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Abstract

This paper pursues the study carried out in [10], focusinghencodimension one Hopf bi-
furcations in the hexagonal Watt governor system. Here tmiesd Hopf bifurcations of
codimensions two, three and four and the pertinent Lyapwtaility coefficients and bi-
furcation diagrams. This allows to determine the numbgresyand positions of bifurcating
small amplitude periodic orbits. As a consequence it is fbamopen region in the parameter
space where two attracting periodic orbits coexist with taraeting equilibrium point.

1 Introduction

The centrifugal governor is a device that automaticallytiamsa the speed of an engine. The
most important one, the Watt governor, a landmark of therfifie Revolution, is taken as the
starting point for the Theory of Automatic Control. The a#ogal governor design received
several important modifications as well as other types obguws were also developed. From
MacFarlane [5], p. 251, we quote:
“Several important advances in automatic control technplegre made in the latter half of the
19th century. A key madification to the flyball governor wasithiroduction of a simple means of
setting the desired running speed of the engine being dedrby balancing the centrifugal force
of the flyballs against a spring, and using the preset spramgion to set the running speed of the
engine”.

In this paper the system coupling the Watt governor with amgpdefined in section 2, will be
abbreviated as WGSS.

The stability analysis of the stationary states and smafiliémde oscillations of this system
will be pursued here. The case of no spring, the standard®¢éaternor System (WGS) has been
considered by the authors in [9], where several historaetisfon the subject have been mentioned.
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Landmarks of the mathematical analysis of the stabilityditions at the equilibrium of the
WGS are Maxwell [6], Vyshnegradskii [13] and Pontryagin.[7]

From the mathematical point of view, the oscillatory, snaatfiplitude, behavior in the WGS
can be associated to a periodic orbit that appears from a bifystation at the above mentioned
equilibrium. This was established by Hassard et al. in [2JHAmadi and Kazarinoff in [1] and
by the authors in [8, 9].

In [8] we characterized the surface of Hopf bifurcations W&S, which is more general than
that presented by Pontryagin [7] and Al-Humadi and Kazdidd. In [9] restricting ourselves to
Pontryagin’s system of differential equations for the W@®,carried out a deeper investigation
of the stability of the equilibrium along the critical Hopiflarcations up to codimension 3, hap-
pening at a unique point at which the bifurcation diagram established. A conclusion derived
from the diagram implied the existence of parameters wHe&GS has an attracting periodic
orbit coexisting with an attracting equilibrium. In [10] vebaracterized the hypersurface of Hopf
bifurcations in a WGSS. See Theorem 2 and Fig. 2 for a reviethetritical surface where the
first Lyapunov coefficient vanishes.

In the present paper we go deeper investigating the stabflihe equilibrium along the above
mentioned critical surface. To this end the second Lyapuwufficient is calculated and it is
established that it vanishes along two curves. The thirggpupav coefficient is calculated on these
curves and it is established that it vanishes at a uniquet.pdine fourth Lyapunov coefficient
is calculated at this point and found to be negative. See rfEne@. The pertinent bifurcation
diagrams are established. This leads to the existence opem et in the space of parameters
where two attracting periodic orbits coexist with an atiirag equilibrium.

This paper is organized as follows. In Section 2 we introdiheedifferential equations that
model the WGSS. The Hopf bifurcations in the WGSS diffemdrgguations are studied in Sec-
tions 3 and 4. Expressions for the second, third and fourtipupov coefficients, which fully
clarify their sign, are obtained, pushing forward the mdtfiound in the works of Kuznetsov
[3, 4].

The extensive calculations involved in Theorem 3 have beerolorated with the software
MATHEMATICA 5 [15], the main computational steps have be@sted in the site [14] and the
expressions, too long to be displayed in print here, appefdr].

2 The Watt governor system with a spring

The WGSS studied in this paper is shown in Fig. 1. Thére, (0, J) is the angle of deviation of
the arms of the governor from its vertical agis Q € [0, ) is the angular velocity of the rotation
of the engine flywhedD, 6 is the angular velocity of the rotation &, | is the length of the arms,
m is the mass of each balj is a sleeve which supports the arms and slides afng is a set
of transmission gears andis the valve that determines the supply of steam to the endihe
spring alongSy, is compressed as the arms raise, i.ep &screases.

The WGSS differential equations can be found as follows.skaplicity, we neglect the mass
of the sleeve and the arms. There are four forces acting obalie at all times. They are the
tangential component of the gravitymgsing, whereg is the standard acceleration of gravity;
the tangential component of the centrifugal forné sing 62cos¢; the tangential component of
the restoring force due to the spring2kl(1— cosg)sing, 2l is the natural length of the spring
andk > 0 is the spring elasticity constant; and the force of frictieblg, b > 0 is the friction
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coefficient.
From Newton’s Second Law of Motion, and using the transmissiinction8 = cQ, where

c > 0, one has

. (2K 2\ . 2kl+mg . b
¢ = (EJFCZQ )sm¢cos¢— p~ sm¢—a¢. (2.2)
The torque acting upon the flywhe®lis

| Q = u cosp —F, (2.2)

wherel is the moment of inertia of the flywhedt, is an equivalent torque of the load apd> 0
is a proportionality constant. See [7], p. 217, for more iteta
From Eqg. (2.1) and (2.2) the differential equations of oudei@re given by

d¢

a — Y

dy (2K 505\ (Klt+mg ., b

9 = <E+C2Q >sm¢cos¢—T sm¢—5w (2.3)
dQ 1

9 =T (ucosp —F)

wherer is the time.

The standard Watt governor differential equations in B@gin [7], p. 217, are obtained from
(2.3) by takingk = 0.

Defining the following changes in the coordinates, parametad time

ml 12 ml 12 2kl +mg 12
X_¢’y_(2kl+mg> w’Z_C(Zkag) Q’t_( mi ) b

2kl b/ m \Y? cu [/ ml F
K= E=—| 75— a=— (57— .B=—
2kl +mg’ m \ 2kl +mg ’ I \2kl+mg/’ u’
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where 0< k < 1,€ > 0,a > 0and O< B < 1, (2.3) can be written as

dx

X = a =Yy
dy . i

y - ot = (22+ K) SiNX COSX— SiNX— £y (2.4)
dz

7= G - ¢ (cosx— )

or equivalently by
X = t(x.2). (2.5)

where

f(x,{) = (v, (Z+K) sinx cosx—sinx— e y,a (cosx—fB)),

x=(xy2 € (o ’—27) xR % [0,00), { = (B,,€,K) € (0,1) x (0,00) x (0,e0) x [0,1).

The WGSS differential equations (2.4) have only one adimissquilibrium point

1 1/2
Po = (X0,Y0,20) = (arccosB,O, (E - K) ) . (2.6)

The following theorem follows from the linear analysis of4Rand was proved in [10].
Theorem 1. If
£>e=2aB¥2(1—kp)Y? (2.7)

then the WGSS differential equations (2.4) have an asyioaligtstable equilibrium point at 4
If 0 < € < & then B is unstable.

In section 4 we study the stability & under the conditiorg = &, that is, on the Hopf hyper-
surface complementary to the range of validity of Theorem 1.

3 Lyapunov coefficients

The beginning of this section is a review of the method prieskin [3] and in [4] for the cal-
culation of the first and second Lyapunov coefficients. ThHeutation of the third Lyapunov
coefficient can be found in [9].

The authors have not found the calculation of the fourth Lyey coefficient in the current
literature. The extensive calculations and the long exgiwvas for these coefficients have been
obtained with the software MATHEMATICA 5 [15].

Consider the differential equations

X' = f(x,u), (3.1)
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wherex € R" andu € R™ are respectively vectors representing phase variablesa@mtdol pa-
rameters. Assume thdtis of classC” in R" x R™. Suppose (3.1) has an equilibrium point X
at 1 = o and, denoting the variable— xg also byx, write

F(x) = f(X, lo) (3.2)
as
F(X)*AX*I’}B(X x)+}C(x X, X) + iD(x X, X x)+iE(x X, X, X, X) 4+
- 2 Y 6 b 24 Y Y Y 120 Y Y Y Y
1 1
7—20K(X,X,X,X,X,X)Jr@L(X,X,X,X,X,X,X)eroM(X,X,X,X,X,X,X,X) (3.3)
1 1

+MON(x,x,x,x,x,x,x,x,x)+O(||x|| 0,

whereA = (0, o) and, fori=1,...,n,

n dZFi(E)
Bi(x,y) =

and so on foD;, Ej, Kj, Li, Mj andN;.

SupposeXp, Ho) is an equilibrium point of (3.1) where the Jacobian matikas a pair of
purely imaginary eigenvalué® s = £iwp, ap > 0, and admits no other eigenvalue with zero real
part. LetT¢ be the generalized eigenspacefaforresponding td 3.

Let p,g € C" be vectors such that

. 0°R(&) '
i Yks Gi(X,y,2) =
E:OXJ Y, Gi(x,y,2) jgzl 55 9605 |;_o

Xj Yk4a,

n
Aq=iang, A'p=—iwp, (p,q>=_Zﬁiqi =1, (3.4)
i=

whereA' is the transposed of the matux Any vectory € T€ can be represented us= wg+ wa,
wherew = (p,y) € C. The two dimensional center manifold can be parameterized, tv, by
means of an immersion of the forr= H(w,w), whereH : C2 — R" has a Taylor expansion of
the form

__ 1 .
H (W, W) = wq-+Wa+ Ek T(Ih,-ka+0(ywylo), (3.5)
2<j+k<9 10

with hj, € C"andhy = ﬁkj. Substituting this expression into (3.1) we obtain thediwlhg differ-
ential equation

HaW + Haw' = F (H (w,w)), (3.6)

whereF is given by (3.2).

The complex vector$y; are obtained solving the system of linear equations defiryethd
coefficients of (3.6), taking into account the coefficient$pso that system (3.6), on the chart
for a central manifold, writes as follows

i 1 2 1 4, 1 6, 1 8 10
W =iwpw+ > Gaaw|w|* + o Gaow|w|* + 144G43W|W| + 2880654W|W| +0O(|w|™),

with Gj € C.
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Thefirst Lyapunov coefficient s defined by

1
|1 = E ReGZl, (37)

whereGp1 = (p, #31), and. /%1 = C(q,q,q) + B(, hzo) +2B(q, ha1).
The complex vectoh;; can be found solving the nonsingular+ 1)-dimensional system

iaplyn — A q ho1 _ %l_GZlq
p 0 s 0 ’

with the condition(p,hy1) = 0. See Remark 3.1 of [9]. The procedure above can be adapted in
connection with the determination b, andhgs.

The expression fop#3, can be found in equation (36) of [9], p. 28. From the coeffitsenf
the termsa®w? in (3.6), one has a singular system Fgp given by (ianln — A)hsy = %2 — G320,
which has solution if and only if

(p, #32— Ggo0) = 0. (3.8)

Thesecond Lyapunov coefficieistdefined by

1
l[h=—R .9
2= 13 eGay, (3.9

where, from (3.8)Gs2 = (p, #32).
The complex vectohs, can be found solving the nonsingular+ 1)-dimensional system

ilh—A q hs2 \ [ 32— G3xq
p 0 s ) 0 ’

with the condition(p, hzp) = 0.

The expression fop#;3 can be found in equation (44) of [9], p. 30. From the coeffitienf
the termsv W2 in (3.6), one has a singular system Fag given by (iawly — A)hgz = 723 — Ga3q,
which has solution if and only if

(p,-#33— Ga3q) = 0. (3.10)
Thethird Lyapunov coefficieris defined by

5= -+ ReG (3.11)

3= 144 43, .

where, from (3.10)G43 = (P, #43).
The complex vectohs3 can be found solving the nonsingular-+ 1)-dimensional system

ialn—A g has \ _ ( Haz—Gazg
p 0 s 0 ’

with the condition(p, hs3) = 0. Defining.7%%4 from an expression displayed in [11], since is too
long to be put in print, and from the coefficients of the temts* in (3.6), one has a singular
system forhs4 given by (iaply — A)hsg = 84 — Gsaq, Which has solution if and only if

(p, H84— Gs40q) = 0. (3.12)
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Thefourth Lyapunov coefficieni$ defined by
1
4 = —— ReGsy, (313)

where, from (3.12)Gs4 = (P, #34).

For the definitions of Hopf points of codimension 1, 2 and 3[9&ep 31-32. AHopf point of
codimension 4s a Hopf point of codimension 3 whelgvanishes. A Hopf point of codimension
4 is calledtransversalf n =0 (n(u) is the real part of the critical eigenvaluek)= 0,1, =0 and
I3 = 0 have transversal intersections. In a neighborhood ofa¥easal Hopf point of codimension
4 —H4 point, for concision— with4 # 0 the dynamic behavior of the system (3.1), reduced to
the family of parameter-dependent continuations of théereananifold, is orbitally topologically
equivalent to

W = (n +iw)w+ Tww|? 4+ vww|* + aw|w® + aww]®,

wheren, 1, v ando are unfolding parameters. See [12].

4 Hopf bifurcations in the WGSS

The following theorem was proved by the authors in [10].

Theorem 2. Consider the four-parameter family of differential eqoat (2.4). The first Lyapunov
coefficient at the point (2.6) for parameter values satigjyd = & is given by

_ Gl(BvaaK)
ABecffw? (€2 + 5e2ap + du)’
where G(B,a,K) in given by

l1(B,a,K) =

(4.1)

—3+45kB — (a2 —5)B%2+ k(a?—7)B>—2a%k?B* — (a* - 2a%k?)BC + a’kB’. (4.2

If G1 is different from zero then the system (2.4) has a transVéteaf point at B for € = &..
More specifically, if(3,a,k) € SUU and € = & then the system (2.4) has an H1 point gf P
if (B,a,K) € S ande = & then the H1 point at §°is asymptotically stable and for eaeh< &,
but close tog;, there exists a stable periodic orbit near the unstable ldgyiiim point R; if
(B,a,k) €U and e = & then the H1 point at #is unstable and for each > &, but close tce,
there exists an unstable periodic orbit near the asympdtijicstable equilibrium point § The
meanings and positions of the regions S and U are illustraidelg. 2.

The following is the main result of this paper. The meaninfthe regionsU;, S, S and
curvesCy, G, are illustrated in Fig. 4 and 5.

Theorem 3. For the four-parameter family of differential equations4Rthere is unique point
Q= (B.a,k, &), with coordinates

B=0093593..,q =1.02753..,k = 0.90164.., & = 0.73522 ..,

where the surfaces = 0, I = 0 and k = 0 on the critical hypersurface intersect and there do
it transversally. Moreover, the codimension 4 Hopf pointPatis asymptotically stable since
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Figure 2:Signs ofl; for system (2.4) Figure 3:Signs ofl, for system (2.4)

[4(Q) < 0. More specifically, if(8,a,k) € S USUU; and € = & then the system (2.4) has
an H2 point at g; if (B,a,k) € S US, and € = & then the H2 point at f?is asymptotically
stable; if (B, a,k) € Uy and € = & then the H2 point at #is unstable. Along the curves @nd
Cy = Cr1UCuU{Q} of Fig 4, |, vanishes.

If (B,a,k) € C1UC1UCy; (see Fig. 5) and = & then the four-parameter family of differential
equations (2.4) has a transversal Hopf point of codimen8iat R; if (8,a,k) € C; UCy, and
€ = & then the H3 point at {?is asymptotically stable and the bifurcation diagram foryaital
point H is draw in Fig. 6; if(8,a,k) € Cy; and € = & then the H3 point at #is unstable and the
bifurcation diagram for a typical point G can be found in [§], 41.

Proof. Outline of the computer assisted proof. The algebraic esgiva for the second Lyapunov
coefficient can be obtained in [14]. This is too long to be pupiint. The surface where the
second Lyapunov coefficient vanishes is illustrated in Big.

The intersections of the surfacks= 0 andl, = 0 determine the curves; andC, (see Fig.
4). The signs of the second Lyapunov coefficient on the seifae- 0 complementary to the
curvesC; andC,, that is onS; U S UU; (see Fig. 5), are the followings is negative or§, U S,
and is positive ofJ; and they can be viewed as extensions of the signs of the ségapadinov
coefficient at points on the curve determined by the inteéiseof the surfacé; = 0 and the plane
k = 0 studied by the authors in [9]. The third Lyapunov coeffitismegative orC; UC,, and is
positive onCy;. The bifurcation diagram for a typical poi@ wherel3(G) > 0 can be viewed in
[9]. In Fig. 6 and 7 are illustrated the bifurcation diagraimsa typical pointH wherel3(H) < 0.

The pointQ is the intersection of the surfacés= 0, I, = 0 andlz = 0. The existence and
uniqueness of) with the above coordinates has been established numgrigéh the software
MATHEMATICA 5.

For the pointQ take five decimal round-off coordinatg® = 0.93593, a = 1.02753, Kk =
0.90164 ance. = 0.73522. For these values of the parameters one has

p=(—i/2,0.27041— 0.54618,0.40395+ 0.20000) , q = (—i,0.36401,0.99407) ,
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Figure 4:Intersections of; = 0 andl, = 0. Figure 5:Signs ofly, I, andls.

Figure 6:Bifurcation diagram for a typical poi wherelz(H) < 0.

wo = +/(1—B2)/B, hyy = (—2.657690,0.19650 ,

hoo = (—4.11029— 0.18429,0.13416— 2.99241,0.09159— 3.36395) ,

hgo = (—3.63589+ 23.03616, —25.15645— 3.97054, —18.16113— 1.69167) ,

Gy1 = —3.91814, (4.3)
ho1 = (3.24775+ 1.67247, —4.52694+ 1.18222, 4.85950+ 3.71541) ,

16039204+ 51.10539 70248693— 126393346
hao= | —74.41230+23353975 |,hso= | 230044688+ 127857511 |,
—25.03366+ 127.34049 105420770+ 36336145

ha; = (—69.44664— 38.56274,25.90851— 2.24484,36.10391— 65.85524) ,
hp, = (—64.508290,10.76131) ,
Ggp = —15321726, (4.4)

17824934+ 27366781 —52171430+ 107426121
hgo = | —23317715+26.70966 |, hs = —63158388—-48425803 |,
39589053+ 27277265 —86510385—-41320000
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—1013073267— 999521750 1422743860+ 823749829
heo= | 2183038995- 2212636639 |, hs;= | —999187299+ 1443155078 |,
542965950 955727148 —575308267+ 1128054380
—435145992— 493633553 —596963958
hio= | 227208822+ 152790723 |, hgz= 0 ,
484197866 544536779 176447230
—14694154096+ 6352280004 14022318890 18409416057
hro= | —16186228504— 37442136634 |, hei= | 26078007852+ 21392928545 |,
8606940319 8396945215 15111649070+ 9222527059
10555732750+ 12799480577 2657927090+ 6205116515
hep= | —4128902476-7903991108 |, hs= | —3694456779+ 249910743 |,
— 10685714273 8812245467 7814432459+ 5407014624
Guz = —2232821224. (4.5)

—633062444741— 72127635507 466368399275 403856475411
—132424815135+ 59466138331 161856433911 203764614488

( 254005979128+ 227784836298 ) ( —63349915640— 112559051413 )
he2 = , hsz= ;

( —24768158290+ 217389503048 ) —223074430930- 251185485381
hgo = ,hi= ,

—238545321697+ 186908806376 39059808062+ 46622640735
—170825347087+ 202526853034 121948473373—110128341903

hsq = (—1118100121940.0013854672110946 ,

Gsg4 = —2207141115-599109052119. (4.6)
From (3.7), (3.9), (3.11), (3.13), (4.3), (4.4), (4.5) aAd] one has
11(Q) =0, 12(Q) =0, 13(Q) =0, 14(Q) = flsoReGF’“ = —7.66368

The calculations above have also been corroborated withd&@inals round-off precision
performed using the software MATHEMATICA 5 [15]. See [14].

Some values ofa, 3, k) € CLUC; as well as the corresponding valued4itr, 3, k) are listed
in the table below. There the columns 1, 2, 3 and 4 correspm@sd Wwhile columns 5, 6, 7 and 8
correspond t&,. The calculations leading to these values can be found in [14

K a B I3(ar,B,k) onCy K a B I3(ar,B,k) onC;
0.45| 0.33319] 0.72216 -0.91310 0 | 0.85050| 0.86828 0.39050
0.5 | 0.42968| 0.71770 -0.92567 0.2 | 0.90524| 0.87760 0.46294
0.55| 0.50934| 0.71257 -0.88152 0.3 | 0.93123| 0.88397 0.50684
0.6 | 0.57913| 0.70665 -0.82064 0.4 | 0.95511| 0.89159 0.55538
0.65| 0.64241| 0.69983 -0.75810 0.5 | 0.97602| 0.90042 0.60637
0.7 | 0.70113| 0.69201 -0.70006 0.6 | 0.99330| 0.91029 0.65253
0.75| 0.75659| 0.68309 -0.64900 0.7 | 1.00674| 0.92071 0.66963
0.8 | 0.80972| 0.67302 -0.60580 0.8 | 1.01697| 0.93045 0.56860
0.85| 0.86120| 0.66177 -0.57054 0.9 | 1.02731| 0.93592 0.01665
0.9 | 0.91154| 0.64940 -0.54288 0.92| 1.03020| 0.93585 -0.20674
0.95| 0.96114| 0.63600 -0.52217 0.98| 1.04319| 0.93201 -1.09289




298 J Sotomayoet al.

eﬂ‘

©
o ©
\@

=

Hi ]

/ Ry
/
y
P
r"
p

/"

/
/

©

Figure 7:Bifurcation diagram for a typical poirt;. See Fig. 6

1

The gradients of the functions, I, andl3, given in (3.7), (3.9), (3.11) at the poiQ are
(—0.462640.13437—0.97565, (—12447012.66791—-19.19345, (—2667714541.80505
—37284969, respectively. The transversality conditionQis equivalent to the non-vanishing of
the determinant of the matrix whose columns are the abowdiegravectors, which is evaluated
gives—33.31133.

The main steps of the calculations that provide the numlegidgdence for this theorem have
been posted in [14]. |
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