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Abstract

In this paper we consider a class of equations that model diffusion. For some of these equa-
tions nonclassical potential symmetries are derived by using a modified system approach.
These symmetries allow us to increase the number of exact known solutions. These solutions
are unobtainable from classical potential symmetries derived by using the so called natural
potential system nor from nonclassical symmetries of the given partial differential equation.

1 Introduction

There is no existing general theory for solving nonlinear partial differential equations and the
methods of point transformations are a powerful tool. Some of the most useful point transforma-
tions are those which form a continuous group. Lie classicalsymmetries admitted by nonlinear
partial differential equations (PDE’s) are useful for finding invariant solutions. There have been
several generalizations of the classical Lie group method for symmetry reductions. Bluman and
Cole [4] developed the nonclassical method to study the symmetry reductions of the heat equation.
The basic idea of the method is to require that theN order PDE

∆ = ∆
(

x, t,u,u(1)(x, t), ...,u(N)(x, t)
)

= 0, (1.1)

where(x, t) ∈ R
2 are the independent variables,u ∈ R is the dependent variable andu(l)(x, t)

denote the set of all partial derivatives ofl order ofu and the invariance surface condition

ξ ux + τut −φ = 0, (1.2)

which is associated with the vector field

v = ξ (x, t,u)∂x + τ(x, t,u)∂t + φ(x, t,u)∂u, (1.3)

are both invariant under the transformation with infinitesimal generator (1.3). We remark that
nonclassical symmetries are not symmetries of a given PDE system, they are only symmetries for
a subset of all solutions, namely those which satisfy invariant surface conditions. Since the authors
published [4], a great number of papers have been devoted to the study of nonclassical symmetries
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of nonlinear PDE’s in both one and several dimensions. The relationship of the reduction methods
for evolution equations based on invariant surface conditions related to functional separation of
variables with nonclassical and weak point symmetries is stressed in [26].

In [6, 7] Bluman introduced a method to find a new class of symmetries for a PDE. Suppose a
given PDE of second order

F(x, t,u,ux,ut ,uxx,uxt,utt) = 0, (1.4)

where the subscripts denote the partial derivatives ofu, can be written as a conservation law

D
Dt

f (x, t,u,ux,ut)−
D
Dx

g(x, t,u,ux,ut) = 0, (1.5)

for some functionsf andg of the indicated arguments. HereDDx and D
Dt are total derivative opera-

tors defined by

D
Dx

=
∂
∂x

+ux
∂

∂u
+uxx

∂
∂ux

+uxt
∂

∂ut
+ . . . , (1.6)

D
Dt

=
∂
∂ t

+ut
∂

∂u
+uxt

∂
∂ux

+utt
∂

∂ut
+ . . . . (1.7)

Through the conservation law (1.5) one can introduce an auxiliary potential variablev and form
an auxiliary potential system

vx = f (x, t,u,ux,ut), (1.8)

vt = g(x, t,u,ux,ut).

We remark that for a given system, one can finds sets of nonlocally related systems, which include
potential systems obtained from various conservation lawsand subsystems obtained by excluding
dependent variables [5]. For example, for many physical equations one can eliminateu from the
potential system (1.8) and form an auxiliary integrated or potential equation

G(x, t,v,vx,vt ,vxx,vxt,vtt) = 0, (1.9)

for some functionG. Any Lie group of point transformations

v = ξ (x, t,u,v)
∂
∂x

+ τ(x, t,u,v)
∂
∂ t

+ φ(x, t,u,v)
∂

∂u
+ ψ(x, t,u,v)

∂
∂v

, (1.10)

admitted by (1.8) yields a nonlocal symmetrypotential symmetryof the given PDE (1.5) if the
following condition is satisfied

ξ 2
v + τ2

v + φ2
v 6= 0. (1.11)

We point out that if we consider a Lie group of point transformations

w = ξ (x, t,v)
∂
∂x

+ τ(x, t,v)
∂
∂ t

+ ψ(x, t,v)
∂
∂v

, (1.12)

admitted by (1.9) the condition

ξ 2
v + τ2

v 6= 0 (1.13)
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is asufficientbut notnecessarycondition in order to yield nonlocal symmetries of (1.5).
Knowing that an associated system to the Boussinesq equation has the same classical symme-

tries as the Boussinesq equation, Clarkson [11] proposed asan open problem if an auxiliary system
of the Boussinesq equation does posses more or less nonclassical symmetries than the equation it-
self. Bluman claims [3] that the ansatz to generate nonclassical solutions of the associated system
could yield solutions of the original equation which are neither nonclassical solutions nor solu-
tions arising from potential symmetries. In [10] two algorithms were proposed which extend the
nonclassical method to a potential system (1.8) or a potential equation (1.9):

• Algorithm I Nonclassical potential system approach: The nonclassical method is applied to
the associated potential system (1.8). Any Lie group of point transformations

v = ξ (x, t,u,v)
∂

∂x
+ τ(x, t,u,v)

∂
∂ t

+ φ(x, t,u,v)
∂

∂u
+ ψ(x, t,u,v)

∂
∂v

, (1.14)

admitted by (1.8) yields a nonlocal symmetrypotential symmetryof the given PDE (1.5) if
the following condition is satisfied

ξ 2
v + τ2

v + φ2
v 6= 0. (1.15)

• Algorithm II Nonclassical potential equation approach: The nonclassical method is applied
to the associated potential equation (1.9). Any Lie group ofpoint transformations

X = ξ (x, t,v)
∂
∂x

+ τ(x, t,v)
∂
∂ t

+ ψ(x, t,v)
∂
∂v

(1.16)

admitted by (1.9) yields a nonlocal symmetrypotential symmetryof the given PDE (1.5) if
the following condition is satisfied

ξ 2
v + τ2

v 6= 0. (1.17)

Algorithm I has been considered in Bluman and Shtelen [9] andSaccomandi [28], Algorithm
II has been considered in [16] for a dissipative KdV equation, but neither of these papers exhibited
nonclassical potential solutions.

The nonclassical symmetries for the Burgers have been considered in [1], [24]. Thenonclas-
sical potentialsymmetries for the Burgers equation have been derived in [14] as nonclassical
symmetries of the integrated equation (Algorithm II).

In [23] Priestly and Clarkson found that the solutions arising from the nonclassical symmetries
of the associated potential system of the shallow water equation were obtainable by the nonclassi-
cal symmetries of the shallow water equation. Consequently, it remained as an open problem the
existence of nonclassical potential symmetries, in the sense that they lead to new solutions.

The existence of nonclassical potential symmetries, in thesense that they lead to new solutions
was proved in [18] and [19] for the Fokker-Planck equation

ut = uxx+[ f (x)u]x. (1.18)

The classical symmetries for (1.18) were derived in [7]. Theclassical potential symmetries were
derived by Pucci and Saccomandi in [25]. We have studied in [18], [19] the nonclassical symme-
tries of the Fokker-Planck equation, as well as thenonclassical potential symmetries. We found
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a class of functionsf (x) for which equation (1.18) does not admit, classical Lie symmetries,
nonclassical symmetries nor classical potential symmetries but it admits nonclassical potential
symmetries.

The diffusion processes appear in many physics processes such as plasma physics, kinetic
theory of gases, solid state, metallurgy and transport in porous medium [2, 22, 27]. One of the
mathematical models for diffusion processes is the nonlinear diffusion equation

ut = [ f (u)ux]x. (1.19)

In (1.19)u(x, t) is a function of positionx and timet and may represent the temperature. Rosenau
[27] presented a number of remarkable features of the fast diffusion processes; forf (u) = un, and
−2≤ n≤ −1, the family of fast diffusion (1.19) coexists with a subclass of superfast diffusions
where the whole process terminates within a finite time. The special case withn = −1 emerges
in plasma physics and reveals a surprising richness of a new physical-mathematical phenomenon.
Equation (1.19) is already in a conserved form. Correspondingly, we have the so callednatural
potential system

vx = u,
vt = f (u)ux

(1.20)

and the potential equation

vt = f (vx)vxx. (1.21)

In [17], we have derivednonclassicalandnonclassical potentialsymmetries for (1.19) withf (u) =
u−1 by considering the nonclassical symmetries of system (1.20). In [10] the nonclassical method
has been applied to equation (1.21).

In [10] it was pointed out that often the nonclassical methodwhen it is applied to the potential
system (Algoritm I) yields a set of undetermined determining equations while the nonclassical
method it is much easier to apply to the potential equation (Algorithm II).

However we point out that a great disadvantage of Algoritm IIis that condition (1.17) is a
sufficientbut not necessarycondition in order to see if a generator is a nonclassical potential
generator or not. In fact we exhibit several nonclassical potential generators which do not satisfy
(1.17).

The aim of this paper is to propose a modification to the nonclassical potential system approach,
in a way in which is easy to apply and we can give asufficient and necessarycondition in order to
see if a generator is a nonclassical potential generator. Note that if the generator considered is not
a nonclassical potential generator then no new solutions are found, i.e. all such solutions can be
obtained from the nonclassical method applied to the given PDE (1.5).

• Modified Algorithm I Modified nonclassical potential systemapproach: The nonclassical
method is applied to the associated potential system (1.8).Any Lie group of point transfor-
mations

v = ξ (x, t,v)
∂
∂x

+ τ(x, t,v)
∂
∂ t

+ φ(x, t,u,v)
∂

∂u
+ ψ(x, t,v)

∂
∂v

, (1.22)

admitted by (1.8) yields a nonlocal symmetrypotential symmetryof the given PDE (1.5) if con-
dition (1.15) is satisfied. In [15] the nonclassical potential symmetries for the Burgers equation
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were derived as nonclassical symmetries, withξu = ψu = 0, of the potential associated system
(Modified Algorithm I).

In this paper we apply the modified potential system approachto (1.19) and, for f (u) =
1/(au2 +bu), we obtain new nonclassical potential generators as well asnew solutions.

2 Nonclassical symmetries for system (1.20)

We now consider the associated auxiliary system (1.20) augmented with the invariance surface
condition

ξ vx + τvt −ψ = 0, (2.1)

which is associated with the vector field

w = ξ (x, t,u,v)∂x + τ(x, t,u,v)∂t + φ(x, t,u,v)∂u + ψ(x, t,u,v)∂v. (2.2)

The nonclassical method, withτ 6= 0, applied to (1.20), gives rise to nonlinear determining equa-
tions for the infinitesimals. These determining equations first appeared in Saccomandi [28] and
are undetermined since they involve two equations in three unknownsξ (x, t,u,v), φ(x, t,u,v) and
ψ(x, t,u,v). Consequently, anyf (u) yields in principle an infinite number of nonclassical sym-
metries. In [10] the authors say that they have been unsuccessful in finding a specific solution
yielding a nonclassical symmetry that is not derivable froma point symmetry admitted by the po-
tential system (1.20). The point symmetries admitted by thepotential system (1.20) are given in
Bluman and Kumei [7] and Blumanet al. [8]. If we require thatξu = ψu = 0, (Modified Algorithm
I) we obtain that

φ = −ξvu
2 +(ψv−ξx)u+ ψx (2.3)

where f (u), ξ (x, t,v) andψ(x, t,v), must satisfy the following equation:

[−ξ ξvu3 +(ξvψ −ξ ξx+ ξ ψv)u2 +(ξxψ −ψψv + ξ ψx)u−ψψx] f ′(u)
+[−2ξ ξvu2 +(2ξvψ −2ξ ξx−ξt)u+2ξxψ + ψt ] f (u)

+[ξvvu3 +(2ξxv−ψvv)u2 +(ξxx−2ψxv)u−ψxx] f 2(u) = 0.
(2.4)

Equation (2.4) coincides with the equation derived by applying the nonclassical method to the
potential equation [10] and since equation (2.4) must hold for all valuesx, t, v andu it follows that
f (u) must satisfy a first order Bernouilli equation with variablecoefficients. Moreover, from (2.3)
we get that (1.15) is satisfied if and only if

ξ 2
v + ψ2

vv+ ψ2
xv 6= 0. (2.5)

When f (u) = 1/(au2 +bu) we get thatξ andψ are related by the following conditions

−2aξ ψv−aξt + ξvv−bξ ξv = 0, (2.6)

−2aξ ψx−ψvv+2aψψv−bξ ψv +aψt +bξvψ −bξt −bξ ξx +2ξvx = 0, (2.7)

2aψψx−bξ ψx−2ψvx+bψψv +bψt + ξxψ + ξxx = 0 (2.8)

−ψxx+bψψx = 0. (2.9)

Despite the fact that the former equations are too complicated to be solved in general, special
solutions can be obtained.
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2.1 If b = 1 and a = 1

2.1.1 For

ξ = −2α(c−2d)tanh[α(cv+dx)+ β ], τ = 1 ψ = −2αdtanh[α(cv+dx)+ β ].

Settingd = 1 the similarity variablez= x−(c−2)v and the family of invariant solutions is defined
implicitly by

log sinh(α(z+2cv−2v)+ β )+ (t +h(z))4α2(c−1) = 0,

whereh satisfies the ODE

4(c−1)h′′−16α2(c−1)2(h′)2 +1 = 0, (2.10)

whose solution is

h(z) =
1

4α2(c−1)
log(sech(α(z+k1)))+k2. (2.11)

Therefore, the family of invariant solutions is defined, implicitly, by

log sinh(α(x+cv)+ β ))+ log sech(α(x+(2−c)v+k1)))+ (t +k2)4α2(c−1) = 0.

For c 6= 0 after settingα = bγ , c = 2− 1
2γ , the family of invariant solutions can also be written

as

eb2(4γ2−2γ)(t+k2)sinh(b(2γ −
1
2
)v+bγx+ β )sech(

1
2

bv+bγx+bk1γ)−1 = 0.

For c = 2 we get the explicit solution

v =
1

2α
[asinh(e−4α2(t+k2)cosh(α(x+k1))−αx−β ].

2.1.2 For

ξ = −2α(c−2d)cotanh[α(cv+dx)+ β ], τ = 1 ψ = −2αdcotanh[α(cv+dx)+ β ].

Settingd = 1 the similarity variablez= x− (c− 2)v and the family of invariant solutions is
defined implicitly by

−log cosh(α(z+2cv−2v)+ β )− (t +h(z))4α2(c−1) = 0,

whereh satisfies the ODE (2.10) whose solution is (2.11). Therefore, the family of invariant
solutions is defined, implicitly, by

−log cosh(α(x+cv)+ β ))− log sech(α(x+(2−c)v+k1)))− (t +k2)4α2(c−1) = 0.

For c 6= 0 and settingα = bγ , c = 1
2γ , k1 = k

bγ the family of invariant solutions can also be
written as

eb2(4γ2−2γ)(t+k2)cosh(b(2γ −
1
2
)v+bγx+k)sech(

1
2

bv+bγx+ β )−1= 0.
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For c = 2 we get the explicit solution

v =
1

2α
[acosh(e−4α2(t+k2)cosh(α(x+k1))−αx−β ].

2.1.3 For

ξ = 2α(c−2d)tan [α(cv+dx)+ β ], τ = 1, ψ = 2αdtan[α(cv+dx)+ β ],

settingd = 1 the similarity variablez= x−(c−2)v and the family of invariant solutions is defined
implicitly by

log sin(α(z+2cv−2v)+ β )+ (t +h(z))4α2(c−1) = 0,

whereh satisfies the ODE

4(c−1)h′′ +16α2(c−1)2(h′)2 +1= 0

whose solution is

h(z) = k2−
1

4α2(c−1)
log(sec(α(z+k1))).

Therefore, the family of invariant solutions is defined, implicitly, by

log sin(α(x+cv)+ β ))+ log sec(α(x+(2−c)v+k1)))− (t +k2)4α2(c−1) = 0.

2.1.4 For

ξ = −2α(c−2d)cotan[α(cv+dx)+ β ], τ = 1, ψ = −2αdcotan[α(cv+dx)+ β ],

settingd = 1 the similarity variablez= x−(c−2)v and the family of invariant solutions is defined
implicitly by

log(cos(2α(z+2cv−2v)+2β )+1)− (t +h(z))8α2(c−1)− log(2) = 0.

whereh satisfies the ODE (2.10).
2.1.5 For

ξ = [2α tan(α(v+ct)+b))−c], τ = 1, ψ = c,

the similarity variablez= v−ct and the family of invariant solutions is defined implicitly by

log cos2(α(z+2ct+b)+2c(x+ct−h(z)) = 0,

where f satisfies the ODE

ch′′ +c2(h′)2 +2c2h′ +c2 + α2 = 0.

Therefore, the family of invariant solutions is defined, implicitly, by

log cos(2α(v+ct+b)+1)+2log sec(α(v−ct+k1)))− log(2)+c(2(x+v−k2)) = 0.

2.1.6 For
ξ = −2αcotan(α(v+ct)+b))−c, τ = 1, ψ = c,
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the similarity variablez= v−ct and the family of invariant solutions is defined implicitly by

−log sin(α(z+2ct +b)−c(x+ct+h(z)) = 0,

where f satisfies the ODE

ch′′−c2(h′)2 +2c2h′−c2−α2 = 0,

whose solution is

h =
1
c
[log sec(a(z+k1))+cz]+k2.

Therefore, the family of invariant solutions is defined, implicitly, by

−log sin(α(v+ct+b))− log sec(α(v−ct+k1)))−c(x+v+k2) = 0.

2.1.7 For
ξ = −2α tanh(α(v+ct)+b))−c, τ = 1, ψ = c,

the similarity variablez= v−ct and the family of invariant solutions is defined implicitly by

−log cosh(α(z+2ct+b)−c(x+ct+h(z)) = 0,

where f satisfies the ODE

ch′′−c2(h′)2 +2c2h′−c2 + α2 = 0, (2.12)

whose solution is

h =
1
c
[log sech(a(z+k1))+cz]+k2. (2.13)

Therefore, the family of invariant solutions is defined, implicitly, by

−log cosh(α(v+ct+b))− log sech(α(v−ct+k1)))−c(x+v+k2) = 0.

2.1.8 For
ξ = −2αcotanh(α(v+ct)+b))−c, τ = 1, ψ = c,

the similarity variablez= v−ct and the family of invariant solutions is defined implicitly by

−log sinh(α(z+2ct+b)−c(x+ct+h(z)) = 0,

where f satisfies (2.12) whose solution is (2.13). Therefore, the family of invariant solutions is
defined, implicitly, by

−log sinh(α(v+ct+b))− log sech(α(v−ct+k1)))−c(x+v+k2) = 0.

2.1.9 For

ξ =
2(2−c)
x+cv

, τ = 1 ψ =
−2

x+cv
,

the similarity variablez= x+(2− c)v and the family of invariant solutions is defined implicitly
by

v2 +xv+2(t + f (z)) = 0
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whereh satisfies the ODEh′′ = 0. Therefore, the family of invariant solutions is defined, by

v = ±
1
2
[(x2−4ck1x−8(t +k2)+4(c−2)2k2

1)
1/2−x+(2c−4)k1].

2.1.10 For

ξ =
2(2b−1)

bx+v
, τ = 1, ψ =

−2b
bx+v

,

the similarity variablez= x+(2− c)v and the family of invariant solutions is defined implicitly
by

v2 +xv+2(t +h(z)) = 0,

whereh satisfiesh′′ = 0. Therefore, the family of invariant solutions is defined, by

v = ±
1
2
[(x2−4k1x−8(t +k2)+4(2b−1)2k2

1)
1/2−x+2(1−2b)k1].

We point out that the corresponding generators2.1.1,. . . ,2.1.4 for c = 2d do not satisfy (1.17)
however they are nonclassical potential generators due to the fact that in all of them (2.5), and
consequently (1.15) are satisfied.

2.2 b = 0 and a = 1

the equation becomesvt =
vxx

v2
x

and may be linearized and transformed into the linear heat equation.

Hence a nonclassical point symmetry of the linear diffusionequation is a nonclassical nonlocal
symmetry of (1.19).

2.3 a = 0 and b = 1

Equation (1.19) has been considered in [17] and [20]. In [17], although unfortunately there appear
some misprints in the generators, we have derived the following nonclassical potential reductions
and solutions:
2.3.1

ξ = 2tan(v+kt+k1), τ = 1, ψ = k,

The similarity variablex = v−kt and the family of invariant solutions is defined implicitly by

log sec(z−2v−c)
k

−x−h(z) = 0,

whereh satisfies the ODE
kh′′−k2(h′)2−1 = 0.

Therefore, settingζ = v+kt, the family of invariant solutions is defined, implicitly, by

−x+
logsec(ζ +k1)

k
−

log sec(z+k2)

k
−k3 = 0.

2.3.2 From generator

ξ = 2tan(x+v), τ = 1, ψ = 2tan(x+v),
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we obtain the independent variablez= v−x and the implicit solution

−t −h(z)+
log(sin(z−2v))

4
= 0, (2.14)

whereh satisfies
4h′′ +16h′2 +1= 0.

Consequently we get the implicit solution

log(−sin(v+x))
4

+
log(sec(v−x))

4
− t −k3 = 0.

In [21] it also appear in explicit form

v = k4−atan

(

e4k3tan(x)+e4t

e4t tan(x)+e4k3

)

,

u =
e8t −e8k3

4e4t+4k3cosh(x)sinh(x)+e8t −e8k3
. (2.15)

3 Nonclassical symmetries for PDE (1.19)

To obtain nonclassical symmetries of (1.19), we require that the PDE (1.19) and the invariance
surface condition

ξ ux + τut −φ = 0, (3.1)

which is associated with the vector field

v = ξ (x, t,u)∂x + τ(x, t,u)∂t + φ(x, t,u)∂u, (3.2)

are both invariant under the transformation with infinitesimal generator (3.2). We can distinguish
two different cases:
Case τ 6= 0,without loss of generality, we may setτ(x, t,u) = 1. The nonclassical method applied
to (1.19) recover the Lie classical symmetries.
Case τ = 0, without loss of generality, we may setξ = 1 and we get that the determining equation
for the infinitesimalφ is

f ′′(u)φ3 + f ′(u)(3φφx +2φ2φu)+ f (u)(φxx+2φφxu+ φ2φuu)−φt = 0 = 0. (3.3)

This determining equation first appeared in [10]. In principle, any f (u) yields solutions of (3.3)
Thus we proceed, by making an ansatz on the form ofφ(x, t,u), to solve (3.3).
3.1 For f (u) = 1

u2+u. Choosingφ = (u2 + u)(α(x, t)u+ β (x, t)), with α = −ξ andβ = ψ after
substituting into the determining equation and splitting with respect tou we obtain that functions
ξ andψ must satisfy the following conditions

ξt = 0, (3.4)

−2ξ ψx + ψt −ξt −ξ ξx = 0, (3.5)

2ψψx−ξ ψx + ψt + ξxψ + ξxx = 0, (3.6)

−ψxx+ ψψx = 0. (3.7)
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These conditions are precisely conditions (2.6-2.9) if we assume thatξ andψ do not depend onv.
Consequently we can state:

w = ξ (x, t)∂x + ∂t + ψ(x, t)∂v +(ψx−ξxu)∂u

is a generator for system(1.20) if and only if

v = ∂x +(−ξ (x, t)u+ ψ(x, t))
(

u2 +u
)

∂u

is a generator for equation(1.19). Consequently if we setc= 0 in generators 2.1.1,. . . ,2.1.4 these
generators yield solutions that can be derived from nonclassical symmetries withτ ≡ 0 of the
original PDE (1.19) .

4 Concluding remarks

We propose a modification to the nonclassical potential system approach, which unlike the non-
classical potential equation approach gives asufficient and necessarycondition in order to see
if a generator is a nonclassical potential generator or not.We prove that the nonlinear diffusion
equation (1.19) whenf (u) = 1/(au2 + bu), with a andb arbitrary constants admits nonclassical
potential symmetries. These symmetries can be derived fromthe corresponding nonclassical sym-
metries of the associated potential system (1.20) by requiring ξu = ψu = 0. We show that if we
assume thatξv = ψv = 0 these generators yield nonclassical potential solutionsof (1.19) which
can be derived from the nonclassical symmetries withτ ≡ 0 of the original PDE (1.19).
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