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Abstract

We describe the problem of finding a harmonic map betweenarmpact manifold. Given
some sufficient conditions on the domain, the target andiitialimap, we prove the existence
of a harmonic map that deforms the given map.

1 Introduction

For a long time researchers have been trying to prove théeexis of harmonic maps. In this
paper the problem of how to deform an initial map into a harmomap will be discussed in the

case when both the domain and the target are noncompact. rsheefiult in this direction has

been obtained by Li and Tam in [14] . In the aforementionecepépe method applied is the heat
flow method first introduced by Eells and Sampson in [8]. Ingheof of the main theorems in

this paper we make use of the compact exhaustion method.rtiouar, the proofs are simpler

and the results are more general than the ones in [14].

2 Background

Let M andN be two Riemannian manifolds of dimensionandn respectively. Their metrics in
local coordinates are written as

m ] n
ds) = > gjdxXdx anddsy = 5 hypdx’dx¥’
a

kJ=1 B=1

respectively. Letghl) = (gkj) ! be the inverse metric tensor aﬁ{;ij the Christoffel symbols for
M, where the Latin indicek, j,| take values from 1 tan. The determinant of the matr{xy;) shall
be denoted byg. We use the corresponding notation for the manifdldut using Greek indices
(from 1 ton) in this case.

Consider &' mapu: M — N. Theenergy densitpf the mapu is defined in local coordinates

by
aul guP

kjnou ou™
a,ﬁ,k,jg ) IxK axi hag(U(x)).
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Define
E(u) = /M e(u)duy

to be theenergyof aC! mapu: M — N, wheredwy is the volume form oM and in local coordi-
nates is given byiwy = /gdxt A ... Adx™.

SinceE(u) is a real number (or infinity) for evenyin C*(M,N), it follows that the energ¥
can be regarded as a functional.

If u: M — N is a smooth map, thiension fieldis a section of the pulled back bundie®TN
which is given intrinsically by

T(u) = Tr(Odu).
In local coordinates,

_ 20 , o
9(U)(X) = gkl(x)%(x) - ng(X)rLj(X)%(X)
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whereAy, is the Laplace Beltrami operator g¥1,9) .
Definition 2.1. A map is called harmonic if its tension field vanishes idexflijc

The harmonic maps are the critical points of the energy fanat with respect to compactly
supported variations (see [13] for more details).

In what follows, we discuss the problem of how to deform a giwgap into a harmonic map
whenboththe domain and the target are noncompact. The issue of éxteadyiven boundary
map to a map with the required properties, will be discussedforthcoming paper.

In the next section there are results that involve some liatagstimates on the norm of the
tension field of the given map. The norm symbo(®)||(x) denotes the pointwise norm given by
the inner produch(®(x))(T(P)(x), T(P)(X)) .

We apply the method of compact exhaustion, as in the work bb&t and Yau in [16]. Let
Br(x) be the geodesic ball iM with centerx and radiusR > 0. The following local gradient
estimate for harmonic maps was proved by Cheng in [4], arglapplied in the proofs of this
paper.

Proposition 2.2(Cheng) Consider N to be a simply connected Riemannian manifold matiz
positive sectional curvature, and let M be a complete Rignizanmanifold. Let uM — N be
a harmonic map and assume that it maps the geodesic béathB into a geodesic ball R(yo) .
Then,

sup e(u)(x) <C,
XEB1(X0)

for a constant C depending on m, R and¥0, where Ri¢M) > —K on By(xo) .
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3 The Heat Flow Method

Partial differential equations for maps between manifaldsof considerable interest. An impor-
tant example is the harmonic map equation introduced forifmlda by Eells and Sampson in [8].
In this section we give a presentation of the heat flow method.

Given a map® consider a one-parameter family: M — N deforming®. The aim is to
constructy , in such a way that it converges to a harmonic mg@ast — +.

Definition 3.1. The map uM x [0,T) — N solving the parabolic initial boundary value problem

%(x,t) =1(u)(xt) on Mx [0, T) (3.1)
u(x,0) = ®(x) on M x {0} (3.2)
u(x,t) = ®(x) ondM x [0, T) (3.3)

for some positive (possibly infinite) T, is called the heat ffmd® the initial map. The variables
x and t are usually referred to as the space and time variatd@spectively.

Note that wheroM = 0 the last equation above holds trivially. Eells and Sampsod later
Hamilton, established that giverC&™ map®: M — N, then there exists & > 0 depending on
®, and the geometry of the domain and target, such that thelbeeaxists onM x [0, T ) (see for
example [12] or [8]).

Thekinetic energy densitgf a mapu: M x [0, +c) — N is defined by

1,0u, 10udu
KW =315 12 =550 50

In local coordinates,

19u% guP
K(U)(xt) = >t a—thaﬁ(u(xvt))'

Define

as thekinetic energyof u. As in the case of the energy, the kinetic energy can be redaad a
functional.

From now onu will denote the heat flow andb the initial map. On the assumption that a heat
flow exists for all positive time, the kinetic energy densgtisfies the following equation

oK 2., Jdu Jdu

K~ DT+ (R(u (uey), TP ducey), T (3.4)
The energy density af satisfies the following equation

oe(u) 2 : .

5 = deu) — | Ddul® — (du(Riou (6. &) )e)). du(ay) 35

+ (Rn(du(e), du(e;))du(e;), du(e)),



Harmonic Maps Between Noncompact Manifolds 179

whereRicy, Ry andA are the Ricci tensor o1, the curvature tensor dff and the Laplacian
operator ofM respectively. The vectorx, k=1,2,... ., mrepresent an orthonormal frame bh,
as usual. These are known as Weitzenbck formulas fore(u) andk (u) respectively, a proof of
which can be found in [15].

Observe that all the above formulas hold, with the time dwitre terms omitted, whea is a
harmonic map. This is a consequence of the fact that a haconaay is a time independent heat
flow.

Let M andN be the universal covers & andN respectively, and letyy and gy be the relevant
projection maps. Considevi andN equipped with the metrics froivl and N pulled back by
the projection maps. TheM = M/Fy andN = N/Fy, whereFRy and Fy the group of deck
transformations oM andN respectively. Let): M x [0,T] — N be a homotopy ofp andu. In
particular, takel to be the heat flow. Choose a liftiig: M x [0,T] — N. Then, there exists
a homomorphisnh: Fy — Fy independent of such thatJ (a(y).t) = h(g)(U(y;t)), for every
te[0,T],ge Ry andye M. Letd(y) = U (y, 0) andt(y) =U(y,T). Denote bydg, the distance
function onN and observe, that from the above it follows tU@(&J(y),G(y)) is Ry invariant.

Define the functiorp(®,u) on M by p(®P,u)(x) = dﬂ@(y),ﬁ(y)) , Wherergy (y) = x. Then,
according to the above is a well defined function. Note that(®,u)(x) > dn(P(x),u(x)) . If
N is simply connected, then the lifting of the heat flow is no ennecessary and in such a case
p(P,u)(x) = dn(P(x),u(x)) holds.

From now on we assume thithas non-positive sectional curvature. This implies thats
smooth orN x N except on the diagonal. Lein M ande; be an orthonormal frame nearwhere
j=1,2,...,m. Fixt and take orthonormal framefg and f, nearu(y, ) and CTJ(y) respectively,
wherea =1,2,....n. If dl(ej) = Zaﬁ?fa anddCTJ(eJ) Za tD"fa, thenX; = A“fa +d3 fq
a vector in the tangent spaceMfx N at (0, ®) . If r: N x N — [0,+) is the distance functlon,
then the Hessian afis ryx; = XjXk(r) — (Ox;X)(r). It follows, as in [5] that

dp —~
3t =Ap— erjxJ Jzaratb‘f]

<Ap-— erjxj +{T(P)].
]

Taking into account that has non-positive sectional curvature it follows by the wafrlschoen
and Yau in [17] that Hessian termg x; are non-negative. Thus,

p

5 SAp+[T(@)] (3.6)

holds onM , except at the points whepg®(x),u(x,t)) = 0. In fact, formula (3.6) holds oM in
the distributional sense, as shown in [5] by Ding and Wang.

4 Extending the Result of Donnelly

The main result in the theory of harmonic maps is the exigti¢imeorem of Eells and Sampson [8],
with the extensions of Hamilton [12], and is as follows.
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Theorem 4.1 (Eells, Sampson and Hamiltanonsider M and N to be compact Riemannian
manifolds with (possibly empty) boundaries. In additioketd\ to have non-positive sectional
curvature. Then, every smooth map from M to N is homotopichareonic map.

One would like to find harmonic maps without having to assuhat the domain and target
are compact. Avilés, Choi and Micallef in [2] succeeded @ing this, by considering maps of
bounded image. They regard the harmonic map problem, agwuxlpeion of the corresponding
problem of real valued continuous functions, which has bemwed by Anderson and Schoen
in [1]. A variant of their proof, which is similar to the praofn the present paper, has been given
by Donnelly in [6]. He considers the case®f maps®: M — N of bounded image, wherd
is a complete Riemannian manifold, which admits a Greemistfan G(x,y) andN is a complete
simply connected manifold with non-positive curvature. ifitar result has been proved by
Bando in [3].

Theorem 4.2(Donnelly). Consider N to be a complete simply connected Riemannianfotdni

with non-positive sectional curvature and M to be a compRiEmannian manifold which admits
a Green’s function. Then, every’@ap®: M — N is at a bounded distance from a harmonic
map u M — N, provided that the following integral

W = [ Gxy)[T(@)(y)dw
is uniformly bounded.

Proof. TakeM;, j € N, to be a compact exhaustion ldf by smooth domains. Defin@; as the
map ® restricted toM; . Fix j and take into account the result of Hamilton [12] and tRatas
negative sectional curvature. It follows that there is artaric mapu; : Mj — N that is continuous
up to the boundary such that = ®; ondM; . Letd; = d(u;, ®;), whered denotes the distance
function.

By the work of Schoen and Yau in [17], it follows that

Adj > —[T(®)[| > —[[T(P)]| = Aw,

wherew is the function given byv(x) = [, G(x,y)||T(®P)]|(y)dy which by assumption is uniformly
bounded. Then, the function(x) = d;j(x) —w(x) , x € M;, satisfiesAv;j(x) > 0 for everyx € M;
andvj(xo) < 0 for everyxg € dM; . Hence, applying the maximum principle, it follows tivat< 0
and thusd; < w everywhere inM;j. This result, together with the assumption wrimply that
d; <C, whereC is a positive constant independent jof By the triangular inequality, it follows
that

d; (u;(x),uj () < dj(P(x),u;j (x)) +dj (P(x), D(y)) +dj ((y), uj (¥))

<2C+ /ZWSéLl\IApj)e(CD)(W)d(x,y).

Using the estimates of Cheng in [4] we find that the energyitleesu;)(x) is bounded (with a
bound depending o) for all x such thatB,(x) C M;. Note that by definitiony; mapsM; to

®(M;) and thatd; (u;(x),u;(y)) < \/Zsug\,eMj e(uj)(w)d(x,y) . By the uniform bounds on the
gradient ofu; on each compact s&t C M and taking into account the standard results for linear
elliptic equations in [9] it follows that there are unifornounds for the higher derivatives af
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on compact set . Applying the Arzela-Ascoli theorem, we find a subsequefigesuch thau,
converges uniformly on compact sets to a harmonic m#pat is at a bounded distance fram
(see p.4in [6]). This completes the proof. |

Donnelly in [6] proved that the integral(X) = [m G(X,Y)||T(P)]|(y)dy is uniformly bounded
for everyC? map®d: H™ — H" with bounded image, and thus he recovers the next resultitéfsiv
Choi and Micallef.

Theorem 4.3(Aviles, Choi and Micallef) Every & map®: H™ — H", that is continuous up
to the ideal boundary and of bounded image, is at a bounde@rdie from a harmonic map
u: HM — H",

Recall that ifN is not simply connected, then the equatiorc@p + ||T(®P)|| holds in the
distributional sense (see [5] for a proof) ands smooth everywhere except on the diagonal. We
use this last formula and the maximum principle (that is thet ind second derivative tests from
calculus, see [12] for more details) to extend the resultteddfem 4.2 . The maximum principle
can only be used everywhere except the diagonal whésenot smooth, but in the diagonalis
0 (thus bounded). The next more general theorem holds.

Theorem 4.4(Extended Result of Donnellylet N be a complete Riemannian manifold with non-
positive sectional curvature. Let M be a complete Riemannianifold which admits a Green'’s
function. Then, every@nap®: M — N is at a bounded distance from a harmonic mapi— N
provided that the following integral

W = [ Gxy)[T(@)(y)cwy
is uniformly bounded.

Proof. TakeM;, j € N, to be a compact exhaustion ldf. Define®; as the magb restricted to
M; . Fix j and solve the relevant Dirichlet problemNy and letu; be the harmonic map homotopic
to ®;. Use equation 6 Ap + ||7(®)| and the same approach as in the proof of Theorem 4.2,
in order to prove thap; is uniformly bounded, wherp; = p(uj, ®;) is the distance function as
in [17]. Sinced(u;j, ®;) < pj(uj, Pj), it follows that the distance af; from ®; is also uniformly
bounded. Observe thatu)(x) = (T)(y) , wherelG: M — N is a lift of u. The estimate of Cheng
then implies that the energy denséfu;)(x) is bounded (with a bound depending ppfor all x
such thaB(x) C Mj. Taking into account the standard results for linear edipjuations in [9] it
follows that there are uniform bounds for the higher deivest ofu; on each compact s&tC M.
Applying the Arzela-Ascoli theorem, we find a subsequejicesuch that;, converges uniformly
on compact sets to a harmonic maphat is at a bounded distance fram(see p.4 in [6] for a
similar argument) . This completes the proof of the theorem. |

5 Extending Results of Li and Tam

In [14] Li and Tam published some general results on the harenmap problem when both the
domain and the target manifolds are noncompact. Their weorkativated by the work of Eells
and Sampson in [8] and of Hamilton in [12]. They use the heat #8quation, in order to deform
a given initial map (defined between noncompact manifoldkigicase) into a harmonic map.



182 A Fotiadis

A proof using a compact exhaustion is applied to provide lsimbut more general, results to
these in [14]. Instead of the heat flow, we only need the ptagseof the heat kernel.

We say that a manifold hdsounded geometryf its Ricci curvature is bounded below and its
injectivity radius is positive.

Theorem 5.1(Li and Tam) Let N be a complete simply connected Riemannian manifofdnit-
positive sectional curvature and M be a complete Riemanmianifold with bounded geometry
and positive lower bound of the spectrum. Then, for evérn@ ®: M — N, a harmonic map
u: M — N exists that is at a bounded distance frd@m provided that||7(®)||? is in LP(M) for
some pe (1,0).

New, short proof. Firstly recall that from Theorem 4.2, it is enough to showt tha

- /M Gyt (@) (y)dv

is uniformly bounded, wher@ is the Green’s function d¥1 .
Using thatG(x,y) = H(x,y,t)dt, and changing the order of integration, it follows that it is
enough to show that

400
- /o /M HOGYDIIT(@)ll(y)dv

is uniformly bounded. Hence, it suffices to show that thegrdak

[ HODIT(@) v

decays exponentially to zero, tas> + . From the Markov property of the heat kerrjgIH (x,y,t)dv=
1 (see for example [7] for more details). Applying the Haldeequality, it follows that

1

| oy IT@)ldv= | HEYOH?(y0T(@) v
<{ [ HOoy (@) 2)av
Thus, it is enough to show that
| HoxDlT(@) )y

decays exponentially to zero, s+ +oo. Applying the Holder inequality again, it follows that

2p 1 q 1
[y llr@)E)Av< ([ 7@)Pm)av? ([ Hitey o’

Then the result follows from the hypothesis pn(®)|| and the next lemma, a proof of which
can be found in [14]. |

For the proof of Theorem 5.1 we need the following lemma.
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Lemma5.2. Let g> 1 and M a Riemannian manifold with bounded geometry and peditiwer
bound of the spectrum. Then, there exists a constant C diygeod g, m jnfycy Vol(B1(x)) and
the lower bound of the Ricci curvature, such that for every Miand for every t> 1 the following
estimate holds,

Ao(M)(q— 1)t

/ HY(x,y,t)dv < Cexp(—
M q

),

whereAg(M) is the lower bound of the spectrum of the manifold M .

Remark: Note that the same proof as above, without havingrisider the inequality

| HoyDIT@)Idv= | HEGy.OH? 030 [T(@) (v
< [ HOcy (@) Ppdv .

shows thatfy, H(x,y,t)||T(®P)||(y)dv decays exponentially to zero, as time progresses to infinity
provided that|7(®)|| is in LP(M) for somep € (1,+) . An application to the case of hyperbolic
spaces thus provides the following theorem that is not eal/by the results of Liand Tam in [14].

Theorem 5.3. For every € map®: H™ — H" there exists a harmonic map ™ — H" that is
at a bounded distance from, provided that|7(®)|| is in LP(H™) for some pe (1, +).

The same approach as in Theorem 4.4 provides a proof of tleeviofy more general result
that covers the case whéhis not simply connected. This new result is as follows.

Theorem 5.4. Let N be a complete Riemannian manifold with non-positivticeal curvature.
Let M be a complete Riemannian manifold with bounded gegnaeitl positive lower bound of
the spectrum. Then, for every @ap®: M — N, there exists a harmonic map W — N, that
is at a bounded distance fromh, provided that|T(®)||? is in LP(M) for some ps (1,+).

Remark: If in addition the energy density @fis uniformly bounded then the energy density
of uis uniformly bounded. This is easy to find applying Proposit2.2 .
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