Journal of Nonlinear Mathematical Physics Volume 15, Supplement 3 (2008), 185-196 ARTICLE

Nonclassical Potential System Approach for a Nonlinear
Diffusion Equation

M L Gandaria and M S Bruan®

ab pepartamento de Matefticas, Poigono Ro San Pedro, 11510, Puerto Reakdiz, Spain
E-mail: 2 marialuz.gandarias@uca.eé’, matematicas.casem@uca.es

Abstract

In this paper we consider a class of equations that modeigilifh. For some of these equa-
tions nonclassical potential symmetries are derived bggusi modified system approach.
These symmetries allow us to increase the number of exaetrksolutions. These solutions
are unobtainable from classical potential symmetriesvddrby using the so called natural
potential system nor from nonclassical symmetries of thergpartial differential equation.

1 Introduction

There is no existing general theory for solving nonlineartiphdifferential equations and the

methods of point transformations are a powerful tool. Softbe@most useful point transforma-

tions are those which form a continuous group. Lie classgaimetries admitted by nonlinear

partial differential equations (PDE’s) are useful for fimglinvariant solutions. There have been
several generalizations of the classical Lie group metloogymmetry reductions. Bluman and
Cole [4] developed the nonclassical method to study the sstmymeductions of the heat equation.
The basic idea of the method is to require thattherder PDE

A:A(x,t,u,u(l)(x,t),...,u(N)(x,t)) =0, (1.1)

where (x,t) € R? are the independent variablesc R is the dependent variable and) (x,t)
denote the set of all partial derivativesladrder ofu and the invariance surface condition

SUx+Tu — @ =0, (1.2)
which is associated with the vector field
v =& (Xt,u)d+ T(X,t,u)d + @(X,t,u)dy, (1.3)

are both invariant under the transformation with infinibesi generator (1.3). We remark that
nonclassical symmetries are not symmetries of a given PBtesy they are only symmetries for
a subset of all solutions, namely those which satisfy iargrsurface conditions. Since the authors
published [4], a great number of papers have been devotéeé giudy of nonclassical symmetries
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of nonlinear PDE's in both one and several dimensions. Tla¢ioaship of the reduction methods
for evolution equations based on invariant surface camitirelated to functional separation of
variables with nonclassical and weak point symmetrieséssed in [26].

In [6, 7] Bluman introduced a method to find a new class of syitmewefor a PDE. Suppose a
given PDE of second order

F(X,t,U,UX,Ut,UXX,UXt,U[t) :07 (14)

where the subscripts denote the partial derivativag ofin be written as a conservation law

D D
Ef(X,t,U,UX,Ut)—E(Q(X,t,u,UX,Ut) :Oa (15)

for some functiond andg of the indicated arguments. He& and - are total derivative opera-
tors defined by

D d 0 7 7
Dx 5(4‘ a0 +Uu SETY ‘H&tﬂ +.. (1.6)
D 0 0 0 0
E = E+ut%+ Xtd +Uttﬂ+ .7

Through the conservation law (1.5) one can introduce anliagxipotential variabler and form
an auxiliary potential system

W = f(X,t,U,UX,Ut)’ (18)

Vi = g(xatauauX)ut)'
We remark that for a given system, one can finds sets of ndhjaetated systems, which include
potential systems obtained from various conservation kvissubsystems obtained by excluding

dependent variables [5]. For example, for many physicahtigos one can eliminatefrom the
potential system (1.8) and form an auxiliary integratedaieptial equation

G(X7t7V7VX7Vt7VXX7VXt7Vtt) :07 (19)

for some functiorG. Any Lie group of point transformations

7} 7} 7} 7}
V= E(x,t,u,v)& + r(x,t,u,V)E + (p(x,t,u,v)d—u + Lp(x,t,u,v)a—v,

admitted by (1.8) yields a nonlocal symmepgtential symmetrpf the given PDE (1.5) if the
following condition is satisfied

(1.10)

E2+ T2+ @ #0. (1.11)
We point out that if we consider a Lie group of point transfations
7} 7} J
W:E(thvv)g(—i_T(thvv)a_t+W(X7t7V)a_\/7 (112)

admitted by (1.9) the condition

E2+1240 (1.13)
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is asufficientbut notnecessargondition in order to yield nonlocal symmetries of (1.5).

Knowing that an associated system to the Boussinesq equai®the same classical symme-
tries as the Boussinesq equation, Clarkson [11] proposad agen problem if an auxiliary system
of the Boussinesq equation does posses more or less nocalagsmetries than the equation it-
self. Bluman claims [3] that the ansatz to generate noricissolutions of the associated system
could yield solutions of the original equation which arethei nonclassical solutions nor solu-
tions arising from potential symmetries. In [10] two algbms were proposed which extend the
nonclassical method to a potential system (1.8) or a peatiesgjuation (1.9):

¢ Algorithm | Nonclassical potential system approach: Theatassical method is applied to
the associated potential system (1.8). Any Lie group of jgmamsformations

V= E(X,t,U,V)i + T(X,t,U,V)z + (p(X,t,U,V)i + W(thauvv) 0 (114)

ax ot du oV’
admitted by (1.8) yields a nonlocal symmepmgtential symmetrgf the given PDE (1.5) if
the following condition is satisfied

E7+ T+ @ #0. (1.15)

e Algorithm Il Nonclassical potential equation approacheTonclassical method is applied
to the associated potential equation (1.9). Any Lie groupaifit transformations

7} 7} 7}
X:E(Xatav)g("—T(Xatav)a-'—"#(xatav)a_v (116)
admitted by (1.9) yields a nonlocal symmeprgtential symmetrgf the given PDE (1.5) if

the following condition is satisfied
&+ 130 (47

Algorithm | has been considered in Bluman and Shtelen [9]&&accomandi [28], Algorithm
Il has been considered in [16] for a dissipative KdV equatimr neither of these papers exhibited
nonclassical potential solutions.

The nonclassical symmetries for the Burgers have beendmnesi in [1], [24]. Thenonclas-
sical potentialsymmetries for the Burgers equation have been derived ihd4ésonclassical
symmetries of the integrated equation (Algorithm II).

In [23] Priestly and Clarkson found that the solutions agsirom the nonclassical symmetries
of the associated potential system of the shallow watertemguavere obtainable by the nonclassi-
cal symmetries of the shallow water equation. Consequehtigmained as an open problem the
existence of nonclassical potential symmetries, in theeséimat they lead to new solutions.

The existence of nonclassical potential symmetries, is#mse that they lead to new solutions
was proved in [18] and [19] for the Fokker-Planck equation

U = Uxx+ [f(X)U]X. (1-18)

The classical symmetries for (1.18) were derived in [7]. Tlassical potential symmetries were
derived by Pucci and Saccomandi in [25]. We have studied8h [19] the nonclassical symme-
tries of the Fokker-Planck equation, as well astioaclassical potential symmetriegve found
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a class of functionsf(x) for which equation (1.18) does not admit, classical Lie syatrias,
nonclassical symmetries nor classical potential symetoiut it admits nonclassical potential
symmetries.

The diffusion processes appear in many physics processbsasuplasma physics, kinetic
theory of gases, solid state, metallurgy and transport mygomedium [2, 22, 27]. One of the
mathematical models for diffusion processes is the noalidéfusion equation

U = [f(U)uy]x. (1.19)

In (1.19)u(x,t) is a function of positiorx and timet and may represent the temperature. Rosenau
[27] presented a number of remarkable features of the fHasiin processes; for(u) = u", and

—2 < n< -1, the family of fast diffusion (1.19) coexists with a sulsdaf superfast diffusions
where the whole process terminates within a finite time. Tezisl case witm = —1 emerges

in plasma physics and reveals a surprising richness of a hgsigal-mathematical phenomenon.
Equation (1.19) is already in a conserved form. Corresputigi we have the so calleghtural
potential system

VX:U,

Ve = f (U)uy (1.20)
and the potential equation
Vt = f(VX)VXX' (1.21)

In [17], we have derivedonclassicabndnonclassical potentiasdymmetries for (1.19) withi (u) =
u~! by considering the nonclassical symmetries of system J118(¢10] the nonclassical method
has been applied to equation (1.21).

In [10] it was pointed out that often the nonclassical metivben it is applied to the potential
system (Algoritm 1) yields a set of undetermined determgna@guations while the nonclassical
method it is much easier to apply to the potential equatidggihm ).

However we point out that a great disadvantage of Algoritris lhat condition (1.17) is a
sufficientbut not necessarycondition in order to see if a generator is a nonclassicatngit
generator or not. In fact we exhibit several nonclassicédmtial generators which do not satisfy
(2.17).

The aim of this paper is to propose a modification to the nasatal potential system approach,
in a way in which is easy to apply and we can giveufficient and necessaopndition in order to
see if a generator is a nonclassical potential generatde tlat if the generator considered is not
a nonclassical potential generator then no new solutiom$oamnd, i.e. all such solutions can be
obtained from the nonclassical method applied to the gii@g F1.5).

e Modified Algorithm | Modified nonclassical potential systeapproach: The nonclassical
method is applied to the associated potential system (Ar8).Lie group of point transfor-
mations

admitted by (1.8) yields a nonlocal symmepgtential symmetrgf the given PDE (1.5) if con-
dition (1.15) is satisfied. In [15] the nonclassical potainiymmetries for the Burgers equation

(1.22)
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were derived as nonclassical symmetries, with= ¢, = 0, of the potential associated system
(Modified Algorithm ).

In this paper we apply the modified potential system apprdacfi.19) and, forf(u) =
1/(al? + bu), we obtain new nonclassical potential generators as welkkassolutions.

2 Nonclassical symmetriesfor system (1.20)

We now consider the associated auxiliary system (1.20) aatgd with the invariance surface
condition

EVx+Tv — P =0, (2.1)
which is associated with the vector field
W= E(X’t’ U,V)dx + T(Xata U,V)a[ + (p(X,t, U,V)au + W(X,t, UaV)dw (22)

The nonclassical method, with+ 0, applied to (1.20), gives rise to nonlinear determiningaeq
tions for the infinitesimals. These determining equatiorst ippeared in Saccomandi [28] and
are undetermined since they involve two equations in thré@awnsé (x,t,u,v), @(x,t,u,v) and
Y(xt,u,v). Consequently, any(u) yields in principle an infinite number of nonclassical sym-
metries. In [10] the authors say that they have been unssfotes finding a specific solution
yielding a nonclassical symmetry that is not derivable fppoint symmetry admitted by the po-
tential system (1.20). The point symmetries admitted bypibtential system (1.20) are given in
Bluman and Kumei [7] and Blumaet al. [8]. If we require tha&, = ¢4, = 0, (Modified Algorithm

[) we obtain that

= —EUP+ (Y — &) U+ Yy (2.3)

wheref (u), & (x,t,v) andy(x,t,v), must satisfy the following equation:

[—EEWR+ (Eu — E&+ E Y)W + (&) — Wik + Edr)u— W] T/ (u)
+[—ZEEVU2+ (28 — 28 & — & u+ 28 + lpt]f(u) (2.4)
+[EVVU3 + (28— pr)uz + (Exx— 2y )U — Yy fz(u) =0.

Equation (2.4) coincides with the equation derived by aipgiythe nonclassical method to the
potential equation [10] and since equation (2.4) must hotcll valuesx, t, v andui it follows that
f(u) must satisfy a first order Bernouilli equation with variabteefficients. Moreover, from (2.3)
we get that (1.15) is satisfied if and only if

&+ UG+ Wo # 0. (2.5)
When f(u) = 1/(a? + bu) we get that andy are related by the following conditions

—2alyy—aé+éw—bééy = 0O, (2.6)

—2a8 Y — Y+ 2ay — bE Yy +ayh + béyh —bé —bE &+ 26 = 0, (2.7)

2aP iy — bE P — 24nx+bYPyh + bk + &P +éxx = 0 (2.8)

—Pxt+ bl.ULle = 0 (2-9)

Despite the fact that the former equations are too complic&d be solved in general, special
solutions can be obtained.
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21 Ifb=1landa=1
2.1.1 For

§ =—-2a(c—2d)tanh[a(cv+dx)+B], T=1 ¢ =—2adtanHa(cv+dx)+ B].

Settingd = 1 the similarity variable = x— (c— 2)v and the family of invariant solutions is defined
implicitly by
log sinh(a(z+ 2cv—2v) + B) + (t +h(2))4a?(c—1) = 0,

whereh satisfies the ODE
Ac—1)h' —16a?(c—1)2(W)2+1=0, (2.10)
whose solution is

1
h(z) = mlog(seciﬁa(z+ Ki))) + ko. (2.12)

Therefore, the family of invariant solutions is defined, liwigy, by
log sinh(a (x+cv) + B)) +log sechia (x+ (2— c)v+ki))) + (t + ko) 4a?(c— 1) = 0.

Forc # 0 after settingy =by,c=2— %, the family of invariant solutions can also be written

as
@ -t ginkp(2y — %)v+ byx + B)secf(%bwr byx+ bkyy) — 1= 0.

Forc = 2 we get the explicit solution
V= % [asini{e—*@* k) cosi{ar (x+ ky ) ) — ax— B].
212 For
& = —2a(c—2d)cotanhja(cv+dx)+B], T=1 g = —2adcotanha(cv+dx)+ fB].

Settingd = 1 the similarity variablez = x — (c— 2)v and the family of invariant solutions is
defined implicitly by

—log cosla(z+2cv— 2v) + B) — (t+h(2))4a?(c— 1) =0,

whereh satisfies the ODE (2.10) whose solution is (2.11). Thereftre family of invariant
solutions is defined, implicitly, by

—log costia(x+cv) + B)) — log seclfa (x+ (2— c)v+ky))) — (t + ko)4a?(c— 1) = 0.

For c # 0 and settinga = by, c = 2—1y ki = b—"y the family of invariant solutions can also be
written as

(4 ~2y)(tHke) coshb(2y — %)v+ byx+ k)sech{%var byx+ ) —1=0.
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For c = 2 we get the explicit solution
V= % [acosife 4** () cost{a (x+ ki )) — ax— B].
2.1.3 For
¢ =2a(c—2d)tan[a(cv+dx) +B], =1, (¢ =2adtana(cv+dx) + B,

settingd = 1 the similarity variable = x— (c— 2)v and the family of invariant solutions is defined
implicitly by
log sin(a(z+ 2cv—2v) + B) + (t+ h(2))4a?(c— 1) = 0,

whereh satisfies the ODE
Alc— 1N +16a%(c—1)%2(W)2+1=0

whose solution is

h(z) = log(sec¢a(z+kj))).

oo L+
2 4a2(c—1)
Therefore, the family of invariant solutions is defined, licigy, by

log sin(a (x+cv) + B)) +log se¢a (x+ (2—c)v+ki1))) — (t+kz)4a?(c— 1) =0.
2.1.4 For
¢ =—-2a(c—2d)cotan[a(cv+dx)+B], 1=1, (= —2adcotarja(cv+dx)+ B,

settingd = 1 the similarity variable = x— (c— 2)v and the family of invariant solutions is defined
implicitly by

log(cog2a(z+ 2cv— 2v) +2B) + 1) — (t+ h(z))8a?(c— 1) — log(2) = 0.

whereh satisfies the ODE (2.10).
2.15For
¢ =[2atan(a(v+ct)+b))—c], 1=1, Y=c,

the similarity variablez = v— ct and the family of invariant solutions is defined implicitly b

log cog(a(z+ 2ct+ b) + 2¢c(x+ ¢t — h(z)) =0,
wheref satisfies the ODE

ch’ 4+ c2(W)?+2¢?H + >+ a? = 0.
Therefore, the family of invariant solutions is defined, limigy, by

log cog2a(v+ct+b)+ 1) + 2log se¢a (v—ct+ki))) —10g(2) + c(2(x+v—kz)) = 0.

2.1.6 For
¢ = —2acotan(a(v+ct)+b))—c, 1=1 yY=c,
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the similarity variablez = v — ct and the family of invariant solutions is defined implicitly b
—log sin(a (z+ 2ct+b) — c(x+ct+h(z)) =0,
wheref satisfies the ODE
ch’ —c?(h)? 4+ 2% — 2 —a? =0,

whose solution is 1
h= c [log seca(z+ky)) + cZ + ko.

Therefore, the family of invariant solutions is defined, litifly, by
—log sin(a(v+ct+b)) —log se¢a (v—ct+kp))) — c(x+Vv+kp) =0.

2.1.7 For
& =—2atanh(a(v+ct)+b))—c, =1 ¢Y=c,

the similarity variablez = v — ct and the family of invariant solutions is defined implicitly b
—log cosi{a (z+ 2ct+ b) — c(x+ct+h(z)) =0,

wheref satisfies the ODE

ch' — ()2 + 2?0 —c?+a? =0, (2.12)
whose solution is

h= (—1:[Iog sectta(z+ky)) +cZ + k. (2.13)
Therefore, the family of invariant solutions is defined, litifly, by

—log cosh{a(v+ ct+b)) —log sechia (v—ct+kj))) — c(X+Vv+kz) =0.

2.1.8 For
¢ = —2acotanh(a(v+ct)+b))—c, T=1, ¢Y=c,

the similarity variablez = v — ct and the family of invariant solutions is defined implicitly b
—log sini(a(z+ 2ct 4 b) — ¢(x+ct+h(z)) =0,

where f satisfies (2.12) whose solution is (2.13). Therefore, theilfaof invariant solutions is
defined, implicitly, by

—log sinh(a(v+ct+b)) —log seclia (v—ct+Kky))) — c(x+v+ky) = 0.

2.1.9 For 22-¢) )
—_ C .
= = l
¢ X+cv '’ f v X+ ¢V’
the similarity variablez = x+ (2 — c)v and the family of invariant solutions is defined implicitly

by

V4 xv+2(t+f(2) =0
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whereh satisfies the ODE"” = 0. Therefore, the family of invariant solutions is defined, by
v= i:—ZL[(xz — 4ck X — 8(t + ko) + 4(c— 2)%k2) Y2 — x+ (2c — 4)ky].

2.1.10 For 22b—1) o
EZW, T=1, W:m,
the similarity variablez = x+ (2 — c)v and the family of invariant solutions is defined implicitly
by
V2 4+ xv+2(t+h(z)) =0,

whereh satisfiesdh” = 0. Therefore, the family of invariant solutions is defined, by
V= i%[(xz — 4k X — 8(t + ko) + 4(2b— 1)%k2) Y2 — x4 2(1— 2b)ky].

We point out that the corresponding generafbisl,. .. 2.1.4 for ¢ = 2d do not satisfy (1.17)
however they are nonclassical potential generators dueetdarct that in all of them (2.5), and
consequently (1.15) are satisfied.

22 b=0anda=1

. V. . : . . :
the equation becomes= %‘ and may be linearized and transformed into the linear hestam.

X
Hence a nonclassical point symmetry of the linear diffustgmiation is a nonclassical nonlocal
symmetry of (1.19).

23 a=0andb=1

Equation (1.19) has been considered in [17] and [20]. In,[lfhough unfortunately there appear
some misprints in the generators, we have derived the foipwonclassical potential reductions
and solutions:
231

§=2tanv+kt+ky), 1=1, Y=Kk,

The similarity variablex = v— kt and the family of invariant solutions is defined implicitly b

log se¢z— 2v—c)
k

—Xx—h(z) =0,

whereh satisfies the ODE
kh' —k?(H)2—1=0.
Therefore, settind = v+ kt, the family of invariant solutions is defined, implicitlyyb

logsec{ +ki) log se¢z+ ko)
T T«

ks = 0.

2.3.2 From generator

& =2tanx+v), T=1 ¢ =2tanx+V),
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we obtain the independent varialdle- v— x and the implicit solution

log(sin(z— 2v))

—t—h(z) + 4

=0, (2.14)

whereh satisfies
40’ +16h2+1=0.

Consequently we get the implicit solution

log(—sin(v+x)) N log(seqv—x))

7 2 —t—ks=0.
In [21] it also appear in explicit form
e¥stan(x) + e*
_ ks
u - (2.15)

4et+4kscoshx)sinh(x) + €8t — eBka”

3 Nonclassical symmetriesfor PDE (1.19)

To obtain nonclassical symmetries of (1.19), we requiré tiwa PDE (1.19) and the invariance
surface condition

U+ T — =0, (3.1)
which is associated with the vector field
V:E(X7t7u)dx+r(x7t7u)at+(p(x7t7u)du7 (3'2)

are both invariant under the transformation with infinitesi generator (3.2). We can distinguish
two different cases:

Case 1 # O,without loss of generality, we may setx,t,u) = 1. The nonclassical method applied
to (1.19) recover the Lie classical symmetries.

Case 1 = 0, without loss of generality, we may s&t= 1 and we get that the determining equation
for the infinitesimalg is

(W)@ + f'(u) (3p@ + 207 @) + f(U) (B + 20Gu+ P* Q) — @ = 0=0. (3.3)

This determining equation first appeared in [10]. In pritei@ny f (u) yields solutions of (3.3)
Thus we proceed, by making an ansatz on the form(gft,u), to solve (3.3).
3.1 For f(u) = 1. Choosingg = (W7 + u)(a(x,t)u+ B(x,t)), with a = —& and 3 = y after

wiu’
substituting into the determining equation and splittinghwespect tai we obtain that functions

¢ andy must satisfy the following conditions
& = 0 (3.4)
—ZEWX+4}t_Et—EEx = 0, (3-5)
2Py — S+ + &P +éx = O, (3.6)
—Pxt+ Py = 0 (3-7)
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These conditions are precisely conditions (2.6-2.9) if asume thaé andy do not depend om.
Consequently we can state:

W= &(X,1)0+ & + P(x,1)0y + (Py — &xu)y
is a generator for systerfi.20)if and only if

V =0+ (=& (X, u+ YP(x,t)) (W +u)

is a generator for equatiofil.19). Consequently if we set= 0 in generators 2.1.1,...,2.1.4 these
generators yield solutions that can be derived from nosidak symmetries witlt = 0 of the
original PDE (1.19) .

4 Concluding remarks

We propose a modification to the nonclassical potentiaksysipproach, which unlike the non-
classical potential equation approach givesufficient and necessagondition in order to see
if a generator is a nonclassical potential generator or Y. prove that the nonlinear diffusion
equation (1.19) wherf (u) = 1/(aw? + bu), with a andb arbitrary constants admits nonclassical
potential symmetries. These symmetries can be derivedtiieroorresponding nonclassical sym-
metries of the associated potential system (1.20) by riegué, = ¢, = 0. We show that if we
assume tha€, = (), = 0 these generators yield nonclassical potential solutidr(¢.19) which
can be derived from the nonclassical symmetries withO of the original PDE (1.19).
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