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Abstract

This paper pursues the study carried out in [10], focusing onthe codimension one Hopf bi-
furcations in the hexagonal Watt governor system. Here are studied Hopf bifurcations of
codimensions two, three and four and the pertinent Lyapunovstability coefficients and bi-
furcation diagrams. This allows to determine the number, types and positions of bifurcating
small amplitude periodic orbits. As a consequence it is found an open region in the parameter
space where two attracting periodic orbits coexist with an attracting equilibrium point.

1 Introduction

The centrifugal governor is a device that automatically controls the speed of an engine. The
most important one, the Watt governor, a landmark of the Scientific Revolution, is taken as the
starting point for the Theory of Automatic Control. The centrifugal governor design received
several important modifications as well as other types of governors were also developed. From
MacFarlane [5], p. 251, we quote:
“Several important advances in automatic control technology were made in the latter half of the
19th century. A key modification to the flyball governor was the introduction of a simple means of
setting the desired running speed of the engine being controlled by balancing the centrifugal force
of the flyballs against a spring, and using the preset spring tension to set the running speed of the
engine”.

In this paper the system coupling the Watt governor with a spring, defined in section 2, will be
abbreviated as WGSS.

The stability analysis of the stationary states and small amplitude oscillations of this system
will be pursued here. The case of no spring, the standard WattGovernor System (WGS) has been
considered by the authors in [9], where several historical facts on the subject have been mentioned.
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Landmarks of the mathematical analysis of the stability conditions at the equilibrium of the
WGS are Maxwell [6], Vyshnegradskii [13] and Pontryagin [7].

From the mathematical point of view, the oscillatory, smallamplitude, behavior in the WGS
can be associated to a periodic orbit that appears from a Hopfbifurcation at the above mentioned
equilibrium. This was established by Hassard et al. in [2], Al-Humadi and Kazarinoff in [1] and
by the authors in [8, 9].

In [8] we characterized the surface of Hopf bifurcations in aWGS, which is more general than
that presented by Pontryagin [7] and Al-Humadi and Kazarinoff [1]. In [9] restricting ourselves to
Pontryagin’s system of differential equations for the WGS,we carried out a deeper investigation
of the stability of the equilibrium along the critical Hopf bifurcations up to codimension 3, hap-
pening at a unique point at which the bifurcation diagram wasestablished. A conclusion derived
from the diagram implied the existence of parameters where the WGS has an attracting periodic
orbit coexisting with an attracting equilibrium. In [10] wecharacterized the hypersurface of Hopf
bifurcations in a WGSS. See Theorem 2 and Fig. 2 for a review ofthe critical surface where the
first Lyapunov coefficient vanishes.

In the present paper we go deeper investigating the stability of the equilibrium along the above
mentioned critical surface. To this end the second Lyapunovcoefficient is calculated and it is
established that it vanishes along two curves. The third Lyapunov coefficient is calculated on these
curves and it is established that it vanishes at a unique point. The fourth Lyapunov coefficient
is calculated at this point and found to be negative. See Theorem 3. The pertinent bifurcation
diagrams are established. This leads to the existence of an open set in the space of parameters
where two attracting periodic orbits coexist with an attracting equilibrium.

This paper is organized as follows. In Section 2 we introducethe differential equations that
model the WGSS. The Hopf bifurcations in the WGSS differential equations are studied in Sec-
tions 3 and 4. Expressions for the second, third and fourth Lyapunov coefficients, which fully
clarify their sign, are obtained, pushing forward the method found in the works of Kuznetsov
[3, 4].

The extensive calculations involved in Theorem 3 have been corroborated with the software
MATHEMATICA 5 [15], the main computational steps have been posted in the site [14] and the
expressions, too long to be displayed in print here, appear in [11].

2 The Watt governor system with a spring

The WGSS studied in this paper is shown in Fig. 1. There,ϕ ∈
(

0, π
2

)

is the angle of deviation of
the arms of the governor from its vertical axisS1, Ω ∈ [0,∞) is the angular velocity of the rotation
of the engine flywheelD, θ is the angular velocity of the rotation ofS1, l is the length of the arms,
m is the mass of each ball,H is a sleeve which supports the arms and slides alongS1, T is a set
of transmission gears andV is the valve that determines the supply of steam to the engine. The
spring alongS1, is compressed as the arms raise, i.e. asϕ increases.

The WGSS differential equations can be found as follows. Forsimplicity, we neglect the mass
of the sleeve and the arms. There are four forces acting on theballs at all times. They are the
tangential component of the gravity−mgsinϕ , whereg is the standard acceleration of gravity;
the tangential component of the centrifugal forcem l sinϕ θ2 cosϕ ; the tangential component of
the restoring force due to the spring−2kl(1− cosϕ)sinϕ , 2l is the natural length of the spring
andk ≥ 0 is the spring elasticity constant; and the force of friction −blϕ̇, b > 0 is the friction
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Figure 1:Watt centrifugal governor with a spring – steam engine system.

coefficient.
From Newton’s Second Law of Motion, and using the transmission functionθ = cΩ, where

c > 0, one has

ϕ̈ =

(

2k
m

+c2Ω2
)

sinϕ cosϕ −
2kl +mg

ml
sinϕ −

b
m

ϕ̇ . (2.1)

The torque acting upon the flywheelD is

I Ω̇ = µ cosϕ −F, (2.2)

whereI is the moment of inertia of the flywheel,F is an equivalent torque of the load andµ > 0
is a proportionality constant. See [7], p. 217, for more details.

From Eq. (2.1) and (2.2) the differential equations of our model are given by

d ϕ
dτ

= ψ

d ψ
dτ

=

(

2k
m

+c2Ω2
)

sinϕ cosϕ −
(2kl +mg)

ml
sinϕ −

b
m

ψ (2.3)

d Ω
dτ

=
1
I

(µ cosϕ −F)

whereτ is the time.
The standard Watt governor differential equations in Pontryagin [7], p. 217, are obtained from

(2.3) by takingk = 0.
Defining the following changes in the coordinates, parameters and time

x = ϕ , y =

(

ml
2kl +mg

)1/2

ψ , z= c

(

ml
2kl +mg

)1/2

Ω, t =

(

2kl +mg
ml

)1/2

τ ,

κ =
2kl

2kl +mg
, ε =

b
m

(

ml
2kl +mg

)1/2

, α =
cµ
I

(

ml
2kl +mg

)

, β =
F
µ

,
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where 0≤ κ < 1, ε > 0, α > 0 and 0< β < 1, (2.3) can be written as

x′ =
dx
dt

= y

y′ =
dy
dt

= (z2 + κ) sinx cosx−sinx− ε y (2.4)

z′ =
dz
dt

= α (cosx−β )

or equivalently by

x′ = f (x,ζ ), (2.5)

where

f (x,ζ ) =
(

y,(z2 + κ) sinx cosx−sinx− ε y,α (cosx−β )
)

,

x = (x,y,z) ∈
(

0,
π
2

)

×R× [0,∞), ζ = (β ,α ,ε ,κ) ∈ (0,1)× (0,∞)× (0,∞)× [0,1) .

The WGSS differential equations (2.4) have only one admissible equilibrium point

P0 = (x0,y0,z0) =

(

arccosβ ,0,

(

1
β
−κ
)1/2

)

. (2.6)

The following theorem follows from the linear analysis of (2.4) and was proved in [10].

Theorem 1. If

ε > εc = 2 α β 3/2(1−κβ )1/2, (2.7)

then the WGSS differential equations (2.4) have an asymptotically stable equilibrium point at P0.
If 0 < ε < εc then P0 is unstable.

In section 4 we study the stability ofP0 under the conditionε = εc, that is, on the Hopf hyper-
surface complementary to the range of validity of Theorem 1.

3 Lyapunov coefficients

The beginning of this section is a review of the method presented in [3] and in [4] for the cal-
culation of the first and second Lyapunov coefficients. The calculation of the third Lyapunov
coefficient can be found in [9].

The authors have not found the calculation of the fourth Lyapunov coefficient in the current
literature. The extensive calculations and the long expressions for these coefficients have been
obtained with the software MATHEMATICA 5 [15].

Consider the differential equations

x′ = f (x,µ), (3.1)
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wherex ∈ R
n and µ ∈ R

m are respectively vectors representing phase variables andcontrol pa-
rameters. Assume thatf is of classC∞ in R

n×R
m. Suppose (3.1) has an equilibrium pointx = x0

at µ = µ0 and, denoting the variablex−x0 also byx, write

F(x) = f (x,µ0) (3.2)

as

F(x) = Ax+
1
2

B(x,x)+
1
6

C(x,x,x)+
1
24

D(x,x,x,x)+
1

120
E(x,x,x,x,x)+

1
720

K(x,x,x,x,x,x)+
1

5040
L(x,x,x,x,x,x,x)+

1
40320

M(x,x,x,x,x,x,x,x) (3.3)

+
1

362880
N(x,x,x,x,x,x,x,x,x)+O(||x||10),

whereA = fx(0,µ0) and, fori = 1, . . . ,n,

Bi(x,y) =
n

∑
j,k=1

∂ 2Fi(ξ )

∂ξ j ∂ξk

∣

∣

∣

∣

ξ=0
x j yk, Ci(x,y,z) =

n

∑
j,k,l=1

∂ 3Fi(ξ )

∂ξ j ∂ξk ∂ξl

∣

∣

∣

∣

ξ=0
x j yk zl ,

and so on forDi, Ei, Ki, Li, Mi andNi.
Suppose(x0,µ0) is an equilibrium point of (3.1) where the Jacobian matrixA has a pair of

purely imaginary eigenvaluesλ2,3 = ±iω0, ω0 > 0, and admits no other eigenvalue with zero real
part. LetTc be the generalized eigenspace ofA corresponding toλ2,3.

Let p,q∈ C
n be vectors such that

Aq= iω0 q, A⊤p = −iω0 p, 〈p,q〉 =
n

∑
i=1

p̄i qi = 1, (3.4)

whereA⊤ is the transposed of the matrixA. Any vectory∈ Tc can be represented asy = wq+ w̄q̄,
wherew = 〈p,y〉 ∈ C. The two dimensional center manifold can be parameterized by w,w̄, by
means of an immersion of the formx = H(w,w̄), whereH : C

2 → R
n has a Taylor expansion of

the form

H(w,w̄) = wq+ w̄q̄+ ∑
2≤ j+k≤9

1
j!k!

h jkw jw̄k +O(|w|10), (3.5)

with h jk ∈ C
n andh jk = h̄k j. Substituting this expression into (3.1) we obtain the following differ-

ential equation

Hww′ +Hw̄w̄′ = F(H(w,w̄)), (3.6)

whereF is given by (3.2).
The complex vectorshi j are obtained solving the system of linear equations defined by the

coefficients of (3.6), taking into account the coefficients of F, so that system (3.6), on the chartw
for a central manifold, writes as follows

w′ = iω0w+
1
2

G21w|w|
2 +

1
12

G32w|w|
4 +

1
144

G43w|w|
6 +

1
2880

G54w|w|
8 +O(|w|10),

with G jk ∈ C.
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Thefirst Lyapunov coefficient l1 is defined by

l1 =
1
2

ReG21, (3.7)

whereG21 = 〈p,H21〉, andH21 = C(q,q, q̄)+B(q̄,h20)+2B(q,h11).
The complex vectorh21 can be found solving the nonsingular(n+1)-dimensional system
(

iω0In−A q
p̄ 0

)(

h21

s

)

=

(

H21−G21q
0

)

,

with the condition〈p,h21〉 = 0. See Remark 3.1 of [9]. The procedure above can be adapted in
connection with the determination ofh32 andh43.

The expression forH32 can be found in equation (36) of [9], p. 28. From the coefficients of
the termsw3w̄2 in (3.6), one has a singular system forh32 given by(iω0In−A)h32 = H32−G32q,
which has solution if and only if

〈p,H32−G32q〉 = 0. (3.8)

Thesecond Lyapunov coefficientis defined by

l2 =
1
12

ReG32, (3.9)

where, from (3.8),G32 = 〈p,H32〉.
The complex vectorh32 can be found solving the nonsingular(n+1)-dimensional system
(

iω0In−A q
p̄ 0

)(

h32

s

)

=

(

H32−G32q
0

)

,

with the condition〈p,h32〉 = 0.
The expression forH43 can be found in equation (44) of [9], p. 30. From the coefficients of

the termsw4w̄3 in (3.6), one has a singular system forh43 given by(iω0In−A)h43 = H43−G43q,
which has solution if and only if

〈p,H43−G43q〉 = 0. (3.10)

Thethird Lyapunov coefficientis defined by

l3 =
1

144
ReG43, (3.11)

where, from (3.10),G43 = 〈p,H43〉.
The complex vectorh43 can be found solving the nonsingular(n+1)-dimensional system
(

iω0In−A q
p̄ 0

)(

h43

s

)

=

(

H43−G43q
0

)

,

with the condition〈p,h43〉 = 0. DefiningH54 from an expression displayed in [11], since is too
long to be put in print, and from the coefficients of the termsw5w̄4 in (3.6), one has a singular
system forh54 given by(iω0In−A)h54 = H54−G54q, which has solution if and only if

〈p,H54−G54q〉 = 0. (3.12)
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Thefourth Lyapunov coefficientis defined by

l4 =
1

2880
ReG54, (3.13)

where, from (3.12),G54 = 〈p,H54〉.
For the definitions of Hopf points of codimension 1, 2 and 3 see[9], pp 31-32. AHopf point of

codimension 4is a Hopf point of codimension 3 wherel3 vanishes. A Hopf point of codimension
4 is calledtransversalif η = 0 (η(µ) is the real part of the critical eigenvalues),l1 = 0, l2 = 0 and
l3 = 0 have transversal intersections. In a neighborhood of a transversal Hopf point of codimension
4 —H4 point, for concision— withl4 6= 0 the dynamic behavior of the system (3.1), reduced to
the family of parameter-dependent continuations of the center manifold, is orbitally topologically
equivalent to

w′ = (η + iω0)w+ τw|w|2+ νw|w|4+ σw|w|6+ l4w|w|8,

whereη , τ , ν andσ are unfolding parameters. See [12].

4 Hopf bifurcations in the WGSS

The following theorem was proved by the authors in [10].

Theorem 2. Consider the four-parameter family of differential equations (2.4). The first Lyapunov
coefficient at the point (2.6) for parameter values satisfying ε = εc is given by

l1(β ,α ,κ) = −
G1(β ,α ,κ)

4βεcω4
0ω2

1(ε4
c +5ε2

c ω2
0 +4ω4

0)
, (4.1)

where G1(β ,α ,κ) in given by

−3+5κβ − (α2−5)β 2 + κ(α2−7)β 3−2α2κ2β 4− (α4−2α2κ2)β 6 + α4κβ 7. (4.2)

If G1 is different from zero then the system (2.4) has a transversal Hopf point at P0 for ε = εc.
More specifically, if(β ,α ,κ) ∈ S∪U and ε = εc then the system (2.4) has an H1 point at P0;
if (β ,α ,κ) ∈ S andε = εc then the H1 point at P0 is asymptotically stable and for eachε < εc,
but close toεc, there exists a stable periodic orbit near the unstable equilibrium point P0; if
(β ,α ,κ) ∈U andε = εc then the H1 point at P0 is unstable and for eachε > εc, but close toεc,
there exists an unstable periodic orbit near the asymptotically stable equilibrium point P0. The
meanings and positions of the regions S and U are illustratedin Fig. 2.

The following is the main result of this paper. The meanings of the regionsU1, S1, S2 and
curvesC1, C2 are illustrated in Fig. 4 and 5.

Theorem 3. For the four-parameter family of differential equations (2.4) there is unique point
Q = (β ,α ,κ ,εc), with coordinates

β = 0.93593. . . , α = 1.02753. . . ,κ = 0.90164. . . , εc = 0.73522. . . ,

where the surfaces l1 = 0, l2 = 0 and l3 = 0 on the critical hypersurface intersect and there do
it transversally. Moreover, the codimension 4 Hopf point atP0 is asymptotically stable since
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Figure 2:Signs ofl1 for system (2.4). Figure 3:Signs ofl2 for system (2.4).

l4(Q) < 0. More specifically, if(β ,α ,κ) ∈ S1 ∪S2 ∪U1 and ε = εc then the system (2.4) has
an H2 point at P0; if (β ,α ,κ) ∈ S1 ∪S2 and ε = εc then the H2 point at P0 is asymptotically
stable; if (β ,α ,κ) ∈U1 andε = εc then the H2 point at P0 is unstable. Along the curves C1 and
C2 = C21∪C22∪{Q} of Fig 4, l2 vanishes.

If (β ,α ,κ)∈C1∪C21∪C22 (see Fig. 5) andε = εc then the four-parameter family of differential
equations (2.4) has a transversal Hopf point of codimension3 at P0; if (β ,α ,κ) ∈ C1∪C22 and
ε = εc then the H3 point at P0 is asymptotically stable and the bifurcation diagram for a typical
point H is draw in Fig. 6; if(β ,α ,κ) ∈C21 andε = εc then the H3 point at P0 is unstable and the
bifurcation diagram for a typical point G can be found in [9],p. 41.

Proof. Outline of the computer assisted proof. The algebraic expression for the second Lyapunov
coefficient can be obtained in [14]. This is too long to be put in print. The surface where the
second Lyapunov coefficient vanishes is illustrated in Fig.3.

The intersections of the surfacesl1 = 0 andl2 = 0 determine the curvesC1 andC2 (see Fig.
4). The signs of the second Lyapunov coefficient on the surface l1 = 0 complementary to the
curvesC1 andC2, that is onS1∪S2∪U1 (see Fig. 5), are the following:l2 is negative onS1∪S2

and is positive onU1 and they can be viewed as extensions of the signs of the secondLyapunov
coefficient at points on the curve determined by the intersection of the surfacel1 = 0 and the plane
κ = 0 studied by the authors in [9]. The third Lyapunov coefficient is negative onC1∪C22 and is
positive onC21. The bifurcation diagram for a typical pointG wherel3(G) > 0 can be viewed in
[9]. In Fig. 6 and 7 are illustrated the bifurcation diagramsfor a typical pointH wherel3(H) < 0.

The pointQ is the intersection of the surfacesl1 = 0, l2 = 0 andl3 = 0. The existence and
uniqueness ofQ with the above coordinates has been established numerically with the software
MATHEMATICA 5.

For the pointQ take five decimal round-off coordinatesβ = 0.93593, α = 1.02753, κ =
0.90164 andεc = 0.73522. For these values of the parameters one has

p = (−i/2,0.27041−0.54618i,0.40395+0.20000i) , q = (−i,0.36401,0.99407) ,
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Figure 4:Intersections ofl1 = 0 andl2 = 0. Figure 5:Signs ofl1, l2 andl3.

Figure 6:Bifurcation diagram for a typical pointH wherel3(H) < 0.

ω0 =
√

(1−β 2)/β , h11 = (−2.65769,0,0.19650) ,

h20 = (−4.11029−0.18429i,0.13416−2.99241i,0.09159−3.36395i) ,

h30 = (−3.63589+23.03616i,−25.15645−3.97054i,−18.16113−1.69167i) ,

G21 = −3.91814i, (4.3)

h21 = (3.24775+1.67247i,−4.52694+1.18222i,4.85950+3.71541i) ,

h40 =





160.39204+51.10539i
−74.41230+233.53975i
−25.03366+127.34049i



 , h50 =





702.48693−1263.93346i
2300.44688+1278.57511i
1054.20770+363.36145i



 ,

h31 = (−69.44664−38.56274i,25.90851−2.24484i,36.10391−65.85524i) ,

h22 = (−64.50829,0,10.76131) ,

G32 = −153.21726i, (4.4)

h32 =





178.24934+273.66781i
−233.17715+26.70966i
395.89053+272.77265i



 , h41 =





−521.71430+1074.26121i
−631.58388−484.25803i
−865.10385−413.20000i



 ,
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h60 =





−10130.73267−9995.21750i
21830.38995−22126.36639i
5429.65950−9557.27148i



 , h51 =





14227.43860+8237.49829i
−9991.87299+14431.55078i
−5753.08267+11280.54380i



 ,

h42 =





−4351.45992−4936.33553i
2272.08822+1527.90723i
4841.97866−5445.36779i



 , h33 =





−5969.63958
0

1764.47230



 ,

h70 =





−146941.54096+63522.80004i
−161862.28504−374421.36634i
−86069.40319−83969.45215i



 , h61 =





140223.18890−184094.16057i
260780.07852+213929.28545i
151116.49070+92225.27059i



 ,

h52 =





−105557.32750+127994.80577i
−41289.02476−79039.91108i
−106857.14273−88122.45467i



 , h43 =





26579.27090+62051.16515i
−36944.56779+2499.10743i
78144.32459+54070.14624i



 ,

G43 = −22328.21224i. (4.5)

h80 =





−247681.58290+2173895.03048i
−6330624.44741−721276.35507i
−1324248.15135+594661.38331i



 , h71 =





−2230744.30930−2511854.85381i
4663683.99275−4038564.75411i
1618564.33911−2037646.14488i



 ,

h62 =





2540059.79128+2277848.86298i
−2385453.21697+1869088.06376i
−1708253.47087+2025268.53034i



 , h53 =





−633499.15640−1125590.51413i
390598.08062+466226.40735i

1219484.73373−1101283.41903i



 ,

h44 = (−1118100.12194,0.00138,546721.10946) ,

G54 = −22071.41115−5991090.52119i. (4.6)

From (3.7), (3.9), (3.11), (3.13), (4.3), (4.4), (4.5) and (4.6) one has

l1(Q) = 0, l2(Q) = 0, l3(Q) = 0, l4(Q) =
1

2880
ReG54 = −7.66368.

The calculations above have also been corroborated with 100decimals round-off precision
performed using the software MATHEMATICA 5 [15]. See [14].

Some values of(α ,β ,κ) ∈C1∪C2 as well as the corresponding values ofl3(α ,β ,κ) are listed
in the table below. There the columns 1, 2, 3 and 4 correspond to C1 while columns 5, 6, 7 and 8
correspond toC2. The calculations leading to these values can be found in [14].

κ α β l3(α,β ,κ) onC1 κ α β l3(α,β ,κ) onC2

0.45 0.33319 0.72216 -0.91310 0 0.85050 0.86828 0.39050
0.5 0.42968 0.71770 -0.92567 0.2 0.90524 0.87760 0.46294
0.55 0.50934 0.71257 -0.88152 0.3 0.93123 0.88397 0.50684
0.6 0.57913 0.70665 -0.82064 0.4 0.95511 0.89159 0.55538
0.65 0.64241 0.69983 -0.75810 0.5 0.97602 0.90042 0.60637
0.7 0.70113 0.69201 -0.70006 0.6 0.99330 0.91029 0.65253
0.75 0.75659 0.68309 -0.64900 0.7 1.00674 0.92071 0.66963
0.8 0.80972 0.67302 -0.60580 0.8 1.01697 0.93045 0.56860
0.85 0.86120 0.66177 -0.57054 0.9 1.02731 0.93592 0.01665
0.9 0.91154 0.64940 -0.54288 0.92 1.03020 0.93585 -0.20674
0.95 0.96114 0.63600 -0.52217 0.98 1.04319 0.93201 -1.09289



298 J Sotomayoret al.

����
e

Figure 7:Bifurcation diagram for a typical pointH1. See Fig. 6.

The gradients of the functionsl1, l2 and l3, given in (3.7), (3.9), (3.11) at the pointQ are
(−0.46264,0.13437,−0.97565), (−12.44701,2.66791,−19.19345), (−266.77145,41.80505,
−372.84969), respectively. The transversality condition atQ is equivalent to the non-vanishing of
the determinant of the matrix whose columns are the above gradient vectors, which is evaluated
gives−33.31133.

The main steps of the calculations that provide the numerical evidence for this theorem have
been posted in [14]. �
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