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Abstract:  

Online social media provides platform for social interactions. This platform produce large-scale data generated mostly from online 

conversations. Network analysis can help us to mine knowledge and pattern from the relationship between actors inside the network. This 

approach has been crucial in supporting prediction and decision-making process. In marketing context such as branding effort, using large-

scale conversation data is cheaper, faster and reliable comparing mainstream approaches such as questionnaire and sampling. Social network 

analysis provides several metrics, which was built with no scalability in minds, thus it is computationally exhaustive. Some metrics such as 

centrality and community detections has exponential time and space complexity. With the availability of cheap but large-scale data, our 

challenge is how to measure social interactions based on those large-scale data. In this paper, we present our approach to reduce the 

computational complexity of social network analysis metrics based on graph compression method to solve real world brand awareness effort.  
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Introduction  

Today, our daily conversation in online social network 

services has contributed to the production of large-scale 

data. It is estimated that the volume of data production 

exceed 2,5 exabytes every day from online activities and 

the number is expected to double every 40 month [1]. 

Our social conversation in social media, user generated 

content, mobile application, real-time interaction, and 

trusted information, all contributed to production of 

large-scale data [2]. The large-scale data is a part of Big 

Data term which has emerged from large, fast, and 

complex data. Many of current state-of-the-art data 

technology contribute to solve Big Data problem [3], 

such as in Oil & Gas Mining Exploration [4], in Gnome / 

GenBank Project [5], in Astronomy [6],  in Economic 

and Country Development [1,7].  

 

The availibility of conversation data creates new 

unprecedented important opportunity, such as data 

patterns discovery to support decision-making process 

[8]. The insight we extract from online conversation are 

considering cheaper than having result from 

conventional data collection efforts such as questionaire 

and asking respondents. In conversational network, we 

often found various types of relations between two 

peoples and many types relations inside a simple 

network with limited number of peoples. This will be a 

shortcoming to the effort of capturing the overall picture 

and the network complexity, if we can only gathers 

limited amounts of data. We also have problem with 

limited scale of the conventional approach, typically 

hundreds peoples in one study, with the main issues on 

accuracy, time consuming and expensive process [9]. 

 

The relationship and connections among actors in online 

conversation can be modeled by using graph theory, 

where actors represented by vertex and relationship 

between actors represented by edges. In the real-world 

application, the model forms a complex network [10].  It 

is recognized that the topology and evolution of real-

world network are governed by robust organizing 

principle such as random graphs, small world, 

preferential attachment and scale free networks. The 

combination between topology and robustness are 

crucial to the success and failures of network from 

challange and attack. The Social Network Analysis 

(SNA) provide several metrics to quantify social 

network such as centrality, community detection, 

homophilly, clustering coefficient, clique, mutuality, 

transitivity and some others. Having the ability to 

quantify the social network, many research and 

practition are dedicated themselves to develop graph 

mining technique [11]. 

 

Brand awareness is a branch in marketing effort to 

increase market awareness to the products or services 

brand. Brand awareness is the base step of brand equity 

that is defined as the value of having well-known brand. 

The most important step in brand awareness effort is 

defined on how a product is recognized by potential 

customer and associated with corrent product.  
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Brand awareness in online social media conversation 

mostly generated using advertising, thematic effort with 

relevant issue, and word-of-mouth in spreading 

information [12]. We know two important things 

regarding brand awareness using social network model 

[13]. First, the scenario brand awareness spreading 

process that similar to disseminate awareness through 

advertising and word-of-mouth. Second, we achieve 

brand awareness process more effective and efficient by 

understanding network formations that leads to social 

behavior of market. 

 

We have described the advantages, opportunities, model 

and metrics. Although it is very promising, there are still 

some challenges to implement the process into practical 

world. First challenge is to identify that we have the 

right data or have the right people to unearth the insight 

from such large and complex network data. Second, 

connectivity and data access problem, since majority of 

data points are not yet connected to the network. Third, 

the fast evolve of technology landscape in data world 

means the needs of strong and innovative methodology 

that can adapt to changes. Fourth, in the computation 

side, we have limited processing powers and memory. 

The last challenge is we deal with different ownership of 

data where security issue can be a problem. 

 

Network Model and Complexity Problem 

We model the conversation in graph. Graph is defined as 

set of G=(V,E) where V is set of vertices and E is set of 

edges. In random social network, the number of edges is 

bigger than the number vertices, which can be 

formalized as  or   [14]. 

In Figure 1, we have graph representation of 7 actors and 

5 relationships.   is the number of vertices in graph G, 

while   is the number of edges. The degree of a vertex v, 

written as d(v)  means the number of edges   connected 

to v. Those are the basic of graph properties, there are 

many more complex attributes to represent real-world 

network such as: path, cycles, walk, connectivity, trees, 

matching and some other characteristics. 

 

Figure 1. Graph G(V,E) with set of vertices V = 

{1,2,3,4,5,6,7} and set of edges E = 

{{1,2},{1,5},{2,5},{3,4},{5,7}}. 

 

To understand the computational complexity in the next 

explanation, we take example from centrality metric.  

These metric measures are the most influential vertices 

or actors in the network. There are at least four types of 

centralities. They are based on connection, diameter, 

flow and line-ranks. The connection-based measures 

centrality of vertex based on the number of others 

vertices directly connected to them. This metric called 

degree centrality CD(i), the higher value of degree 

centrality in vertex i means the more connected vertex i 
to the rest of the network. The diameter-based centrality 

measures the average distance of vertex in question to 

any vertices in the network. The diameter-based 

connection centrality called closeness centrality CC(i). 

The higher value of closeness centrality means the 

shorter distance or the faster vertex i to reach others 

vertices in the network. The flow-based centrality called 

betweenness centrality CB(i) measure the number of 

shortest path going through vertex i when connecting 

any pair of vertices in the network. The higher value of 

betweenness centrality means the higher likelihood a 

vertex becomes bridge / hub connecting different group / 

component of the network. The formal methods of each 

centrality metric are shown in Table 1. 

 

Table 1. Centrality metric 

 Name Description and Formal Method 

1 Degree 

Centrality 

Measure the number of connection 

of a vertex  

,  

 is j
th

 degree of vertex i 

2 Betweenness 

Centrality 

Measure the number of shortest 

path between any two vertices 

through a vertex in question 

, 

is the number of shortest 

path between vertex s and t 

through vertex i 

3 Closeness 

Centrality 

Measure the average distance 

between a vertex in question to any 

vertices in the network 

, 

is the distance between vertex i 

and vertex j 

4 Eigenvector 

Centrality 

Measure proportional value of 

each vertex to total weight of 

neighborhood vertices.  

, 

is the eigen value,  is the 

value 

  

 

The illustration on how complexity increases when we 

deal with large network can be explains as follows. We 

look more details to the operation on closeness centrality 
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CC(i) with the help of illustration in Figure 2. CC(4) is 

closeness centrality on vertex 4, to get this value we 

need to compute at least number of hops to the other n-1 

vertices. The complexity increase the further the distance 

as we need to check whether the currect choice distance 

is the shortest one, if not we need to find the shortest 

alternative. We also need to compute CC(i) on each 

vertex and rank them, in this graph we found CC(4) is the 

highest closeness centrality with value 0.62. In 

betweenness centrality CB(i) , we first compute the 

shortest path between any pair of vertices and check 

whether the path pass through vertex i. We iterate the 

process for all pair of vertices in network and we rank 

them. In this graph we found CB(4) is the highest 

betweenness centrality with value 0.54. 

 

 
Figure 2. Illustration of CC(i) and CB(i) computation. 

 

It is clear from the description above that the algorithm 

to compute CC(i) and CB(i)  are computationally 

exhaustive. The fastest algorithm need time complexity 

O(n
3
) and space complexity O(n

2
), with n is the number 

of vertices [15]. There are efforts to reduce complexity 

using several strategies such as social network 

characteristic of lower density graph [15], estimation 

value using random selection pivot [16], strategy for 

rank top-k value [17], and parallel computation [18][19]. 

The main issues of proposed efforts are the limited scale 

of network / graph tested (around 10000 vertices). In 

general, there are several options to reduce graph size 

such as graph compression, random or strategic vertices 

sampling, model transformation and features selection. 

In this paper, we proposed new strategy to reduce large-

scale graph using graph compression algorithm [20].       

Graph Compression 

Graph compression works based on Minimum 

Description Length (MDL) [21] rules, which outline the 

need to represent the message using less number of data, 

without altering the meaning of the message. MDL 

reflect that the best representation is the one with the 

minimum cost to form it. We have two choices 

implementing graph compression:  

1. MDL representation which exact representation 

of the original graph 

2. Approximation representation which 

representation that allowing controllable errors 

for gaining faster processing time 

 

The MDL representation of graph G = (VG, EG) is R = 

(S,C), which contain graph summary S = (VS, ES) and a 

set of edge-correction C. Each vertex v in VG is a 

member of supervertex V in VS which represent set of 

vertices in G.  A superedge E = (Vi, Vj) in ES represent 

set of all edges who connecting all pairs vertices in Vi 

and Vj. Edge correction C has two member +e dan –e , 

which means we can adding or delete edges when we 

reconstruct the original graph. The visualisation process 

can be seen at Figure 3 [20]. On the left hand side is the 

original graph G, and on the right hand side is the MDL 

representation R. The formations of supervertex V in R 

from vertices are based on the minimum cost reduction. 

The important boundary to do the computation iteration 

is the cost reduction, which symbolize by s(u,v) = (cu + 
cv – cuv) / (cu + cv) where cu cost representation of vertex 

u. 

 

The approximation representation of graph G = (VG, EG) 

with error  , 0    1 is R = (S , C). This 

representation should qualify that each vertex v  G, 

error (v) = |Nv’- Nv|+|Nv –Nv’|   |Nv|, where Nv and Nv’ 

are set of neighborhood vertices of v in graph G and R. 

|Nv’- Nv| is the number of edges that exist in the graph 

representation but not on the original one, the opposite 

symbol is the vice versa. The simple way to construct 

approximation representation is by removing some edges 

from C dan S on MDL representation, as long as the 

actions do not violate bounded error . In other words, 

we only need to check whether edge   e = (u,v) comply 

to the rule that at least (1 -  ) of the original edge still 

connecting u and v.  
 

In this paper we focus our work on MDL representation. 

There are two types of MDL representation, the exact 

representation and the randomized representation. The 

difference of the two approach is on the step of updating 

the highest overall cost reduction in exact representation, 

while in randomized representation the updating process 

are done by choose the closest / local vertices who gives 

the highest cost reduction. In this paper, we do not test 

the approximate representation yet, although it is very 

promising but we need more time until we have the 

conclusive result. The algorithma of exact MDL and 

randomized MDL representation based on [20] can be 

seen below. 

 

 
Figure 3. The original graph G (left) and the MDL 

representation R (right). 
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Exact MDL Representation Algorithm 

1:/*Initialization phase*/ 

2: VS=VG; H= Ø; 

3: for all pairs (u,v) VS that are 2 hops apart do 

4:         if (s(u,v) > 0) then insert (u,v,s(u,v)) into H; 
5: /*Iterative merging phase*/ 

6: while H  Ø do 

7:  Choose pair (u,v) H with largest s(u,v) value; 

8: w = u  v; /*merge u and v into supernode w*/ 

9: VS = VS – {u,v}  {w}; 

10: for all x VS that are within 2 hops of u and v 
do 
11:   Delete (u,x) or (v,x) from H; 

12:  if s(w,x) > 0 then  

13:   insert (w,x,s(w,x)) into H; 

14: for all pairs (x,y), such that x or y is in NW do 

15:  Delete (x,y) from H; 
16:  if s(x,y) > 0 then 

17:   insert (x,y,s(x,y)) into H; 

18: /*Output phase*/ 
19: ES = C = Ø; 

20: for all paris (u,v) such that u,v  VS do 

21:  if (Auv > ( |uv|+1)/2) then 
22:   Add (u,v) to ES; 

23  Add –(a,b) to C for all (a,b)  uv – Auv; 
24: else 

25:  Add +(a,b) to C for all (a, b)  Auv; 
26: return representation R=(S=(VS.ES),C)    

 

Randomized MDL Representation Algorithm 

1:U = VS = VG; F= Ø; 

2:while U  Ø do  

3:  Pick a node u randomly from U; 
4:  Find the node v with the largest value of s(u,v) 

within 2 hops of u; 
5:  if (su,v) > 0) then 

6:     w = u  v; 

7:     U = U - {u,v}  {w}; 

8:     VS = VS – {u,v}  {w}; 

9:   else 
10:    Remove u form U and put it in F; 

11:/*output phase same as Exact MDL*/  
 

Experiments 

We crawl various online conversation about different 

brands in Twitter, as the result we found different 

network size according to the conversation size. Twitter 

provide uniform format to mine the data and this is much 

more efficient than doing web mining. We found four 

different brand with network size as in the Table 2 as 

follows: 

 
 

 

 

 

 

Table 2. The brand network information  

 
 Name Vertex Edges 

1 Brand A 335 2520 

2 Brand B 7115 103689 

3 Brand C 36392 183831 

4 Brand D 75879 508837 

 

We mentioned earlier the computational complexity of 

social network metric CC(i) and CB(i) are O(n
3
) for time 

complexity and O(n
2
) for space complexity. It is 

computationally exhaustive, for example the fastest 

metric computation is 3.7  10
7
 times for the smallest 

network (Brand A).  We apply the exact MDL 

representation and randomized MDL representation to 

brand network above. The experimentation results are 

shown in Table 3 and Table 4 below. The information 

including brand network name, number of original 

vertices and edges, number of compressed vertices and 

edges, original space and compressed space, and time 

needed to run the compression algorithm. 

 
Table 3. Exact MDL algorithm result, (o) original, (c) 

compressed 
 

Name Vertex / 

Edges 

(o) 

Vertex / 

Edges 

(c) 

Space (o) 

/ Space 

(c) 

Time 

Brand A 335 / 

2520 

181 / 

356 

2519 / 

1481 

2.048 

Brand B 7115 / 

103689 

2984 / 

11897 

100762 / 

81878 

2242.110 

Brand C 36392 / 

183831 

12737 / 

25860 

183831 / 

127461 

4376.689 

Brand D 75879 / 

508837 

29910 / 

34742 

405740 / 

328923 

31076.442 

 
Table 4.  Randomized MDL algorithm result, (o) original, (c) 

compressed 

 

Name 

Vertex / 

Edges 

(o) 

Vertex / 

Edges 

(c) 

Space (o) 

/ Space 

(c) 

Time 

Brand A 
335 / 

2520 

165 / 

253 

2519 / 

1558 
2,048 

Brand B 
7115 / 

103689 

3094 / 

9938 

100762 / 

84172 
37,133 

Brand C 
36392 / 

183831 

12448 / 

21037 

183831 / 

131960 
89,420 

Brand D 
75879 / 

508837 

30400 / 

29843 

405740 / 

334758 
426,069 
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Figure 4. The space complexity of the original network, exact 

MDL representation and randomized MDL representation. 

 

 

 
 

Figure 5. The time complexity of both exact MDL 

representation and randomized MDL representation. 

 

It is shown in Figure 4 and Figure 5 that both exact MDL 

representation and randomized representation compress 

the size of original network in about 50%. By reducing 

the space complexity, it will significantly resulted in 

faster metric computation. Randomized MDL perform 

significantly faster than exact MDL representation in 

compressing the original network. Keep in mind that we 

have not yet compare time needed for the overall process 

of metric computation on social network graph and 

metric computation on compressed social network graph 

plus time needed for graph compression. 

Conclusions 

We have shown that graph compression can reduce time 

and space complexity of large-scale graph. The method 

is very promising to help the social network 

quantification, especially in marketing effort such as 

brand awareness, where large-scale conversation data is 

rarely to be used. This paper is the base of the more 

conclusive research. Our next step is check the accuracy 

of the method by comparing the social network metric 

value and ranks from the original and the compressed 

graph. 

 

In the future, we can expand the research using other 

methodologies to increase computation speed, such as 

model transformation, random sampling/strategic 

samping and feature selection. We need to compare the 

efficiency of those methods with graph compression in 

social network case.  
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