodel heart rate kinetics is a curve
fitting model, called the 3 (am) phase model, after its 3 (a) discrete phases (for details regarding
the 3 phase model see [3, 6, 8, 12, 14, 15, 18, 21, 25, 26, 2}, 28]

Our model assumes that the heart rédie,is a function of timet and the intensity of the
particular exercise. The difference between the model wpqse here and the one used in [21] is
with the functionD(v,t). When modelling oxygen uptake kinetid3(v,t) represents the oxygen
demand and, for values Bf(v,t) >V O,, , the excess represents the anaerobic part of the oxygen
demand. With heart rate however there is no anaerobic dgotyehence the function we use
does not have the same meaning as in the model presented.inN2kcontinue to use a similar
mathematical function however as it allows us to model tregtirate kinetics as they approach the
maximum heart rathrmax for intense levels of exercise. In particular it will allovg to model the
phenomena whereby the heart rate increases more rapiditato the maximum heart rat@,ax
the greater the exercise intensity is above the minimunmgitie necessary to achievemnax [1].
This functionD(v,t) will be equivalent to the demand however for values belowntfaximum
heart ratehrnax In practical terms the function will describe how the eiszdntensity effects
the heart rate kinetics, and of course it makes sense to diiihving exercise intensities greater
than the minimum exercise intensity to elibit,ax

There is alwayD(v,t) > 0. We note that there will b®(v,t) > hrmax for values of severe
or very high intensity exercise and this will result in a péeky,t) equal tohrpmay assuming the
exercise can be continued for a sufficiently long time perfaal exercise at the minimum value of
the speed or intensity for which we can achiéwvgay inclusive of the so called slow component
[3, 6, 8, 12, 14, 15, 18, 25, 26] will givB(v,t) = hrmax. The value of this speed is found to be
slightly (ie. somewhere before the next speed incrememyathat of the so called critical speed
[4, 10]. Above the critical speed (i.e. during high intepsercise) théar(v,t) is not stabilized
and hence thhr(v,t) continues to rise until it reaches theyax unless fatigue sets in befonemax
can be achieved.

For exercises where the heart rate demand is suctDthet) < hrpay it is believed that the
value of the demanB(v,t) is, to a good approximation, constant and equal to the engestise
steady statehirss, which can be obtained from the time series oflthe/t). Note that for higher
values ofD(v,t) especially for the cases weByV,t) > hrnax the heart rate demand is probably
a function of time. As the intensity of the exercise becomesear to our absolute speed limit
we will become less efficient the longer we exercise at thansity. This could result in a time
dependant behavior in the heart rate demadgt).

2 Modelling the heart rate kinetics as a dynamical system

2.1 The model

We assume that the rate of change of heart gme(v,t) is a function of the current value of the
heart rate, the intensity of the exercise (ie. the sp&pdnd timet. This is supported by the
observation [1, 14] that the amplitude of the rapid part ef lieart rate response (the part where
there is a steep increase in heart rate before the steadyostalowly increasing part) increases
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more rapidly the heavier the work load imposed. Heart ra#dsis shown to increase rapidly with
virtually no delay at the start of exercise [11, 14]. It issimg however [7, 14], that for the off-
transient response following very intense work loads tretirate persists at these high values for
some seconds before the rapid drop off occurs.

The heart rate as a variable lies always within the physic&dimits,

hrmin < hr(v,t) < hrmax.

We make use of and focus on the physiological fact that, foexrcise demand such that
hrmin < D(V,t) < hrmay the rate of increase of the heart rate kinetics goes to zetbree specific
occasions:

e when the heart rate has its minimum value, i.e. whes hrmyin,
e when the heart rate has its maximum value, i.e. whirea hryaxand

e when the heart rate has reached the heart rate demand ofrtivellpa exercise, i.e. when
hr(v,t) = D(vt).

It should be noted here that, whBxv,t) > hrmaxthen%hr(v,t) — 0 ashr(v,t) — hrmax

We denote a$(t) the rate of change of intensity or speed. It is worth noticimat, for linear
changes of exercise intensitié$t) = c wherec is a constant, witlt = O for the case of constant
speed.

Our model for the heart rate kinetics is given by the follogvsystem of equations

%hr(v,t) = A[hr(v,t) - hrmm} ’ [hrmax— hr(v,t)} ) [D(v,t) - hr(v,t)} : (2.2)
%v: [(t) (2.2)

The parameter$\ B,C,E in equation (2.1) control the shape of the curve. Paramfetesis
dimensions ofbeatgmin)1~B-C~Emin~1 whilst parameter®,C andE are dimensionless. It is
the combined effect of all these parameters which contr@sshape of the curve, however the
individual parameters mainly effect the following feawi@f the curve:

e ParameteA modifies the magnitude of the rate of changédf,t) and as a result the time
taken to reach the steady state vahug.

e ParameteB controls how quickly we leave or approach the minimum védug,.
e Paramete€ controls how quickly we approach or leave the maximum valygy.

We note here thaE cannot be even or a fraction. If we pBt= C = 0 we get the plateau-type
curves that are classically expected below the lactatshbtd. B £ 0 andC £ 0 however give a
curve which takes much longer to reach a steady state foevalfhr(v,t) close tohryaxor hrmin.
This is very similar to the effect the so called slow compdriers on théar(v,t) kinetics.

It is important to remember that all of the parametArsB, C and E are constants and by
definition do not change with exercise intensity hence they igformation of fundamental phys-
iological importance for an individual’s current level afddth and fithess across the continuum of
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exercise intensities and not just for one exercise intgn¥ithen it is understood that health and
fitness effect the manner in which we approach the heartirates| either during exercise or in
recovery, then we can also see the important physiologitatrination that the parameteBsand

C would give. As one can now easily see there is much physicdébgnformation to be found
from the parameters of the model presented in equations4adL(2.2).

We note here that in the special casevef ¢, wherec is a constant, then for that particular
intensity the heart rate demand is a function of time oblfy,t) = D(t) and equations (2.1) and
(2.2) become uncoupled. This is not the case, however, rfee iependent exercise intensities
where the coupling of equations (2.1) and (2.2) arises fiwerfact that thdar = hr(v,t). Further-
more we note that, if we assume that the exercise intensitgristant and sufficiently far from
maximal or, for the case of recovery, it does not follow a Veegvy exercise period, we can make
the usual approximation th&t(v,t) = D, i.e. the deman® is a constant for a constant velocity,
V=C.

2.2 Solution of fixed points

In a model of coupled ordinary differential equations suslhe one given by equations (2.1) and
(2.2), fixed points occur whefthr(v,t) = $v=0, for D(v,t) = 0.
For the conditions we model here there are three solutions:

[ ] hr(V,t) — hrmin,
e hr(vt) = hrpaxand
e hr(v,t) =D(v).

We solve for the linear stability of these fixed points to firmhhit is that orbits nearby behave.
This can be used to fix the value of the paramefe& C, E.
The eigenvalued of the Jacobian matrix of the system are

L (&hr) + & (@) i\/[m (dhr) _W(&V)] +4{m (ahr)} {m (mV)]

As however the time derivative of the velocityis neither a function ohr nor v then there is
4= (&v) =0andZ (&v) =0 hence
A1 = 0,
A2 = Afhr(v,t) — hroin]® 2 [hrmax— hr(v, 1)1
[D(v) — hr(v,t)]5 ! [Bar(v,t) —CB(vt) — Ey(wi1)]
where
a(\/,t) = [hrmax— hr(V,t)] [D(V) - hr(V,t)] )
B(vt) = [hr(v,t) — hrmin] [D(V) — hr(v,t)]

and
y(v,t) = [hr(v,t) — hrmin] [Mmax— hr(v,t)] .
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ForB # 1,C # 1, E # 1 then we have\, = 0 for our fixed point solution$r(v,t) = hrmin,
hr(v,t) = hrmaxandhr(v,t) = D(v) respectively. This means that the solutions for the threslfix
points in our system would all havg » = 0 and hence they are neutral fixed points. If we decide
we need non neutral solutions however we need at least ole Gfand E to be equal to 1
depending on which solutions we need to be attracting. Ddipgron the data we model however
it may be more important to be able to manipulate the vectlsfiey changing the values 8{C
andE than to be concerned with the fact that the three solutiamaeutral withA\; = A, = 0. What
we choose for the values of the parameters therefore wikigpn the data we are modelling.

2.3 SolutionsforAc, whenB#1,C#1,E=1

For the data modelled in this paper we fix the paramgter 1, as this best fits the data (see also
[21]), and hence in this case theredis= 0 for hr(v,t) = hrpin andhr(v,t) = hrmax Whilst for
hr(v,t) = D(v) we have

A2 = —A[D(V) — hrinin]® [Amax— D(v)|° (2.3)

ForA > 0 and exercise intensities whémgn, < D(V) < hrmay €quation (2.3) gives us an attracting
solution. For exercises of higher intensities, howeveremthere iD > hrya the eigenvaluel,
becomes a complex number, the real part of which is requirbe negative, for the solution to be
attracting ahr(v,t) = D(v). Since the real part dfrmax— D(V)]© for D > hrmpayis

Real{ [NFmax— D(v)]c} — [D(V) — hrma)C cogC)
then parameteC has to be within the range

cogCm) > 0.

3 Fitting the model to sets of heart rate data

3.1 The case wher®(v,t)=D(v)

In the work that follows, the heart rate demand is assumee: ta tunction of velocity only, i.e.
D(v,t) = D(v) and for a particular constant velocit)%(/ = 0) there isD(v,t) = D =constant. We
show that this assumption is valid for exercise intensitiégch are not too close to maximal, and
recoveries which do not follow very heavy exercise intéesit

3.2 Experimental protocol

The data was collected from a healthy male subject (age 38hth&.83m and weight 82 Kg,
maximum heart ratérmax = 185beatgmin and minimum heart rateryi, = 40 beatgmin). The
experiment, which was carried out on a tartan track, follbw® as good an approximation as
possible, a square wave protocol consisting of five workagasri of four laps each (i.e. 1600
meters), with a speed of" = 134 Km/h, " = 144 Km/h, 8" = 157 Km/h, \{" = 17.0 Km/h
andv2" = 17.9 Km/h respectively. The superscriph refers to the on-transient exercises, the
speed of each one of which was assured to be constant, byrgssonstant 5t split times.
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The numerical values of each exercise speed were measutetheitraditional way (recording
the time for each 40@ lap) as well as with the use of a Garmin Forerunner 201 GP®rsyst
(Garmin [9]) and a calibrated Polar S625x speed-distanegt mate monitor (Polar [16]). The
subsequent static recovery between the work periods la$tedinutes, during which the subject
lay horizontally and still on the roo:vfff =0, fori=1,---,5 where the subscriff f refers to
the off-transient recovery period).

The heart rate data were recorded on a beat-to-beat basjsauBiolar S810i heart rate monitor
(Polar [17]). Care was taken to ensure that the experimentaonment was free of any additional
electromagnetic signals which can interfere with the digna

3.3 Normalized equations

For simplicity and numerical reasors(v,t) was normalized such that © hry(v,t) < 1, ie.
The normalized variabler,(v,t) is derived from théar(v,t) as follows

hra(v,t) = 3.1
n( ) hrmax— hrmin ( )
Equation (2.1) hence takes the normalized form
d B C E
whereA,, is the normalized parameter
An = A(hrmax— hrmin)BJrCJrEila (3.3)

Dn(vt) is the normalized demand and the other parameteBC and E are as in the non-
normalized case.

3.4 Fitting the model to the basic response pattern of the dat

If we assume that the values of the paramefeB C andE of equation (3.2) are known and so is
the value of the heart rate demabdf each data set, then the time serés’ E:’Ol that models
the heart rate response are obtained from the integratiequation (3.2) in respect to time It
should be noted here that, in accordance with the resultsecdalysis of the model presented in
[20, 21] the value of the parametErwas kept constant and equalEo= 1 during the modelling
process.

In this present study we derived a smooth curve describiaghttsic response pattern of the
data through Fourier low-pass filtering (for a discussiom[24, 27, 28]). The curve described by
the points{hrﬂ“}'lz':‘ol that the model provides is considered to be an optimal fit éostmoothed

data curve{hrli}tol if the sum of the vertical distances between the two curvesiduals) is
minimum. This is an optimization problem where the paramssteB andC of the model are the
variables of the minimization. For the constant exerciserisity case of the present study, where
the demand is assumed to be constant, its vBlueas considered to behave as a parameter and
hence also be a variable in the optimization process.

The optimization is described in detail in [28]. The aim wasathieve an optimum fit via
appropriately modifying the shape of the curve provided sy model, i.e. via the appropriate
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Table 1 Estimated values of the demand for the data sets.

Exercise| DemandD(v) (beatgmin)

1on 146

10ff 62

20n 156

20ff 72

3on 166

30ff 72

40N 175

401t non constant
5on 177

5oft non constant

changes in the values of the variable8,C and the value of constant demadFor the numeri-
cal optimization, the stochastic optimization algorithh@PEX (see also [29]) was successfully
implemented in order to calculate the parameter valueseafrtbdel that best fit the data sets. The
choice of the particular optimization algorithm was basedtlee algorithm'’s effectiveness and
speed of convergence and, most importantly, on the factdhahe particular optimization pro-
cess no knowledge is required of the functional dependehtteesystem on the variables under
optimization (i.e. the parametefsB andC of the model and the heart rate demdd

We note here that all numerical computations of the presenlysvere performed by algo-
rithms developed and implemented by the authors, via thefuSgrogramming language.

4 Results

As described in section 3.2, the particular data sets ofthsgmt study correspond to exercises of
constant velocity, i. e. in our case theregjs = 0. For the exercise intensities we studied the heart
rate demand can be estimated, to a good approximation, tortstant, as the exercise intensity of
each data set was constant and not sufficiently high to indutae dependent demand. Table 1
shows the constant values of the deméntthat were obtained using the optimization routine for
the on-transient data sets.

It is worth noticing that the values of the demands predittgthe optimization routine were,
as expected, identical to the observed asymptotic valugékeoheart rate time series, for each
on-transient data set. Regarding the heart rate demantie offttransient data sets that follow
a sufficiently high on-transient exercise (data séf< 4nd %), the analysis was not able to
estimate a constant value of demdn(/), especially in the initial stages of the off-transient. The
heart rate in these two off-transient data sets is obviohebwily affected by the magnitude of
the previous on-transient exercise intensity and theeefoe corresponding off-transient heart rate
demands can no longer be considered constant (i.e. theurmrtdns of time) for these two data
sets.

The optimization routine also revealed the following optimparameter values:

A,=054B=1.63C=175E =1.0
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Figure 1. Exercise 2, optimal model fit. 402s on-transient and 600¢raffsient.
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Figure 2. Exercise 3, optimal model fit. 368s on-transient and 600¢raffsient.

and for parameted, equation (3.3) gives the value
A=3.217-10"8(beatgmin) ~>*Fmin~1.

Figures 1,2 and 3 present the model curves (using the optiamameter values given above)
together with the data points. In these figures, the thickesirepresent the model and the thin
curves are the result of the low-pass filtering of the datae Bl data is plotted as points. In the
same graphs the time series of the speed can also be seen.

It can be seen that the parameter values found via the optiimizroutine provide an excellent
fit for the range of demands we have data for and that the magedlescribe changes in the heart
rate kinetics for different exercise intensities by onhakging the demand and not the values of
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Figure 3. Exercise 4, optimal model fit. 338s on-transient and 600¢raffsient.

the parameters. The model's parameters are in fact a chearation of the particular subject and
their current fitness level as by definition these parametédronly change with changes in an
individuals fitness (see [20] for an example of such a chaali@xing a period of training).

In figures 1 and 2 it can be seen that when the on-transientrésreae sufficiently low, the
standard approximation of a square wave for the demand semaéle. This assumption breaks
down however for higher demands, as can be seen in the offitrat of figure 3. As can clearly be
seen in figure 3, the curve produced by the model for the affdient does not follow the data in
the early stages of the recovery. Initially both the datathedmodel drop rapidly from the end of
exercise heart rate, however the model drops substantiglibyv the data as they approach the new
demand. This is because the demand for the model is assurbe@ tmonstant, whilst in reality the
demand following the previous heavy bout of exercise hasiragiped to the new recovery value
sufficiently quick to assume an instantaneous transitidwdxen the on-transient demand and the
off-transient recovery demand (see also[7, 14]). For atraffsient following a sufficiently high
intensity on-transient, the off-transient recovery dedhaould need to be modelled as a function
of time, where the demand changes with time between the firtdamsient level of the demand
to eventually the off-transient recovery level of the dethaln the case of oxygen uptake it has
been shown [19] that following intense or exhaustive esertiie oxygen uptake remains elevated
and may not return to resting levels the same day the exesgisecarried out, in contrast to the
behavior following light exercise.

5 Conclusions

By finding the optimal parameter values for an individual ahdnging only the demand we can
model the heart rate kinetics for the different demands we kata for, both on- and off-transient
kinetics. This shows that the parameté&8,C,E as we stated in our model don't change with
exercise intensity, see [20] for an example of how the patarsd, B,C andE change following
an improvement in fitness levels of the subject after a pesfddaining. This is one of the main
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advantages of our model as the parameters give fundamafaaiiation about the condition of
the individual subject across the spectrum of exercisengities, not just a particular exercise
intensity.

There exist exercise intensities where the denfamgno longer to a good approximation con-
stant and instead changes with time (i.e. the demand is didancf time, D(t)). In the data
we modelled this was seen to occur for an off-transient ¥atg a sufficiency high intensity on-
transient, see figure 3. In particular it was seen that in nit&al stages the predicted (constant
demand) curve drops too early, hence indicating that theaddnchanges with time. The data
shows that, following very high intensity exercise, the dechtakes time to reduce from the final
on-transient value to the off-transient recovery valué, ie assumption that this happens approx-
imately instantaneously is no longer valid for such exeraigensities. Such findings, regarding
time-dependent demands, also have important implicafioxygen uptake kinetics, when es-
timating the oxygen deficit and debt and hence the aerobicaaadrobic energy contributions
[21]. The usual approximation that the demand is constawitidead to invalid estimations of the
oxygen deficit and debt and hence misleading interprettiegarding the aerobic and anaerobic
energy contributions.
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