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Abstract

The generalized Zakharov—Shabat systems with complaxedadCartan elements and the sys-
tems studied A.V. Mikhailov, and later on by Caudrey, Beald @oifman (CBC systems), and
their gauge equivalent are studied. This includes: thegntgs of fundamental analytical so-
lutions (FAS) for the gauge-equivalentto CBC systems aadrimimal set of scattering data;
the description of the class of nonlinear evolutionary ¢igna solvable by the inverse scatter-
ing method and the recursion operator, related to suchragstae hierarchies of Hamiltonian
structures.

1 Introduction

The idea that the inverse scattering method (ISM) is a gémedaFourier transform has ap-
peared as early as 1974 in [1]. In the class of nonlinear &eollequations (NLEE) related to
the Zakharov—Shabat (ZS) system [30, 28], the Lax operationiing tosl(2) algebra was stud-
ied. This class of NLEE contains such physically importantagions as the nonlinear Schrodinger
equation (NLS), the sine-Gordon and modified Korteveg—de2{mKdV) equations.

The multi-component ZS system leads to such important sysés the multi-component NLS,
the N-wave type equations, etc.

Here, we consider the x n system [5, 7, 11]:

d
whereq(x,t) andJ take values in the semi-simple Lie algelprf25, 14, 29, 12]:

LWY(x,t,A) = <i£x+q(x,t) —)\J> W(x,t,A), (1.2)

r
q(x,t) = % (Qa (X%, t)Eq +0-a(X,t)E_q) € g5 J= Z ajHj € b.
achy J:l

For the case of compleX we will refer this system as Caudrey-Beals-Coifman (CBGtem.
Here,J is a regular element in the Cartan subalgepdd g, g; is the image of ag {Eq, H; } form
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the Cartan—Weyl Basis i, A, is the set of positive roots of the algebras rankg = dimb. For
more details see section 2 below. The regularity of the @Gataments means thgj is spanned
by all root vectorsE, of g, i.e. a(J) # O for any roota of g.

The given NLEE as well as the other members of its hierarctsggss Lax representation of
the form (according to (1.1))L(A),Mp(A)] = O, where

P-1
MpW(X,t,A) = <i§+ > Vk(x,t)—}\prI> Wxt,A)=0, |ebh, (1.2)
k=-S

which must hold identically with respect fo. A standard procedure generalizing the AKNS one
[1] allows us to evaluat&i(x,t) in terms ofq(x,t) and itsx-derivatives. Here and below, we
consider only the class of potentiad$x,t) vanishing fast enough fdx| — «. Then one may
also check that the asymptotic value of the potentiaMis{A ) namely f(P)(A) = fpAPI may be
understood as the dispersion law of the corresponding NLEE.

Another important trend in the development of IST was theothtiction of the reduction group
by A. V. Mikhailov [24], and further developed in [11, 12, 225, 17, 15, 16, 23]. This allows
one to prove that some of the well known models in the field thg@4] and also a number
of new interesting NLEE [24, 11, 25] are integrable by the I8M possess special symmetry
properties. As a result its potentialx,t) has a very special form and J can no-longer be chosen
real. The reduction group concept is important also becafifee fact, that when one considers
Lie-algebra-valued Lax operators, the number of indepetnflelds grows rather quickly with
the rank of the algebra: the corresponding NLEE are solvail@ny rank, but their possible
applications to physics do not seem realistic. However,stilenay extract new integrable and
physically useful NLEE by imposing reductions tni.e. algebraic restrictions on the potential
of L, which diminish the number of independent functions in tremd the number of equations
[24]. Of course, such restrictions must be compatible withdynamics of the NLEE.

The problem of constructing the spectral theory for (1.1thim most general case whérmas
an arbitrary complex eigenvalues was initiated by Mikhail@4], further developed by Beals,
Coifman, Caudrey [2, 3, 4, 7] and continued by Zhou [31] in¢bee when the algebggais sl(n),
q(x,t) vanishing fast enough fdx| — o and no a priori symmetry conditions are imposed on
g(x,t). This has been done later for any semi-simple Lie algebra&dayljikov and Yanovski
[18].

The zero-curvature conditiofi.(A),Mp(A )] = 0, is invariant under the action of the group of
gauge transformations [32]. Therefore the gauge equivalgstems are again completely inte-
grable, possess a hierarchy of Hamiltonian structures[%®t28, 18, 32].

The structure of this paper is as follows: In section 2 we sanwe some basic facts about the
reduction group and Lie algebraic details. The constranatibthe fundamental analytic solutions
(FAS) is sketched in section 3 which is done separately foctse of real Cartan elements (section
3.1) and for complex ones (section 3.2). The gauge equivhleEE’s to the CBC systems are
described in section 4.

2 Preliminaries

2.1 Simple Lie Algebras

Here, we fix up the notations and the normalization condstifam the Cartan-Weyl generators of
g [21]. We introduceny € h, k=1,...,r andE,, a € A where{hy} are the Cartan elements dual
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to the orthonormal basi&} in the root spac&'. Along with hy, we introduce also

r
HC! = Z (a7a()hk7 ac A7 (21)
k=1

where(a, &) is the scalar product in the root spd€ebetween the rootr ande;. The commuta-
tion relations are given by:

fora+peA
fora+ B ¢ AU{0}.

We will denote bya = ¥} _, axex ther-dimensional vector dual tbe b; obviouslyJ = ¥} _; achx.
If Jis aregular real element tnthen without restrictions we may use it to introduce an argder
in A. Namely we will say that the roat € A, is positive (negative) ifa,&) > 0 ((a,d) <0
respectively). The normalization of the basis is deteriahilog

2
(a,a)’

Ng gE
[h,Ea] = (0,80)Eqa,  [Eq,E-a] = Ha, [Ea,Eﬁ]Z{oa’B ap

E o= Eg, <E—aaEa> = N—a,—ﬁ = _Na7[37 Na7[3 =+(p+1), (2.2)
where the integep > 0 is such thatr +sB € Aforalls=1,....pa+ (p+1)B ZAand(,-)is
the Killing form of g. The root syster of g is invariant with respect to the Weyl reflectioA§;
on the vector§ € E they act ad\;y =y — %(;'5)) a, a <A AllWeyl reflectionsA;, form a finite
groupW, known as the Weyl group. One may introduce in a natural wayctioraof the Weyl
group on the Cartan-Weyl basis, namely:

Ay (Hp) =AqHgA =Ha g, A4(Ep) = AdEgA =Ny pEap, Ngp ==L

It is also well known that the matrice, are given (up to a factor from the Cartan subgroup) by
Ay = eFeeEagfaH, whereHa is a conveniently chosen element from the Cartan subgrotip su
thatH2 = 1.

2.2 The Reduction Group

The main idea underlying Mikhailov's reduction group [24]tb impose algebraic restrictions
on the Lax operatort andM which will be automatically compatible with the corresporgl
equations of motion. Due to the purely Lie-algebraic natfré¢he Lax representation this is
most naturally done by imbedding the reduction group as grsuip of Autg — the group of
automorphisms ofi. Obviously, to each reduction imposed brandM there will correspond a
reduction of the space of fundamental soluti®s= {W(x,t,A)} of (1.1).

Some of the simplest,-reductions of Zakharov—Shabat systems have been knovanlémg
time (see [24]) and are related to outer automorphisnmsasfd®, namely:

Cr (WO t,A) =AW (xt,k ADATL =91 (xt,A),  K(A)==A%, (2.3)

Co(W(xt,A)) = AW (x,t,k(A)Ag "t = P(x.t,A), (2.4)
whereA; andAs are elements of the group of automorphisms ghoftthe algebra. Since our aim
is to preserve the form of the Lax pair, we limit ourselvesutanorphisms preserving the Cartan
subalgebray. The reduction grougsr is a finite group which preserves the Lax representation,

i.e. it ensures that the reduction constraints are autoaigticompatible with the evolutionGg
must have two realizations:
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i) Gr C Autg
ii) Gr C ConfC, i.e. as conformal mappings of the compkesplane.
To eachgy € Gr we relate a reduction condition for the Lax pair as follows][2

Ck(U(Mk(A))) =md (A), (2.5)

whereU (x,A) =q(x) —AJ, Cx € Aut g andl"k(A ) are the images @ andny = 1 or—1 depending
on the choice ofy. SinceGg is a finite group then for ead there exist an integd¥y such that
g =1.

‘ It is well known that Aug =V ® Autpg whereV is the group of outer automorphisms (the
symmetry group of the Dynkin diagram) and Agtis the group of inner automorphisms. Since we
start withl,J € h it is natural to consider only those inner automorphisms giheserve the Cartan
subalgebrd. Then Aupg ~ Ady ® W where Ady is the group of similarity transformations with
elements from the Cartan subgroup &ids the Weyl group of;.

Generically each elememgk € G mapsA into a fraction-linear function oA. Such action
however is appropriate for a more general class of Lax operathich are linear fractional trans-
formations ofA.

3 The Caudrey—Beals—Coifman systems

3.1 Fundamental analytical solutions and scattering datadr real J.
The direct scattering problem for the Lax operator (1.1)isdal on the Jost solutions:

lim w(x,A)eM* =1, Jim P(x,A)er* =1, (3.1)

X—00

and the scattering matrix

T(A) = (P(xA) Tp(x,A). 3.2)

The fundamental analytic solutions (FAS¥(x,A) of L(A) are analytic functions of for ImA >
0 and are related to the Jost solutions by [14]

Xi(xv)‘):(p(va)Si()‘):wi(xv)\)T:F()‘)Di(A)v (33)

whereT£(A), S5(A) andD*(A) are the factors of the Gauss decomposition of the scattering
matrix:

TA) =T - (A)DTA)SA)=TT(A)D~(A)S (A) (3.4)

T5(A) = exp< > tia(A)Ea> ,  S()= eXp( > Sia(/\)Ea> ;
a>0 a>0

o Co2dt(A) . 2 (A), -
D (A)_Iexp<1217(aj’aj)Hj>, D (A) Iexp(Z (or,-,aj)HJ>'

HereHj = Hq;, Hj = wo(Hj), S=S1, Iis an element from the universal center of the corre-
sponding Lie groum and the superscript (or —) in the Gauss factors means upper- (or lower-)
triangularity forT(A), S5(A) and shows thab*(A) (or D~(A)) are analytic functions with

respect toA for ImA > 0 (or ImA < O respectively).
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On the real axig™(x,A) andx ~(x,A) are linearly related by:
XT(xA)=X"(xA)Go(A),  Go(A)=S"(A)S (), (3.5)

and the sewing functiofy(A ) may be considered as a minimal system of scattering datédeyv
the Lax operator (1.1) has no discrete eigenvalues [14].

3.2 The CBC Construction for Semisimple Lie Algebras

Here we will sketch the construction of the FAS for the caseahplex-valued regular Cartan
element): a(J) # 0, following the general ideas of Beals and Coifman [2] fa $K(n) algebras
and [18] for the orthogonal and symplectic algebras. Thdsas consist of the following:

1. For potentialg)(x) with small norm||q(x)||.1 < 1, one can divide the complexplane into
sectors and then construct an unique FA3x,A ) which is analytic in each of these sectors
Qy;

2. Forthese FAS in each sector there is a certain Gauss desaiop problem for the scatter-
ing matrixT (A ) which has an unique solution in the case of absence of déseigénvalues.

The main difference between the cases of real-valued anglesraaluedd lies in the fact that
for complexJ the Jost solutions and the scattering data exist only fopttentials on compact
support. For potentials not on a compact support some addlticonditions on the potential
should be imposed [24].

We define the regions (sectof), as consisting of thosg’s for which Im(A a (J)) # 0 for any
a € A. Thus the boundaries of th,’s consist of the set of straight lines:

la={A:ImAa(J)=0, aeA} (3.6)

and to each roafr we can associate a certain lihg different roots may define coinciding lines.
Note that with the change frorh to A€ andJ to Je~'" (this leads that the produdta (J)
invariant) we can always chookgto be along the positive redl axis.
To introduce an ordering in each secfdy we choose the vect@, (A) € E" to be dual to the
element IM\ J € ). Then in each sector we splitinto

A=Afub,, A={acA:ImAa(d)=01cQ,}. (3.7)

If A € Qy, then—A € Qu.y (if the linesl, split the complexA -plane into M sectors). We need
also the subset of roots:

o={aelA:ImAa(d)=0,A€l,} (3.8)
which will be a root system of some subalgeprac g. Then we can write that

g:élgv a=U0s &=805, &=an5
Thus we can describe in more details the #gts

N =067U8 U---U§ UG U---Udy, ALy=4, k=1..M (3.9)

Note that each ordering i can be obtained from the "canonical” one by an action of agngp
chosen element of the weyl gro@p(g).
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Now in each secta®, we introduce the FA, (x,A) andm, (x,A) = xy(x,A )€ satisfying
the equivalent equation:

id(;‘:(" +a(x)my(x,A) —A[J,m,(x,A)] =0, A€Q,. (3.10)
If q(x) is a potential on compact support then the FASXx, A ) are related to the Jost solutions by
my(XA) = e A)Sy (M) = Y A)T, (x,A)Dy (A)eH, (3.11)

my_1(x,A) = @(x,A)S, (M) X = w(x, AT, (x,A)Dy (A)eM > A el,.
From the definitions ofm, (x,A) and the scattering matrik(A ) we have
TA) =T, ADF AN A) =T, (A)D, (A)S, (A), A€l (3.12)

where in the first equality we také = pue® and for the secondA = pe ™ with p € 1,. The
corresponding expressions for the Gauss factors have time fo

$<A>=exp< )3 s;hamEa), s;m)exp( )3 sw(A)Ea),

+ +
achy aeh) |

I +
aeh; aehy

Tj(A)exp( z tja(A)Ea>, T;(A):exp( z t\;a(A)Ea>,
Dj(}\) :exp(dj(}\)-Hv), D, (A)=expd, (A)-Hy_1). (3.13)

Hered; (A) = (dj4,...,dg,) is a vector in the root space and

Hf] = < 2Hn’l PR 2H’77r ) ) (dﬁ(A)an) =
(ana1,0n1) (anr,any)

r Zdjk()\)H,Lk

& (0, O k)

, (3.14)

whereay  is thek-th simple root ofg with respect to the ordering;, andHy k are their dual
elements in the Cartan subalgeljra

4 The Gauge Group Action

4.1 The class of the gauge equivalent NLEEs

The notion of gauge equivalence allows one to associateytd.ax pair of the type (1.1), (1.2)
an equivalent one [18], solvable by the inverse scatteriethod for the gauge equivalent linear
problem:

L= (idﬂ—;\s> P(xt,A)=0, M{J= (i% —A f(S)> P(x,t,A) =0, (4.1)

X
where{i(x,t,A) = g~ (x.t)g(xt,A),
S=Adg-J=g 1(xt)Igxt), 4.2)

andg(x,t) = my(x,t,0) is FAS atA = 0. The functionam, (x,t,A) are analytic with respect t
in each sectof2, (in the case of potential on compact support). On the coatiawspectrum of
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L the FASm, (x,t,0) and the Jost solutiong(x,t,0) are linearly dependant (3.11Mn,(x,t,0) =
Y(x,t,0)T, (t,0)D; (0). Therefore the gauge group action is well defined. The zereature
condition [L M] = 0 gives:

d
S-5f(9=0 *.3)

wheref(S) = ZL;% apSP+Lis an odd polynomial 08, Both Lax operator&(A) andL(A) have
equivalent spectral properties and spectral data andfitherie classes of NLEE'’s related to them
are equivalent. It is natural théf.7) = g~1(x,t)lg(x,t), i.e., it is uniquely determined by Both
J andl belong to the Cartan subalgebiyao they have common set of eigenspaces.

1) g ~ A, = sl(n) with n=r+ 1. We havel = diag(Js,...,Jn), | =diag(l4,...,In), and the
only constraint on the eigenvaludg and Iy is trJ =trl = 0. The projectors on the common
eigensubspaces dfandl are given by:

J—J .
— I" ° —diag(0,...,0,1,0,...,0). (4.4)

Next we note that = Y3, Ik7k(J). In order to derivef (.#) for g ~ sl(n) we need to apply the
gauge transformation to (4.3) with the resuit.s”’) = S_; kT&k(.¥), i.e., f(.¥) is a polynomial
of ordern— 1. Obviously.7 is restricted by]p_,(.¥ — %) =0, tr7K =trJk fork=2,...,n

2) g ~ B;,D; In order to expresd (S) through their eigenvalued and Ik we introduce the
diagonal matrix-valued functions:

J J? J2
fk(‘J) = \]k rLJZ JZ He‘ € h7 (45)

where byHe, we denote the element indual to the basis vect@ in the root space of. Using
(4.5) and applying Aglwe get:

r
| = Zlkfk(J)’ f(S)Eg Xt |g Xt Zlkfk (4.6)
K=1
In additionS(x,t) satisfies the characteristic equations:

r
SME-%K =0 (4.7)
k=1
wherekg =0 if g~ C; or Dy andkg =1, if g ~ B;.
Then the equation gauge equivalent to (1.1) becomes:

S — aoSc— ril ap(SZpH)x =0. (4.8)
p=1

The functionS(x,t) € g is also subject to constraints; one of them is provided bg) (4o construct
the others we assume that- B, or D, and use the typical representationgofit this settings we
easily see that all odd powers Hf, also belong to the Cartan subalgelpraThus we conclude
that all odd powers oB also belong tas. The invariance properties of the trace lead t¢J3) =
2% 1\]2" =tr(S)%, fork=1,...,r. These are preciselyindependent algebraic constraints on
S. Solving for them we conclude that the number of independegfficients inSis equal to the
number of rootsA| of g.
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4.2 The Minimal Set of Scattering Data forL(A) and L(A)

We skip the details about CBC construction which can be fanrj#i8] and go to the minimal set
of scattering data for the case of complewhich are defined by the sef8; and.%#, as follows:

2M
F = U 35 Fp = UlyZ,w
V=
V:{péfv’a()\),aeéj,)\ €lv} yZ,V:{TB,V,a( ),GECSJ,A €lv}, (4.9)
where
va a()‘ S‘_/AF BS/t Tét,vp()‘) = <Tvi()‘)B-IA-vi(A)7EIa>7 (4.10)

with a € 7, A €1, andB is a properly chosen regular element of the Cartan subadebr
Without loss of generality we can take in (4.1®)= H,. Note that the functionp§v7a(A) and
Téfv7a()\) are continuous functions df for A € |,,.

“If we choosel in such way that B = |A|— the number of the roots @f then to each pair of
roots{a,—a} one can relate a separate pair of rgls,lqm}, andlq # Ig if a # £B. In this
case each of the subalgebggswill be isomorphic tosl(2).

In order to determine the scattering data for the gauge afgunv equations we need to start
with the FAS for these systems:

mﬁ(xv)\) :g_l(X,t)ﬁ(X,A)g_, (411)

whereg_ = limy_._,g(x,t) and due to (1.2) and_ = 'f(O). In order to ensure that the functions
&% (x,A) are analytic with respect th the scattering matriX (0) atA = 0 must belong to the cor-
responding Cartan subgrowp Then Equation (4.11) provide the fundamental analytiotsmhs

of L. We can calculate their asymptotics for— +o and thus establish the relations between the
scattering matrices of the two systems:

im §+(x A) =e AT (0)SH(A)T(0) lim ET(x,A) =e AT (A)DT(A)T(014.12)

with the result:T(A) = T(A)T(0). ObviouslyT (0) = 1.. The factors in the corresponding Gauss
decompositions are related by:

S0 =TOs*N)T(0), TA)=T ) D*(A)=D*A)T(0).
On the real axis again the FA‘:S*(X,)\) andé- (x,A) are related b)£+(x A) = E—(x,)\)éo()\)
with the normalization conditiod (x,A = 0) = 1. andGg(A ) = S"(A)S (A ) again can be consid-
ered as a minimal set of scattering data.

The minimal set of scattering data for the gauge-equivalEB€ systems are defined by the
sets.%#; and.%> as follows:

~ M ~ ~ M~
F1= U ﬁ Fp = Ulﬁgv,
- V=

1V_{vaa( ) aeé\j’A GIV} ﬂ\ {TBva( ) aeé\;L’AEIV}v (413)

where

Pev.a(A) = (T(0)S;(A)BS;(N)T(0),Esa), Taya(A)= (T ()BT (A),Exqa), (4.14)
with a € §,/, A €1, andB is again a properly chosen regular element of the Cartangelra
h. Without loss of generality we can take in (4.18)>= Hy (as in (4.10)). That the functions
ﬁéfv_a(}\) and Téfv_a(}\) are continuous functions df for A €|, and have the same analyticity
properties as the functioms, ,(A) andta, 4 (A).
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4.3 Integrals of Motion and Hierarchies of Hamiltonian Structures

Both classes of NLEE's are infinite dimensional completekggrable Hamiltonian systems and
possess hierarchies of Hamiltonian structures.

The phase spaceZcgc is the linear space of all off-diagonal matricgét) tending fast
enough to zero fox — 4. The hierarchy of pair-wise compatible symplectic struesuon
Mcpc is provided by the 2-forms:

0¥ =i /_ idxtr <5Q(X,t) AN, 5Q(X,t)]) ; (4.15)

whereA = (A, +A_)/2 is the generating (recursion) operator for (1.1) defineidkmswvs:
.d . x
N209 = a1 o) (15 + 0002091 +1 a6 [ aylam).z]] ).

where p(X) = aujl oad;(X). The symplectic formng‘gSC can be expressed in terms of the
scattering data fol (A ):

0 _ G o ’ o
oac = znvzl/)‘elvuhvuv A4 (QKV(A) QO,V()\)) )
ngv(;\):maﬂ( F(A)ATF(A MASA)ESE(N)). (4.16)

Note that the kernels (ﬂg‘éc differ only by the facton ¥ so all of them can be casted into canonical
form simultaneously.

The phase spaceZgauge Of the gauge equivalent to the CBC systems is the manifoldlof a
7 (x,t) determined by the second relation in (4.2). The family of patible 2-forms is:

Offuge= 5 [ ot (559 ARKS?, 55 (1) (4.17)

HereA is the recursion operator for the gauge equivalent to the &BE&ms:
-~ - ~ x ~ ~
AoZ = iadgt (1 To(x)) {d— + 3 .ad ) [ dy(Iuly)ad i, #).20)). }

wherehy(x,t) = g~(x,t)Hkg(x,t), and(H, Hj) = (hi(x,t), hj (x,t)) = Gy
The spectral theory of these two operatdrandA underlie all the fundamental properties of
these two classes of gauge equivalent NLEE, for detailsjsﬂa]e INote that the gauge transforma-

tion relates nontrivially the symplectic structures, Dé\‘LSE_ HKQEZ [26, 18].

5 Conclusions

In the present article the gauge-equivalent models, btatthe Lax pair (4.1) are studied and their
relations to the “canonical” systems (1.1), (1.2) are disladd. This includes: the description of
the class of nonlinear evolutionary equations solvablehieyitiverse scattering method (Section
4.1), the minimal set of scattering data (Section 4.2); thegrals of motion and the hierarchies
of Hamiltonian structures (Section 4.3).
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We will finish this article with several concluding remarkio CBC systems and their gauge
equivalent one can apply the analysis [18] and derive thepteteness relations for the corre-
sponding system of squared solutions. Such analysis wilvabne to prove the pair-wise com-
patibility of the Hamiltonian structures and eventuallydeerive their action-angle variables, see
e.g. [27] and [5] for theA,-series.

For the case of singuldr(a (J) = 0) the construction of FAB, (x,t,A) andm, (x,t,A) requires
the use of generalized Gauss decomposition in which ther&dt; (A ) are block-diagonal, while
TS (t,A) andSE(t,A) are block-triangular. This will be addressed to a subsecpaper.

The approach presented here allows one to consider CBQmyst#h more general - de-
pendence, like the Principal Chiral field models and othletikéstic invariant fiels theories [29].

If g ~ so(5) then the corresponding gauge equivalent system descsbparametric surfaces
[10].

Finally, some open problems are:

1) to study the internal structure of the soliton solutiond aoliton interactions (for both types of
systems);
2) to study reductions of the gauge equivalent to CBC systems
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