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Abstract

We describe the problem of finding a harmonic map between noncompact manifold. Given
some sufficient conditions on the domain, the target and the initial map, we prove the existence
of a harmonic map that deforms the given map.

1 Introduction

For a long time researchers have been trying to prove the existence of harmonic maps. In this
paper the problem of how to deform an initial map into a harmonic map will be discussed in the
case when both the domain and the target are noncompact. The first result in this direction has
been obtained by Li and Tam in [14] . In the aforementioned paper the method applied is the heat
flow method first introduced by Eells and Sampson in [8] . In theproof of the main theorems in
this paper we make use of the compact exhaustion method. In particular, the proofs are simpler
and the results are more general than the ones in [14] .

2 Background

Let M andN be two Riemannian manifolds of dimensionm andn respectively. Their metrics in
local coordinates are written as

ds2
M =

m

∑
k, j=1

gk jdxkdxj andds2
N =

n

∑
α ,β=1

hαβ dxαdxβ

respectively. Let(gk j) = (gk j)
−1 be the inverse metric tensor andΓl

k j the Christoffel symbols for
M, where the Latin indicesk, j, l take values from 1 tom. The determinant of the matrix(gk j) shall
be denoted byg . We use the corresponding notation for the manifoldN but using Greek indices
(from 1 ton) in this case.

Consider aC1 mapu: M → N. Theenergy densityof the mapu is defined in local coordinates
by

e(u)(x) =
1
2 ∑

α ,β ,k, j

gk j(x)
∂uα

∂xk

∂uβ

∂x j hαβ (u(x)) .
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Define

E(u) =

∫

M
e(u)dvM

to be theenergyof aC1 mapu: M → N, wheredvM is the volume form ofM and in local coordi-
nates is given bydvM =

√
gdx1∧ . . .∧dxm .

SinceE(u) is a real number (or infinity) for everyu in C∞(M,N) , it follows that the energyE
can be regarded as a functional.

If u: M → N is a smooth map, thetension fieldis a section of the pulled back bundleu−1TN
which is given intrinsically by

τ(u) = Tr(∇du) .

In local coordinates,

τα(u)(x) = gk j(x)
∂ 2uα

∂xk∂x j (x)−gk j(x)Γl
k j(x)

∂uα

∂xl (x)

+gk j(x)Γα
βγ (u(x))

∂uβ

∂xk (x)
∂uγ

∂x j (x)

= ∆Muα(x)+gk j(x)Γα
βγ (u(x))

∂uβ

∂xk (x)
∂uγ

∂x j (x) ,

where∆M is the Laplace Beltrami operator of(M,g) .

Definition 2.1. A map is called harmonic if its tension field vanishes identically.

The harmonic maps are the critical points of the energy functional with respect to compactly
supported variations (see [13] for more details).

In what follows, we discuss the problem of how to deform a given map into a harmonic map
whenboth the domain and the target are noncompact. The issue of extending a given boundary
map to a map with the required properties, will be discussed in a forthcoming paper.

In the next section there are results that involve some integral estimates on the norm of the
tension field of the given map. The norm symbol‖τ(Φ)‖(x) denotes the pointwise norm given by
the inner producth(Φ(x))(τ(Φ)(x),τ(Φ)(x)) .

We apply the method of compact exhaustion, as in the work of Schoen and Yau in [16] . Let
BR(x) be the geodesic ball inM with centerx and radiusR > 0 . The following local gradient
estimate for harmonic maps was proved by Cheng in [4] , and it is applied in the proofs of this
paper.

Proposition 2.2 (Cheng). Consider N to be a simply connected Riemannian manifold withnon-
positive sectional curvature, and let M be a complete Riemannian manifold. Let u: M → N be
a harmonic map and assume that it maps the geodesic ball B2(x0) , into a geodesic ball BR(y0) .
Then,

sup
x∈B1(x0)

e(u)(x) ≤C,

for a constant C depending on m , R and K≥ 0 , where Ric(M) ≥−K on B2(x0) .
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3 The Heat Flow Method

Partial differential equations for maps between manifoldsare of considerable interest. An impor-
tant example is the harmonic map equation introduced for manifolds by Eells and Sampson in [8].
In this section we give a presentation of the heat flow method.

Given a mapΦ consider a one-parameter familyut : M → N deformingΦ. The aim is to
constructut , in such a way that it converges to a harmonic mapu∞ ast → +∞ .

Definition 3.1. The map u: M× [0,T)→ N solving the parabolic initial boundary value problem

∂u
∂ t

(x, t) = τ(u)(x, t) on M× [0,T) (3.1)

u(x,0) = Φ(x) on M×{0} (3.2)

u(x, t) = Φ(x) on ∂M× [0,T) (3.3)

for some positive (possibly infinite) T , is called the heat flow andΦ the initial map. The variables
x and t are usually referred to as the space and time variablesrespectively.

Note that when∂M = /0 the last equation above holds trivially. Eells and Sampson, and later
Hamilton, established that given aC2+α mapΦ : M → N , then there exists aT > 0 depending on
Φ , and the geometry of the domain and target, such that the heatflow exists onM× [0,T) (see for
example [12] or [8]).

Thekinetic energy densityof a mapu: M× [0,+∞) → N is defined by

κ(u) =
1
2
‖∂u

∂ t
‖2 =

1
2
〈∂u

∂ t
,
∂u
∂ t

〉 .

In local coordinates,

κ(u)(x, t) =
1
2

∂uα

∂ t
∂uβ

∂ t
hαβ (u(x, t)) .

Define

K(u) =

∫

M
κ(u)dvM

as thekinetic energyof u. As in the case of the energy, the kinetic energy can be regarded as a
functional.

From now onu will denote the heat flow andΦ the initial map. On the assumption that a heat
flow exists for all positive time, the kinetic energy densitysatisfies the following equation

∂κ
∂ t

= ∆κ −‖∇
∂u
∂ t

‖2 + 〈RN(u)(du(ej ),
∂u
∂ t

)du(ej),
∂u
∂ t

〉 . (3.4)

The energy density ofu satisfies the following equation

∂e(u)

∂ t
= ∆e(u)−‖∇du‖2−〈du(RicM(ek,ej)ej),du(ek)〉

+ 〈RN(du(ek),du(ej ))du(ej ),du(ek)〉,
(3.5)
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whereRicM, RN and ∆ are the Ricci tensor ofM, the curvature tensor ofN and the Laplacian
operator ofM respectively. The vectorsek, k = 1,2, . . . ,m represent an orthonormal frame onM ,
as usual. These are known as theWeitzenb̈ock formulas fore(u) andκ(u) respectively, a proof of
which can be found in [15] .

Observe that all the above formulas hold, with the time derivative terms omitted, whenu is a
harmonic map. This is a consequence of the fact that a harmonic map is a time independent heat
flow.

Let M̂ andN̂ be the universal covers ofM andN respectively, and letπM andπN be the relevant
projection maps. Consider̂M and N̂ equipped with the metrics fromM andN pulled back by
the projection maps. ThenM = M̂/FM and N = N̂/FN , whereFM and FN the group of deck
transformations ofM andN respectively. LetU : M× [0,T] → N be a homotopy ofΦ andu . In
particular, takeU to be the heat flow. Choose a liftinĝU : M̂ × [0,T] → N̂ . Then, there exists
a homomorphismh: FM → FN independent oft such thatÛ(g(y), t) = h(g)(Û(y, t)) , for every
t ∈ [0,T] , g∈ FM andy∈ M̂ . Let Φ̂(y) = Û(y,0) andû(y) = Û(y,T) . Denote bydN̂ the distance

function onN̂ and observe, that from the above it follows thatdN̂(Φ̂(y), û(y)) is FM invariant.

Define the functionρ(Φ,u) on M by ρ(Φ,u)(x) = dN̂(Φ̂(y), û(y)) , whereπM(y) = x . Then,
according to the above,ρ is a well defined function. Note thatρ(Φ,u)(x) ≥ dN(Φ(x),u(x)) . If
N is simply connected, then the lifting of the heat flow is no more necessary and in such a case
ρ(Φ,u)(x) = dN(Φ(x),u(x)) holds.

From now on we assume thatN has non-positive sectional curvature. This implies thatdN̂ is
smooth on̂N× N̂ except on the diagonal. Letx in M andej be an orthonormal frame nearx, where
j = 1,2, . . . ,m. Fix t and take orthonormal framesfα and f α nearû(y, t) andΦ̂(y) respectively,
whereα = 1,2, . . . ,n . If dû(ej) = ∑α ûα

j fα anddΦ̂(ej) = ∑α Φ̂α
j f α , thenXj = ûα

j fα + Φ̂α
j f α is

a vector in the tangent space ofN̂× N̂ at (û,Φ̂) . If r : N̂× N̂ → [0,+∞) is the distance function,
then the Hessian ofr is rXkXj = XjXk(r)− (∇Xj Xk)(r). It follows, as in [5] that

∂ρ
∂ t

= ∆ρ −∑
j

rXj Xj −∑
j,α

rα Φ̂α
j j

≤ ∆ρ −∑
j

rXj Xj +‖τ(Φ)‖ .

Taking into account thatN has non-positive sectional curvature it follows by the workof Schoen
and Yau in [17] that Hessian termsrXj Xj are non-negative. Thus,

∂ρ
∂ t

≤ ∆ρ +‖τ(Φ)‖ (3.6)

holds onM , except at the points whereρ(Φ(x),u(x, t)) = 0 . In fact, formula (3.6) holds onM in
the distributional sense, as shown in [5] by Ding and Wang.

4 Extending the Result of Donnelly

The main result in the theory of harmonic maps is the existence theorem of Eells and Sampson [8] ,
with the extensions of Hamilton [12] , and is as follows.
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Theorem 4.1 (Eells, Sampson and Hamilton). Consider M and N to be compact Riemannian
manifolds with (possibly empty) boundaries. In addition take N to have non-positive sectional
curvature. Then, every smooth map from M to N is homotopic to aharmonic map.

One would like to find harmonic maps without having to assume that the domain and target
are compact. Avilés, Choi and Micallef in [2] succeeded in doing this, by considering maps of
bounded image. They regard the harmonic map problem, as a perturbation of the corresponding
problem of real valued continuous functions, which has beensolved by Anderson and Schoen
in [1]. A variant of their proof, which is similar to the proofs in the present paper, has been given
by Donnelly in [6]. He considers the case ofC2 mapsΦ : M → N of bounded image, whereM
is a complete Riemannian manifold, which admits a Green’s functionG(x,y) andN is a complete
simply connected manifold with non-positive curvature. A similar result has been proved by
Bando in [3] .

Theorem 4.2(Donnelly). Consider N to be a complete simply connected Riemannian manifold
with non-positive sectional curvature and M to be a completeRiemannian manifold which admits
a Green’s function. Then, every C2 mapΦ : M → N is at a bounded distance from a harmonic
map u: M → N , provided that the following integral

w(x) =
∫

M
G(x,y)‖τ(Φ)‖(y)dvM ,

is uniformly bounded.

Proof. TakeM j , j ∈ N , to be a compact exhaustion ofM by smooth domains. DefineΦ j as the
mapΦ restricted toM j . Fix j and take into account the result of Hamilton [12] and thatN has
negative sectional curvature. It follows that there is a harmonic mapu j : M j →N that is continuous
up to the boundary such thatu j = Φ j on ∂M j . Let d j = d(u j ,Φ j) , whered denotes the distance
function.

By the work of Schoen and Yau in [17], it follows that

∆d j ≥−‖τ(Φ j)‖ ≥ −‖τ(Φ)‖ = ∆w,

wherew is the function given byw(x) =
∫

M G(x,y)‖τ(Φ)‖(y)dywhich by assumption is uniformly
bounded. Then, the functionv j(x) = d j(x)−w(x) , x∈ M j , satisfies∆v j(x) ≥ 0 for everyx∈ M j

andv j(x0)≤ 0 for everyx0 ∈ ∂M j . Hence, applying the maximum principle, it follows thatv j ≤ 0
and thusd j ≤ w everywhere inM j . This result, together with the assumption onw imply that
d j ≤C , whereC is a positive constant independent ofj . By the triangular inequality, it follows
that

d j(u j(x),u j (y)) ≤ d j(Φ(x),u j (x))+d j(Φ(x),Φ(y))+d j (Φ(y),u j (y))

≤ 2C+
√

2 sup
w∈M j

e(Φ)(w)d(x,y) .

Using the estimates of Cheng in [4] we find that the energy density e(u j)(x) is bounded (with a
bound depending onj ) for all x such thatB2(x) ⊂ M j . Note that by definition,u j mapsM j to

Φ(M j) and thatd j(u j(x),u j (y)) ≤
√

2supw∈M j
e(u j)(w)d(x,y) . By the uniform bounds on the

gradient ofu j on each compact setK ⊂ M and taking into account the standard results for linear
elliptic equations in [9] it follows that there are uniform bounds for the higher derivatives ofu j
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on compact setsK . Applying the Arzela-Ascoli theorem, we find a subsequencejk , such thatu jk
converges uniformly on compact sets to a harmonic mapu that is at a bounded distance fromΦ
(see p.4 in [6]) . This completes the proof. �

Donnelly in [6] proved that the integralw(x) =
∫
Hm G(x,y)‖τ(Φ)‖(y)dy is uniformly bounded

for everyC2 mapΦ : H
m→H

n with bounded image, and thus he recovers the next result of Avilés,
Choi and Micallef.

Theorem 4.3(Avilés, Choi and Micallef). Every C2 mapΦ : H
m → H

n , that is continuous up
to the ideal boundary and of bounded image, is at a bounded distance from a harmonic map
u: H

m → H
n,

Recall that ifN is not simply connected, then the equation 0≤ ∆ρ + ‖τ(Φ)‖ holds in the
distributional sense (see [5] for a proof) andρ is smooth everywhere except on the diagonal. We
use this last formula and the maximum principle (that is the first and second derivative tests from
calculus, see [12] for more details) to extend the result of Theorem 4.2 . The maximum principle
can only be used everywhere except the diagonal whereρ is not smooth, but in the diagonalρ is
0 (thus bounded). The next more general theorem holds.

Theorem 4.4(Extended Result of Donnelly). Let N be a complete Riemannian manifold with non-
positive sectional curvature. Let M be a complete Riemannian manifold which admits a Green’s
function. Then, every C2 mapΦ : M →N is at a bounded distance from a harmonic map u: M →N
provided that the following integral

w(x) =
∫

M
G(x,y)‖τ(Φ)‖(y)dvM

is uniformly bounded.

Proof. TakeM j , j ∈ N , to be a compact exhaustion ofM . DefineΦ j as the mapΦ restricted to
M j . Fix j and solve the relevant Dirichlet problem inM j and letu j be the harmonic map homotopic
to Φ j . Use equation 0≤ ∆ρ + ‖τ(Φ)‖ and the same approach as in the proof of Theorem 4.2 ,
in order to prove thatρ j is uniformly bounded, whereρ j = ρ(u j ,Φ j) is the distance function as
in [17] . Sinced(u j ,Φ j) ≤ ρ j(u j ,Φ j) , it follows that the distance ofu j from Φ j is also uniformly
bounded. Observe thate(u)(x) = e(û)(y) , whereû: M̂ → N̂ is a lift of u . The estimate of Cheng
then implies that the energy densitye(u j )(x) is bounded (with a bound depending onj ) for all x
such thatB2(x) ⊂ M j . Taking into account the standard results for linear elliptic equations in [9] it
follows that there are uniform bounds for the higher derivatives ofu j on each compact setK ⊂ M .
Applying the Arzela-Ascoli theorem, we find a subsequencejk , such thatu jk converges uniformly
on compact sets to a harmonic mapu that is at a bounded distance fromΦ (see p.4 in [6] for a
similar argument) . This completes the proof of the theorem. �

5 Extending Results of Li and Tam

In [14] Li and Tam published some general results on the harmonic map problem when both the
domain and the target manifolds are noncompact. Their work is motivated by the work of Eells
and Sampson in [8] and of Hamilton in [12]. They use the heat flow equation, in order to deform
a given initial map (defined between noncompact manifolds inthis case) into a harmonic map.
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A proof using a compact exhaustion is applied to provide similar, but more general, results to
these in [14]. Instead of the heat flow, we only need the properties of the heat kernel.

We say that a manifold hasbounded geometry, if its Ricci curvature is bounded below and its
injectivity radius is positive.

Theorem 5.1(Li and Tam). Let N be a complete simply connected Riemannian manifold with non-
positive sectional curvature and M be a complete Riemannianmanifold with bounded geometry
and positive lower bound of the spectrum. Then, for every C2 mapΦ : M → N , a harmonic map
u: M → N exists that is at a bounded distance fromΦ , provided that‖τ(Φ)‖2 is in Lp(M) for
some p∈ (1,∞) .

New, short proof. Firstly recall that from Theorem 4.2, it is enough to show that

w(x) =
∫

M
G(x,y)‖τ(Φ)‖(y)dv

is uniformly bounded, whereG is the Green’s function ofM .
Using thatG(x,y) =

∫ +∞
0 H(x,y, t)dt , and changing the order of integration, it follows that it is

enough to show that

w(x) =
∫ +∞

0

∫

M
H(x,y, t)‖τ(Φ)‖(y)dv

is uniformly bounded. Hence, it suffices to show that the integral
∫

M
H(x,y, t)‖τ(Φ)‖(y)dv

decays exponentially to zero, ast →+∞ . From the Markov property of the heat kernel
∫

M H(x,y, t)dv=
1 (see for example [7] for more details). Applying the Hölder inequality, it follows that

∫

M
H(x,y, t)‖τ(Φ)‖(y)dv=

∫

M
H

1
2 (x,y, t)H

1
2 (x,y, t)‖τ(Φ)‖(y)dv

≤ {
∫

M
H(x,y, t)‖τ(Φ)‖2(y)dv} 1

2 .

Thus, it is enough to show that
∫

M
H(x,y, t)‖τ(Φ)‖2(y)dv

decays exponentially to zero, ast → +∞ . Applying the Hölder inequality again, it follows that

∫

M
H(x,y, t)‖τ(Φ)‖2(y)dv≤ (

∫

M
‖τ(Φ)‖2p(y)dv)

1
p · (

∫

M
Hq(x,y, t)dv)

1
q .

Then the result follows from the hypothesis on‖τ(Φ)‖ and the next lemma, a proof of which
can be found in [14] . �

For the proof of Theorem 5.1 we need the following lemma.
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Lemma 5.2. Let q> 1 and M a Riemannian manifold with bounded geometry and positive lower
bound of the spectrum. Then, there exists a constant C depending on q , m ,infx∈M Vol(B1(x)) and
the lower bound of the Ricci curvature, such that for every x in M and for every t> 1 the following
estimate holds,

∫

M
Hq(x,y, t)dv≤Cexp(−4λ0(M)(q−1)t

q
) ,

whereλ0(M) is the lower bound of the spectrum of the manifold M .

Remark: Note that the same proof as above, without having to consider the inequality
∫

M
H(x,y, t)‖τ(Φ)‖(y)dv=

∫

M
H

1
2 (x,y, t)H

1
2 (x,y, t)‖τ(Φ)‖(y)dv

≤
∫

M
H(x,y, t)‖τ(Φ)‖2(y)dv} 1

2 .

shows that
∫

M H(x,y, t)‖τ(Φ)‖(y)dv decays exponentially to zero, as time progresses to infinity,
provided that‖τ(Φ)‖ is in Lp(M) for somep∈ (1,+∞) . An application to the case of hyperbolic
spaces thus provides the following theorem that is not covered by the results of Li and Tam in [14].

Theorem 5.3. For every C2 mapΦ : H
m → H

n there exists a harmonic map u: H
m → H

n that is
at a bounded distance fromΦ, provided that‖τ(Φ)‖ is in Lp(Hm) for some p∈ (1,+∞) .

The same approach as in Theorem 4.4 provides a proof of the following more general result
that covers the case whenN is not simply connected. This new result is as follows.

Theorem 5.4. Let N be a complete Riemannian manifold with non-positive sectional curvature.
Let M be a complete Riemannian manifold with bounded geometry and positive lower bound of
the spectrum. Then, for every C2 mapΦ : M → N , there exists a harmonic map u: M → N , that
is at a bounded distance fromΦ , provided that‖τ(Φ)‖2 is in Lp(M) for some p∈ (1,+∞) .

Remark: If in addition the energy density ofΦ is uniformly bounded then the energy density
of u is uniformly bounded. This is easy to find applying Proposition 2.2 .
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