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Abstract

We solve an initial-boundary problem for the Klein-Gordajuation on the half line using
the Riemann-Hilbert approach to solving linear boundatyearoblems advocated by Fokas.
The approach we present can be also used to solve more categlisoundary value prob-
lems for this equation, such as problems posed on time-diep¢domains. Furthermore, it
can be extended to treat integrable nonlinearisationssoktein-Gordon equation. In this re-
spect, we briefly discuss how our results could motivate @hogatment of the sine-Gordon
equation.

1 Introduction

In this paper we consider two important equations of mathieadaphysics, the Klein-Gordon
equation in one space dimension

Ot (X,1) — Okx(X, 1) +a(x,t) =0, (1.2)

and an integrable nonlinearisation of this equation knosvtha sine-Gordon equation
Gt (th) - qXX(th) + Sinq(xvt) =0. (12)

We consider these equations posed on the halfXine0, and solve the initial-boundary value
problem obtained by prescribing the following set of idifad boundary conditions:

a(%,0) =ao(x), G(x,0) =aqu(x), x>0, 1.3)
q(0,t) = fo(t), t>0, Qq(Xt) —t—eO. (1.4)

To avoid any technical issue not of immediate interest is fi@Eiper, we assume that all prescribed
functions belong to the Schwarz class.

In principle, the Klein-Gordon equation could be solved bgaration of variables and an applica-
tion of an appropriate Fourier transform. However, we pneaesolution of the Dirichlet boundary
value problem posed on the half line using a different apgrod his approach follows a general
method for solving boundary value problems for linear PDEsvio dimensions, first proposed by
Fokas (see e.g. [2, 3]).
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The Fokas transform method has two important advantagegsimelassical approaches. Firstly,
it can be used to solve complicated boundary value probleotd) as problems posed on time
dependent domains. Secondly, it nonlinearises, in theesttrad the same steps used to analyse
the linear equation can be used for the analysis of any reanlintegrableversion of the same
equation. This is similar to the celebrated inverse sdatjetransform for the solution of the
Cauchy problem for integrable nonlinear PDEs.

Using this approach, we prove the following result.

Theorem 1.1. Consider the Klein-Gordon equation (1.1), forx0 and t > 0. Assume that there
exists a unique solution of the boundary value problem abthby prescribing the initial condi-
tions (1.3) and the boundary conditions (1.4).

Then this solution is given by the following expression:

qxt) = 4_;, /R éki{ék#[ql(k,)+ik+q0(lg)] —e*ik”[dl(lt)—ik+qo(kf)]} %

t <X

1 ik xtik,trA ooa ik x—ik. t (A L. kdk
Q0ct) = g [ {0 + ik oo )] — € R c) —iks ()] | 1
1 K X—ik trf N fl kdk
+4m_ Flel [f1(—ky) +ik_ fo( k+)]l—|—k2
1 koxrikit g o kdk
+ a7 r2e' [f1(ky)+ik- fo(k+)]1+k2, X<t, (1.5)
where the function;ft) is given by
1 Ko tra oA Cikutra o
) = o [ Ak )ik Go(k )]+ e au(k ) — ik, Go(k )} ok
mJRr
1/ ok £ R Y AR ol
+4n r2e' ik_ fo(k; )dk 47T/rle ik_ fo(—k; )dk— 2fy(t). (1.6)
In these expressiong(k) denotes the usual Fourier transform of the functigr)g
909 = [ e igixjdx
0
k_,k, are functions of the complex parameter k defined by,
1 1 1 1
and[l{ andl , are the oriented contours
M = (—o0, =1 U{|k| = 1,Im(k) > 0} U[1, ) (left to right), (1.8)
M=—-[-11JuU{lkl=1,Imk) >0}  (clockwise). (1.9)

Note that the functiorf1(t) denotes the unknown boundary value of the solutioxn-al0, namely
f1(t) = gu(0,1).

The analogous boundary value problem for the sine-Gordaatem (1.2) has been considered in
[4, 5, 11, 14]. At the end of this paper, we propose an altematay of solving this nonlinear
equation, motivated by the solution of the correspondingdrised problem presented here.
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The Fokas transform method is based on the formulation ofieati or nonlinear PDE as the
compatibility condition of a pair of linear eigenvalue etjoms, called theLax pair [6]. The
spectral analysis of this pair yieldsRiemann-Hilbert problermmwhich is scalar in the linear case
and matrix-valued in the nonlinear case. The solution &f Riemann-Hilbert problem yields a
formal representation of the solution of the boundary vaiulem.

In the case of evolution and elliptic PDESs, the derivatiorapfeffectivesolution of a boundary
value problem (i.e. a representation of the solution in seomly of the given initial and bondary
conditions) involves not only the analysis of the Lax pairt also the analysis of a relation cou-
pling all initial and boundary values, called tgbal relation[3].

In this paper, we present the application of this method ¢octise of lineahyperbolicPDESs. It
appears that, for hyperbolic equations, an effective smiutf boundary value problems in time-
independent domains can be obtained by analysing the Laxopbi, as long as the Lax pair
selected is of second order. Indeed, this second order Liexgiges rise to two first-order pairs.
The analysis of these two pairs can be combined to yield actafé representation of the solution,
without resorting to the global relation. The same idea Gaaiended to the analysis of the sine-
Gordon equation. The Dirichlet problem on the half line fuistnonlinear integrable equation is
usually solved using just one Lax pair and the global refatibhe Lax pair used is the nonlinear
version of one of the two first-order Lax pairs of the lineaslpgem. We propose instead to use the
nonlinear version of both first-order Lax pairs.

This paper is organised as follows. In section 2, we deriveva pair formulation of the Klein-
Gordon equation as well as a variant of the Fourier transfeshich we will need later. In section
3, we prove the theorem 1.1. Finally, in section 4, we dis¢issmplications of our results for
the case of the sine-Gordon equation.

2 Lax pairsand variantsof the Fourier transform

2.1 Thelax pair formulation

Any linear PDE with constant coefficients in two variables dge written as the compatibility
condition of a pair of ODES, called a Lax pair of the PDE. Thprapch for the construction of a
Lax pair proposed in [3] assumes that the ODE in the varialdeof the form

Ux(X,t,K) —ikp(x,t,k) = q(xt), keC,

whereq(x,t) denotes the solution of the PDE and then yields algorithifyiean ODE int. Using
this approach and performing an appropriate change of thetrsph parametek we derive the
following Lax pair of the Klein-Gordon equation:

ux(xvtvk) - l2 <k_ %) U(thv k) - q(X,t), (2'1)

. 2 .
Hie (X, t,K) 4 411, (k+ %) H(XtK) = ox(X,t) + |§ (k— %) q(x,t), (2.2)

wherepu(x,t,K) is a real function.
Writing (2.2) as a first order differential system and diagj@ing thet-part of this system, we
obtain

() C0%P L) ()-(5kls) e
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where

— L 1 _
{ V1= [k |2 (k+ li) u, so thatu(x,t,k) _ VZ(thvik) \il(xvtvk) ] (24)
Vo=t + 5 (k+ ) p i (k+1)

Computing thex-derivative ofvy, v, we find that each of these two functions satisfy a Lax pair,
namely

~

<

iy

Il

No]
N[—=N|—
~ X

E) 9 (2.5)
k

_.l_
~NlPx|=
~—

<

iy

Il
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X

+ |

(v2x—5 (k=) vo=+5 (k+§)q
{ (V2)t — 3 (k+ &) vo = O+ 5 (k— ) @ (2.6)

Note that the Klein-Gordon equation can be obtained as thepatbility condition of either of
the two Lax pairs (2.5) and (2.6). Hence one possible way tbtfie solution is to analyse either
of these Lax pairs. This procedure yields two integral repnéations fog(x,t). These represen-
tations involve both boundary valug§0,t) andgy(0,t) of the solution. Since only one boundary
condition can be prescribed at= 0, these representations are not effective. To determime th
unknown boundary value each of these representations rawstgplemented by the global rela-
tion. Alternatively, we show below that lgombining botithese representations, it is possible to
compute explicitly the unknown boundary valé@houtinvoking the global relation.

Remark 2.1. Following [13], the Lax pair for the sine-Gordon equatiomtthusually appears in
the literature (see equation (4.1)) can be obtained in arithgnic way starting from the Lax pair
(2.6). In section 4, we discuss the implications of this factthe solution of the sine-Gordon
equation on the half line.

2.2 Variantsof the Fourier transform

To derive an effective representation of the solution oftithendary value problem for the Klein-
Gordon equation on the half line, we use a variant of the eotransform. This variant can be
obtained by a change of variable in the Fourier inversioords® and an appropriate manipulation
of the contours of integration. We present however an atems, direct derivation of this variant
of the Fourier transform by means of the spectral analysanaippropriate ODE. This approach
offers a systematic way of deriving precisely the necessansform for the solution of the Klein-
Gordon equation. In addition, it generalises to more corapdid boundary value problems for
which the Fourier transform would not suffice, for exampleah be used to analyse boundary
value problems posed on time-dependent domains [7].

Proposition 2.1. Let f(t) € .#[0,), and define the function (k), k € C, by

F(k):/o e kD3t (g)ds 2.7)
Then
1 Lkt 1 1kt
f(t)zﬁ/r et DF (—ldk— 4 [ et DR (kdk (2.8)
1 2

wherel ; andTl, are the oriented contours given by (1.8)-(1.9).
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In this statement? denotes the Schwarz space of infinitely differentiable fians, rapidly de-
caying ad — oo.

Proof (sketch): We follow the approach reviewed in e.g. [12]. We derive ttansform pair
(2.7)-(2.8) by considering the ODE

i 1
o (t,k) + > <k+ E) o(t,k)=f(t), keC.
and seeking a solutiof (t,k) of it that is sectionally analytic, and bounded for lak C. This

solution can be found by solving a scalar Riemann-Hilbeobfam on the countour determined

by the equation
Im(k+ %) =0.

Solving this Riemann-Hilbert problem we obtain the follogiintegral representation fgr(t, k):

_ 1 — S (k+E)te dk 1 — 5 (kg )te dk
d(t,A) = o rle 2K R ( k)k—)\+2m' yze 2T ( k)k—)\’
wherel 1 is given by (1.8) and
yo=—[-11U{lkl =1,Im(kk) <0} (clockwise) (2.9)

Computingd; + 5 (A + 1) ¢ we obtain forf (t) the expression

£(t) :%T/rle‘lz(kJ“%)tF(—k)dk—%T/yze—ii(”%)tF(—k)dk

Equation (2.8) follows after letting — —k in the integral alongs.
QED

Remark 2.2. Similarly to the above analysis or by a change of variabledh@Rourier inversion
theorem we derive the following result: Léft) € .7’[0,), and define the functioR_ (k), k € C,
by

F_(k):/ e 20 D3t (gds (2.10)
0
The inversion formula for this transform is

f(x) = %T /R ez XF_(k)dk (2.11)

3 TheDirichlet problem for the Klein-Gordon equation

In this section, we prove theorem 1.1.
Proof of theorem 1.1: We consider the two Lax pairs (2.5)-(2.6).
Any solution of the Lax pair (2.5) is of the form

X . t
itk = [ €0 (g kg ()dy+ @ [ e 3 (gt k) (xo,91ds
X t
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and its asymptotic behaviour ks— 0 andk — <o is given by
vi = —q-2i(qk+a)k+O(K), k-0,

Vi = q+0(%>, K — oo, (3.1)
The general choice of;, t. that yields data determining an appropriate Riemann-#ilpe@blem
is given in [3]. To determine such a problem one needs saisitid with prescribed decay at
infinity, each of which is analytic and boundedknn a subdomairD; of the complex plané,

such that the domair®; do not overlap antl); D; = C. In the present case, we obtain the three
particular solutions of (2.5)

X | . © .

vto= /0ék*(xfy)(qt—ik+q)(y,t)dy—é“ /t e 9 (g +ik_q)(0,9)ds
X . . t

it = /0ék*x*y)(qt—ik+q><y,t>dy+ék*x /o e k(-9 (g + ik_q)(0,5)ds

i = = [ (g -ikaytdy

Indeed, the functioni;"*, considered as a function of the complex variaklés bounded and
analytic inC* \ By, the functionvlz’+ is analytic inC* N By while v; is bounded and analytic in
C—, whereB; is the unit disk inC.

Similarly, for the Lax pair (2.6) we obtain the following paular solutions

X . . t .
Vit = /oék’(X*th+ik+q><y,t)dy+ék’x/o ¢ ™9(q+ik 0)(0,5)ds ke C\By,
X . . ©
vt = /0ék’(x‘”(q{+ik+q)(y,t)dy—ék’x /t -9 (g+ik_q)(0,9ds ke C By,
vy = - & @rikamdy keC

We now define the three functions

vzj’+(x,t, k) — vlj’+(x,t, k)

j7+ = i e
prr(x,t,k) ok, , =12
_ V, (X,1,K) — vy (X t,K)

Equation (2.4) implies that the above formulae define thesqular solutions of the system (2.2)
which are bounded and analytic@" \ B;, C* NB; andC™ respectively, except for a simple pole
atk =i. In addition the functiong:>* and u~ are of ordero(%) ask — o in the respective
half planes. These functions determine a Riemann-Hilbetlpm with jumps alond andodB;.
These jumps are given by

gk xtikit .
B K T 0tk = [k ik fofk, )]
gk x—ikit R
+ T Ifi(—k) +ik_fo(—k.)), k=1 keCT,

2ik
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1 eik,x—&-ik+t R o
H 7Jr()(vt7|()_I"li(xvtvk) - 2ik [ql(k—)+|k+q0(k—)]
+
dkox—iket o
- T[Ql(h)—'kﬂo(h)]
gk x—ikit R
+ S [fi(—ks)+ik fo(—k.)), K =1 keR,
2ik
) gkoxtikit o
KOGt — o (6t k) = ———[Ga(k-) + ik Go(k-)]
+
gkox—ikit o
- zlkJr [ql(h) - IkJrqO(iL)]
ghoxtikit R
——[fi(ky) +ik_fo(ky)], —-1<k<1
2ik

The unique solution of this Riemann-Hilbert problem whislaiso a bounded solution of (2.2), is
given by

epk x+|k+t eik,x—ik+t R ) . dk
) = 5 [ { S+ ket S lauto) ko] 2
e|k,x kit ) R dk
+ﬁ rlw[fl(—kﬂu)ﬂk_fo(—kﬂ]m
eik,erik+t R ) R dk
+ﬁ r, 2Ik+ [fl(k+)+|k—f0(k+)]m7 (32)

where the contour§, j = 1, 2 are given by (1.8) and (1.9). Using (2.1), we finally obtam a
integral representation fay(x,t):

q(X,t) :4im./R{eikx+ik+t[ (k )+|k+q0( )] e|k X— |k+t[q (k_)—ik+C]o(k—)]}%
+% 5 ékxik+t[ﬂ(—k+)+ikfo(—h)]%

1 xrik. dk
+4—m 5 gkt f () ik fo(|(+)]I (3.3)

This formal representation contains the unknown functigi). We now show how to evaluate
this function explicitly.
We distinguish two case$:< x andt > x.

(@:x—t>0
In this case the exponentiaf€~—*+'e*+s, s> 0, is bounded and analytic in the region®f above
the contour ;. Indeed, this is the case fof¢€, while

. . . i . : ko
e|k,xf|k+t _ ég(xft)fi(xﬂ) |e|k,xf|k+t| _ efk—,}(xft)em (x+t)

so that the latter exponential is bounde#,it> 0 andk is away fromk = 0 . It follows by Jordan’s
lemma that

im [ SRR (k) 4ok =0 (3.4)
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whereCgr = {k € C* : |k| = R} with counterclockwise orientation. The integrand of thegmal
alongl'; appearing in (3.3) has a simple polekat i. Computing the residue at this pole, and
using (3.4), we obtain

1
ari Jr,

eIk X— |k+t[f ( k+)+lk fO( M)]% — %e*a[fl(O)—Zfo(O)].

Similarly, the exponentialle*tk+te~k+s s> 0, is bounded and analytic in the region bounded by
the contourl ,, where the integrand has a simple polek(ati). Hence,

1

dk 1 o - .
=g ©

3 =2 [f1(0) — 2fo(0)].

It follows that the contribution of the last two integrals(B13) cancels and we obtain

eIk X+Ik+t[f (k+)+lk fO(k+)]

dk

q(x,t>:4—}ﬂ. /R {r et o) + ik Go(k )] — & (ko) — ik ok )] | 5 o

(3.5)

(b):t—x>0

In this case, the contribution of the terms involving the taary values is not zero. To evaluate
this contribution explicitly, we take the derivative of tegpression (3.3) fog(x,t) with respect to
t and evaluate it at = 0. Thus we obtain

20(0,t) = %T /R { @ a0 ) +ik s ok )] + ™! [du (k) — ik, Gok-)] ik

o [ e k) k- o~k ]k
1

* &y (k) + ik fo(ky)]dk (3.6)

In expression (3.6), the left hand sidef{gt). The term involving the unknown boundary value

fl(t) is

4171/r2ék+tf1(k+)dk— %T/r et (—ky)dk ﬂ(—k+):/o°°ék+5fl(s)ds

1

Using the inversion formula (2.8), the above term is equal fg(t). Hence we obtain the follow-
ing explicit expression for the unknown functidi(t) in terms of the given initial and boundary
conditions:

) = o [ {e At + ik Golk )] +e 4 faulk-) — k. ok )]k
+41 e"‘+t|k fo(k,)dk— %T/r e Ktk fo(—k, )dk—2f)(t). (3.7)

QED
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Remark 3.1. The integral representations (3.5) and (3.3) are obtaingdeorem 1.1 under the
assumption of existence. However, we can m@finethe functionf;(t), t > 0, by the expression
(3.7), as well as the functiog(x,t) by the expression (3.5) wheénr< x and by the expression (3.3)
whent > x. By constructiong(x,t) satisfies the boundary conditigf0,t) = fo(t). In addition,
using (2.11), we verify that it satifies the given initial ctitions. Indeed, lettingg= 0 in (3.5), we
find
a0x.0) = ;- [ € (k- )dk=cp(x)
mJ/r

Similarly, g (x,0) = gi(x).

Remark 3.2. It is possible to derive the solution of the pure initial walproblem posed on the
real line as well as the solution (3.5) of the Dirichlet pexbl far away from the boundary using
the representation obtained from only one of the two Laxsp@r5) and (2.6) and a change of
variables. However, it is not possible to characterise tik@awn boundary value without deriving
an additional relation.

4 Remarkson the half-line problem for the sine-Gordon equation

The sine-Gordon equation is a nonlinear integrable equatimne space dimension. In [9] this
equation was formulated as the compatibility conditionhaf Lax pair

i ~
l‘lX+ —KU?:I-‘ = Q(X,t,k)l-l,

2
i -
M+ Skeosp = Q(x t, —K), (4.1)
wherepu(x,t,K) is a 2x 2 matrix and
5 L gleosa—1)  —i(g+a)—
Xtk == k - : k , 4.2
QK 4( —i(g+ o)+ 5 —g(cosq—1) “2

Using this Lax pair, the Cauchy problem for the sine-Gordguation was solved by the inverse
scattering transform.

Recently, Fokas solved the boundary value problem for the-Gordon equation on the half-
line using his generalised transform method [4, 5]. In themsgers, the global relation plays a
crucial role in deriving an effective representation of gwution of this problem because it is
the analysis of this relation that yields the unknown boupdelue f1(t) in terms of the given
boundary conditions.

In section 3, we presented an approach for the solution oKlbie-Gordon equation which is a
linearisation, around, = 0, of the sine-Gordon equation. For evolution equations littearised
problem can be taken as a guideline for the solution of theesponding integrable nonlinear
problem. We expect this to be the case also in the presenligpnol®ur approach for the solution
of the Klein-Gordon equation motivates an analogous treatnfor the sine-Gordon equation,
which doesot involvethe global relation.

A systematic approach for the derivationrafnlinear integrablePDEs starting from the corre-
spondindinear PDEs was introduced in [13]. This approach is based on ttegitiighic construc-
tion of a Lax pair of the nonlinear equation starting from ki@ pair of the corresponding linear
equation.
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Since the solution of the linearised equation is based orspleetral analysis dboth Lax pairs
(2.5) and (2.6), we propose to study the sine-Gordon equatjoconsidering the Lax pair (4.1)
which is the nonlinear analogue of (2.6) as well as a secomdghba, corresponding to (2.5).
Following the approach of [13] and starting from (2.5), weaiib the following Lax pair of the
sine-Gordon equation:

m—%h@u:QmuLbu

i
H+ Sk oap = QP (x tku, (4.3)

where the matrice®) (x,t,k) j = 1,2 are defined by

M 1 fa-cosy i(gx—q)— I

lenm_4<m&—qﬂﬁ$ Hmm—ﬂ(>’ (4.4)
Dprhy =L kL-cos) - —ilex—a)—
sznm_4<4&rqﬂﬁ¥ lk(Cogq_l)k) (4.5)

A third Lax pair of the sine-Gordon equation was introduaefll]. This alternative Lax pair was
used in [5] to motivate the role of some special boundary itimms, first proposed in [14]. The
relation between these results and the approach we suggresishcurrently under investigation
and will be presented elsewhere.
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