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Abstract

The generalized Zakharov–Shabat systems with complex-valued Cartan elements and the sys-
tems studied A.V. Mikhailov, and later on by Caudrey, Beals and Coifman (CBC systems), and
their gauge equivalent are studied. This includes: the properties of fundamental analytical so-
lutions (FAS) for the gauge-equivalent to CBC systems and the minimal set of scattering data;
the description of the class of nonlinear evolutionary equations solvable by the inverse scatter-
ing method and the recursion operator, related to such systems; the hierarchies of Hamiltonian
structures.

1 Introduction

The idea that the inverse scattering method (ISM) is a generalized Fourier transform has ap-
peared as early as 1974 in [1]. In the class of nonlinear evolution equations (NLEE) related to
the Zakharov–Shabat (ZS) system [30, 28], the Lax operator belonging tosl(2) algebra was stud-
ied. This class of NLEE contains such physically important equations as the nonlinear Schrödinger
equation (NLS), the sine-Gordon and modified Korteveg–de-Vriez (mKdV) equations.

The multi-component ZS system leads to such important systems as the multi-component NLS,
theN-wave type equations, etc.

Here, we consider then×n system [5, 7, 11]:

LΨ(x, t,λ ) =

(
i

d
dx

+q(x, t)−λJ

)
Ψ(x, t,λ ), (1.1)

whereq(x, t) andJ take values in the semi-simple Lie algebrag [25, 14, 29, 12]:

q(x, t) = ∑
α∈∆+

(qα(x, t)Eα +q−α(x, t)E−α ) ∈ gJ J =
r

∑
j=1

a jH j ∈ h.

For the case of complexJ we will refer this system as Caudrey-Beals-Coifman (CBC) system.
Here,J is a regular element in the Cartan subalgebrah of g, gJ is the image of adJ, {Eα ,Hi} form
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the Cartan–Weyl Basis ing, ∆+ is the set of positive roots of the algebra,r = rankg = dimh. For
more details see section 2 below. The regularity of the Cartan elements means thatgJ is spanned
by all root vectorsEα of g, i.e. α(J) 6= 0 for any rootα of g.

The given NLEE as well as the other members of its hierarchy possess Lax representation of
the form (according to (1.1)):[L(λ ),MP(λ )] = 0, where

MPΨ(x, t,λ ) =

(
i
d
dt

+
P−1

∑
k=−S

Vk(x, t)−λ P fPI

)
Ψ(x, t,λ ) = 0, I ∈ h, (1.2)

which must hold identically with respect toλ . A standard procedure generalizing the AKNS one
[1] allows us to evaluateVk(x, t) in terms ofq(x, t) and itsx-derivatives. Here and below, we
consider only the class of potentialsq(x, t) vanishing fast enough for|x| → ∞. Then one may
also check that the asymptotic value of the potential inMP(λ ) namely f (P)(λ ) = fPλ PI may be
understood as the dispersion law of the corresponding NLEE.

Another important trend in the development of IST was the introduction of the reduction group
by A. V. Mikhailov [24], and further developed in [11, 12, 29,25, 17, 15, 16, 23]. This allows
one to prove that some of the well known models in the field theory [24] and also a number
of new interesting NLEE [24, 11, 25] are integrable by the ISMand possess special symmetry
properties. As a result its potentialq(x, t) has a very special form and J can no-longer be chosen
real. The reduction group concept is important also becauseof the fact, that when one considers
Lie-algebra-valued Lax operators, the number of independent fields grows rather quickly with
the rank of the algebra: the corresponding NLEE are solvablefor any rank, but their possible
applications to physics do not seem realistic. However, onestill may extract new integrable and
physically useful NLEE by imposing reductions onL, i.e. algebraic restrictions on the potential
of L, which diminish the number of independent functions in themand the number of equations
[24]. Of course, such restrictions must be compatible with the dynamics of the NLEE.

The problem of constructing the spectral theory for (1.1) inthe most general case whenJ has
an arbitrary complex eigenvalues was initiated by Mikhailov [24], further developed by Beals,
Coifman, Caudrey [2, 3, 4, 7] and continued by Zhou [31] in thecase when the algebrag is sl(n),
q(x, t) vanishing fast enough for|x| → ∞ and no a priori symmetry conditions are imposed on
q(x, t). This has been done later for any semi-simple Lie algebras byGerdjikov and Yanovski
[18].

The zero-curvature condition[L(λ ),MP(λ )] = 0, is invariant under the action of the group of
gauge transformations [32]. Therefore the gauge equivalent systems are again completely inte-
grable, possess a hierarchy of Hamiltonian structures, etc, [9, 28, 18, 32].

The structure of this paper is as follows: In section 2 we summarize some basic facts about the
reduction group and Lie algebraic details. The construction of the fundamental analytic solutions
(FAS) is sketched in section 3 which is done separately for the case of real Cartan elements (section
3.1) and for complex ones (section 3.2). The gauge equivalent NLEE’s to the CBC systems are
described in section 4.

2 Preliminaries

2.1 Simple Lie Algebras

Here, we fix up the notations and the normalization conditions for the Cartan-Weyl generators of
g [21]. We introducehk ∈ h, k = 1, . . . , r andEα , α ∈ ∆ where{hk} are the Cartan elements dual
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to the orthonormal basis{ek} in the root spaceEr . Along with hk, we introduce also

Hα =
2

(α ,α)

r

∑
k=1

(α ,ek)hk, α ∈ ∆, (2.1)

where(α ,ek) is the scalar product in the root spaceE
r between the rootα andek. The commuta-

tion relations are given by:

[hk,Eα ] = (α ,ek)Eα , [Eα ,E−α ] = Hα , [Eα ,Eβ ] =

{
Nα ,β Eα+β for α + β ∈ ∆
0 for α + β 6∈ ∆∪{0}.

We will denote by~a= ∑r
k=1 akek ther-dimensional vector dual toJ∈ h; obviouslyJ = ∑r

k=1 akhk.
If J is a regular real element inh then without restrictions we may use it to introduce an ordering
in ∆. Namely we will say that the rootα ∈ ∆+ is positive (negative) if(α ,~a) > 0 ((α ,~a) < 0
respectively). The normalization of the basis is determined by:

E−α = ET
α , 〈E−α ,Eα〉 =

2
(α ,α)

, N−α ,−β = −Nα ,β , Nα ,β = ±(p+1), (2.2)

where the integerp≥ 0 is such thatα +sβ ∈ ∆ for all s= 1, . . . , p α +(p+1)β 6∈ ∆ and〈·, ·〉 is
the Killing form of g. The root system∆ of g is invariant with respect to the Weyl reflectionsA∗

α ;
on the vectors~y∈ E

r they act asA∗
α~y=~y− 2(α ,~y)

(α ,α) α , α ∈ ∆. All Weyl reflectionsA∗
α form a finite

groupWg known as the Weyl group. One may introduce in a natural way an action of the Weyl
group on the Cartan-Weyl basis, namely:

A∗
α(Hβ ) ≡ AαHβ A−1

α = HA∗
α β , A∗

α(Eβ ) ≡ AαEβ A−1
α = nα ,β EA∗

αβ , nα ,β = ±1.

It is also well known that the matricesAα are given (up to a factor from the Cartan subgroup) by
Aα = eEα e−E−α eEα HA, whereHA is a conveniently chosen element from the Cartan subgroup such
thatH2

A = 11.

2.2 The Reduction Group

The main idea underlying Mikhailov’s reduction group [24] is to impose algebraic restrictions
on the Lax operatorsL and M which will be automatically compatible with the corresponding
equations of motion. Due to the purely Lie-algebraic natureof the Lax representation this is
most naturally done by imbedding the reduction group as a subgroup of Autg – the group of
automorphisms ofg. Obviously, to each reduction imposed onL andM there will correspond a
reduction of the space of fundamental solutionsSΨ ≡ {Ψ(x, t,λ )} of (1.1).

Some of the simplestZ2-reductions of Zakharov–Shabat systems have been known fora long
time (see [24]) and are related to outer automorphisms ofg andG, namely:

C1 (Ψ(x, t,λ )) = A1Ψ†(x, t,κ(λ ))A−1
1 = Ψ̃−1(x, t,λ ), κ(λ ) = ±λ ∗, (2.3)

C2(Ψ(x, t,λ )) = A3Ψ∗(x, t,κ(λ ))A−1
3 = Ψ̃(x, t,λ ), (2.4)

whereA1 andA3 are elements of the group of automorphisms Autg of the algebrag. Since our aim
is to preserve the form of the Lax pair, we limit ourselves to automorphisms preserving the Cartan
subalgebrah. The reduction groupGR is a finite group which preserves the Lax representation,
i.e. it ensures that the reduction constraints are automatically compatible with the evolution.GR

must have two realizations:
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i) GR ⊂ Autg
ii) GR ⊂ ConfC, i.e. as conformal mappings of the complexλ -plane.
To eachgk ∈ GR we relate a reduction condition for the Lax pair as follows [24]:

Ck(U(Γk(λ ))) = ηkU(λ ), (2.5)

whereU(x,λ ) = q(x)−λJ,Ck ∈Aut g andΓk(λ ) are the images ofgk andηk = 1 or−1 depending
on the choice ofCk. SinceGR is a finite group then for eachgk there exist an integerNk such that
gNk

k = 11.
It is well known that Autg ≡ V ⊗Aut0g whereV is the group of outer automorphisms (the

symmetry group of the Dynkin diagram) and Aut0g is the group of inner automorphisms. Since we
start withI ,J ∈ h it is natural to consider only those inner automorphisms that preserve the Cartan
subalgebrah. Then Aut0g≃ AdH ⊗W where AdH is the group of similarity transformations with
elements from the Cartan subgroup andW is the Weyl group ofg.

Generically each elementgk ∈ G mapsλ into a fraction-linear function ofλ . Such action
however is appropriate for a more general class of Lax operators which are linear fractional trans-
formations ofλ .

3 The Caudrey–Beals–Coifman systems

3.1 Fundamental analytical solutions and scattering data for real J.

The direct scattering problem for the Lax operator (1.1) is based on the Jost solutions:

lim
x→∞

ψ(x,λ )eiλJx = 11, lim
x→−∞

φ(x,λ )eiλJx = 11, (3.1)

and the scattering matrix

T(λ ) = (ψ(x,λ ))−1φ(x,λ ). (3.2)

The fundamental analytic solutions (FAS)χ±(x,λ ) of L(λ ) are analytic functions ofλ for Imλ ≷

0 and are related to the Jost solutions by [14]

χ±(x,λ ) = φ(x,λ )S±(λ ) = ψ±(x,λ )T∓(λ )D±(λ ), (3.3)

whereT±(λ ), S±(λ ) and D±(λ ) are the factors of the Gauss decomposition of the scattering
matrix:

T(λ ) = T−(λ )D+(λ )Ŝ+(λ ) = T+(λ )D−(λ )Ŝ−(λ ) (3.4)

T±(λ ) = exp

(

∑
α>0

t±±α(λ )Eα

)
, S±(λ ) = exp

(

∑
α>0

s±±α(λ )Eα

)
,

D+(λ ) = I exp

(
r

∑
j=1

2d+(λ )

(α j ,α j)
H j

)
, D−(λ ) = I exp

(
r

∑
j=1

2d−(λ )

(α j ,α j)
H−

j

)
.

HereH j = Hα j , H−
j = w0(H j), Ŝ≡ S−1, I is an element from the universal center of the corre-

sponding Lie groupG and the superscript+ (or −) in the Gauss factors means upper- (or lower-)
triangularity for T±(λ ), S±(λ ) and shows thatD+(λ ) (or D−(λ )) are analytic functions with
respect toλ for Imλ > 0 (or Imλ < 0 respectively).
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On the real axisχ+(x,λ ) andχ−(x,λ ) are linearly related by:

χ+(x,λ ) = χ−(x,λ )G0(λ ), G0(λ ) = S+(λ )Ŝ−(λ ), (3.5)

and the sewing functionG0(λ ) may be considered as a minimal system of scattering data provided
the Lax operator (1.1) has no discrete eigenvalues [14].

3.2 The CBC Construction for Semisimple Lie Algebras

Here we will sketch the construction of the FAS for the case ofcomplex-valued regular Cartan
elementJ: α(J) 6= 0, following the general ideas of Beals and Coifman [2] for the sl(n) algebras
and [18] for the orthogonal and symplectic algebras. These ideas consist of the following:

1. For potentialsq(x) with small norm||q(x)||L1 < 1, one can divide the complexλ–plane into
sectors and then construct an unique FASmν(x,λ ) which is analytic in each of these sectors
Ων ;

2. For these FAS in each sector there is a certain Gauss decomposition problem for the scatter-
ing matrixT(λ ) which has an unique solution in the case of absence of discrete eigenvalues.

The main difference between the cases of real-valued and complex-valuedJ lies in the fact that
for complexJ the Jost solutions and the scattering data exist only for thepotentials on compact
support. For potentials not on a compact support some additional conditions on the potential
should be imposed [24].

We define the regions (sectors)Ων as consisting of thoseλ ’s for which Im(λα(J)) 6= 0 for any
α ∈ ∆. Thus the boundaries of theΩν ’s consist of the set of straight lines:

lα ≡ {λ : Imλα(J) = 0, α ∈ ∆}, (3.6)

and to each rootα we can associate a certain linelα ; different roots may define coinciding lines.
Note that with the change fromλ to λeiη andJ to Je−iη (this leads that the productλα(J)

invariant) we can always choosel1 to be along the positive realλ axis.
To introduce an ordering in each sectorΩν we choose the vector~aν(λ ) ∈ E

r to be dual to the
element ImλJ ∈ h. Then in each sector we split∆ into

∆ = ∆+
ν ∪∆−

ν , ∆±
ν = {α ∈ ∆ : Imλα(J) ≷ 0, λ ∈ Ων}. (3.7)

If λ ∈ Ων then−λ ∈ ΩM+ν (if the lines lα split the complexλ -plane into 2M sectors). We need
also the subset of roots:

δν = {α ∈ ∆ : Imλα(J) = 0, λ ∈ lν} (3.8)

which will be a root system of some subalgebragν ⊂ g. Then we can write that

g =
M
⊕

ν=1
gν ∆ =

M
∪

ν=1
δν δν = δ+

ν ∪δ−
ν , δ±

ν = δν ∩∆±
ν .

Thus we can describe in more details the sets∆±
ν :

∆+
k = δ+

1 ∪δ+
2 ∪ ·· ·∪δ+

k ∪δ−
k+1∪ ·· ·∪δ−

M , ∆+
k+M = ∆−

k , k = 1, . . . ,M. (3.9)

Note that each ordering in∆ can be obtained from the ”canonical” one by an action of a properly
chosen element of the weyl groupW(g).
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Now in each sectorΩν we introduce the FASχν(x,λ ) andmν(x,λ ) = χν(x,λ )eiλJx satisfying
the equivalent equation:

i
dmν

dx
+q(x)mν(x,λ )−λ [J,mν (x,λ )] = 0, λ ∈ Ων . (3.10)

If q(x) is a potential on compact support then the FASmν(x,λ ) are related to the Jost solutions by

mν(x,λ ) = φ(x,λ )S+
ν (λ )eiλJx = ψ(x,λ )T−

ν (x,λ )D+
ν (λ )eiλJx, (3.11)

mν−1(x,λ ) = φ(x,λ )S−ν (λ )eiλJx = ψ(x,λ )T+
ν (x,λ )D−

ν (λ )eiλJx, λ ∈ lν .

From the definitions ofmν(x,λ ) and the scattering matrixT(λ ) we have

T(λ ) = T−
ν (λ )D+

ν (λ )Ŝ+
ν (λ ) = T+

ν (λ )D−
ν (λ )Ŝ−ν (λ ), λ ∈ lν (3.12)

where in the first equality we takeλ = µei0 and for the second–λ = µe−i0 with µ ∈ lν . The
corresponding expressions for the Gauss factors have the form:

S+
ν (λ ) = exp

(

∑
α∈∆+

ν

s+
ν ,α(λ )Eα

)
, S−ν (λ ) = exp


 ∑

α∈∆+
ν−1

s−ν ,α(λ )E−α


 ,

T+
ν (λ ) = exp


 ∑

α∈∆+
ν−1

t+ν ,α(λ )Eα


 , T−

ν (λ ) = exp

(

∑
α∈∆+

ν

t−ν ,α(λ )E−α

)
,

D+
ν (λ ) = exp(d+

ν (λ ) ·Hν), D−
ν (λ ) = exp(d−

ν (λ ) ·Hν−1). (3.13)

Hered±
ν (λ ) = (d±

ν ,1, . . . ,d
±
ν ,r) is a vector in the root space and

Hη =

(
2Hη ,1

(αη ,1,αη ,1)
, . . . ,

2Hη ,r

(αη ,r ,αη ,r)

)
, (d±

ν (λ ),Hη) =
r

∑
k=1

2d±
ν ,k(λ )Hη ,k

(αη ,k,αη ,k)
, (3.14)

whereαη ,k is thek-th simple root ofg with respect to the ordering∆+
η andHη ,k are their dual

elements in the Cartan subalgebrah.

4 The Gauge Group Action

4.1 The class of the gauge equivalent NLEEs

The notion of gauge equivalence allows one to associate to any Lax pair of the type (1.1), (1.2)
an equivalent one [18], solvable by the inverse scattering method for the gauge equivalent linear
problem:

L̃ψ̃ ≡

(
i

d
dx

−λS

)
ψ̃(x, t,λ ) = 0, M̃ψ̃ ≡

(
i
d
dt

−λ f (S)

)
ψ̃(x, t,λ ) = 0, (4.1)

whereψ̃(x, t,λ ) = g−1(x, t)ψ(x, t,λ ),

S= Adg ·J ≡ g−1(x, t)Jg(x, t), (4.2)

andg(x, t) = mν(x, t,0) is FAS atλ = 0. The functionsmν(x, t,λ ) are analytic with respect toλ
in each sectorΩν (in the case of potential on compact support). On the continuous spectrum of
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L the FASmν(x, t,0) and the Jost solutionsψ(x, t,0) are linearly dependant (3.11):mν(x, t,0) =
ψ(x, t,0)T−

ν (t,0)D+
ν (0). Therefore the gauge group action is well defined. The zero-curvature

condition[L̃,M̃] = 0 gives:

St −
d
dx

f (S) = 0, (4.3)

where f (S) = ∑r−1
p=0 αpS2p+1 is an odd polynomial ofS. Both Lax operatorsL(λ ) andL̃(λ ) have

equivalent spectral properties and spectral data and therefore the classes of NLEE’s related to them
are equivalent. It is natural thatf (S ) = g−1(x, t)Ig(x, t), i.e., it is uniquely determined byI . Both
J andI belong to the Cartan subalgebrah so they have common set of eigenspaces.

1) g ≃ Ar = sl(n) with n = r + 1. We haveJ = diag(J1, . . . ,Jn), I = diag(I1, . . . , In), and the
only constraint on the eigenvaluesJk and Ik is trJ = tr I = 0. The projectors on the common
eigensubspaces ofJ andI are given by:

πk(J) = ∏
s 6=k

J−Js

Jk−Js
= diag(0, . . . ,0,1

k
,0, . . . ,0). (4.4)

Next we note thatI = ∑n
k=1 Ikπk(J). In order to derivef (S ) for g ≃ sl(n) we need to apply the

gauge transformation to (4.3) with the result:f (S ) = ∑n
k=1 Ikπk(S ), i.e., f (S ) is a polynomial

of ordern−1. ObviouslyS is restricted by:∏n
k=1(S −Jk) = 0, trS k = trJk. for k = 2, . . . ,n.

2) g ≃ Br ,Dr In order to expressf (S) through their eigenvaluesJk and Ik we introduce the
diagonal matrix-valued functions:

fk(J) =
J
Jk

∏
s 6=k

J2−J2
s

J2
k −J2

s
= Hek ∈ h, (4.5)

where byHek we denote the element inh dual to the basis vectorek in the root space ofg. Using
(4.5) and applying Adg we get:

I =
r

∑
k=1

Ik fk(J), f (S) ≡ g−1(x, t)Ig(x, t) =
r

∑
k=1

Ik fk(S). (4.6)

In additionS(x, t) satisfies the characteristic equations:

Sκ0
r

∏
k=1

(S2−J2
k) = 0, (4.7)

whereκ0 = 0 if g ≃Cr or Dr andκ0 = 1, if g ≃ Br .
Then the equation gauge equivalent to (1.1) becomes:

St −α0Sx−
r−1

∑
p=1

αp(S
2p+1)x = 0. (4.8)

The functionS(x, t)∈ g is also subject to constraints; one of them is provided by (4.7). To construct
the others we assume thatg ≃ Br or Dr and use the typical representation ofg. It this settings we
easily see that all odd powers ofHek also belong to the Cartan subalgebrah. Thus we conclude
that all odd powers ofSalso belong tog. The invariance properties of the trace lead to: tr(J2k) ≡
2∑r

k=1 J2k
k = tr(S)2k, for k = 1, . . . , r. These are preciselyr independent algebraic constraints on

S. Solving for them we conclude that the number of independentcoefficients inS is equal to the
number of roots|∆| of g.



204 G G Grahovski and M Condon

4.2 The Minimal Set of Scattering Data forL(λ ) and L̃(λ )

We skip the details about CBC construction which can be foundin [18] and go to the minimal set
of scattering data for the case of complexJ which are defined by the setsF1 andF2 as follows:

F1 =
2M
∪

ν=1
F1,ν , F2 =

2M
∪

ν=1
F2,ν ,

F1,ν = {ρ±
B,ν ,α(λ ), α ∈ δ+

ν , λ ∈ lν} F2,ν = {τ±
B,ν ,α(λ ), α ∈ δ+

ν , λ ∈ lν}, (4.9)

where

ρ±
B,ν ,α(λ ) = 〈S±ν (λ )BŜ±ν (λ ),E∓α〉, τ±

B,ν ,α(λ ) = 〈T±
ν (λ )BT̂±

ν (λ ),E∓α〉, (4.10)

with α ∈ δ+
ν , λ ∈ lν and B is a properly chosen regular element of the Cartan subalgebra h.

Without loss of generality we can take in (4.10)B = Hα . Note that the functionsρ±
B,ν ,α(λ ) and

τ±
B,ν ,α(λ ) are continuous functions ofλ for λ ∈ lν .

If we chooseJ in such way that 2M = |∆|– the number of the roots ofg. then to each pair of
roots{α ,−α} one can relate a separate pair of rays{lα , lα+M}, andlα 6= lβ if α 6= ±β . In this
case each of the subalgebrasgα will be isomorphic tosl(2).

In order to determine the scattering data for the gauge equivalent equations we need to start
with the FAS for these systems:

m̃±
ν (x,λ ) = g−1(x, t)m±

ν (x,λ )g−, (4.11)

whereg− = limx→−∞ g(x, t) and due to (1.2) andg− = T̂(0). In order to ensure that the functions
ξ̃±(x,λ ) are analytic with respect toλ the scattering matrixT(0) atλ = 0 must belong to the cor-
responding Cartan subgroupH. Then Equation (4.11) provide the fundamental analytic solutions
of L̃. We can calculate their asymptotics forx→±∞ and thus establish the relations between the
scattering matrices of the two systems:

lim
x→−∞

ξ̃ +(x,λ ) = e−iλJxT(0)S+(λ )T̂(0) lim
x→∞

ξ̃ +(x,λ ) = e−iλJxT−(λ )D+(λ )T̂(0)(4.12)

with the result:T̃(λ ) = T(λ )T̂(0). ObviouslyT̃(0) = 11. The factors in the corresponding Gauss
decompositions are related by:

S̃±(λ ) = T(0)S±(λ )T̂(0), T̃±(λ ) = T±(λ ) D̃±(λ ) = D±(λ )T̂(0).

On the real axis again the FAS̃ξ +(x,λ ) and ξ̃−(x,λ ) are related bỹξ +(x,λ ) = ξ̃−(x,λ )G̃0(λ )

with the normalization conditioñξ (x,λ = 0) = 11 andG̃0(λ ) = S̃+(λ ) ˆ̃S−(λ ) again can be consid-
ered as a minimal set of scattering data.

The minimal set of scattering data for the gauge-equivalentCBC systems are defined by the
setsF̃1 andF̃2 as follows:

F̃1 =
2M
∪

ν=1
F̃1,ν , F̃2 =

2M
∪

ν=1
F̃2,ν ,

F̃1,ν = {ρ̃±
B,ν ,α(λ ), α ∈ δ+

ν , λ ∈ lν} F̃2,ν = {τ̃±
B,ν ,α(λ ), α ∈ δ+

ν , λ ∈ lν}, (4.13)

where

ρ̃±
B,ν ,α(λ ) = 〈T(0)S±ν (λ )BŜ±ν (λ )T̂(0),E∓α〉, τ̃±

B,ν ,α(λ ) = 〈T±
ν (λ )BT̂±

ν (λ ),E∓α〉, (4.14)

with α ∈ δ+
ν , λ ∈ lν andB is again a properly chosen regular element of the Cartan subalgebra

h. Without loss of generality we can take in (4.14)B = Hα (as in (4.10)). That the functions
ρ̃±

B,ν ,α(λ ) and τ̃±
B,ν ,α(λ ) are continuous functions ofλ for λ ∈ lν and have the same analyticity

properties as the functionsρ±
B,ν ,α(λ ) andτ±

B,ν ,α(λ ).
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4.3 Integrals of Motion and Hierarchies of Hamiltonian Structures

Both classes of NLEE’s are infinite dimensional completely integrable Hamiltonian systems and
possess hierarchies of Hamiltonian structures.

The phase spaceMCBC is the linear space of all off-diagonal matricesq(x, t) tending fast
enough to zero forx → ±∞. The hierarchy of pair-wise compatible symplectic structures on
MCBC is provided by the 2-forms:

Ω(k)
CBC = i

∫ ∞

−∞
dxtr

(
δq(x, t)∧Λk[J,δq(x, t)]

)
, (4.15)

whereΛ = (Λ+ + Λ−)/2 is the generating (recursion) operator for (1.1) defined asfollows:

Λ±Z(x) = ad−1
J (1−π0)

(
i
dZ
dx

+[q(x),Z(x)]+ i

[
q(x),π0

∫ x

±∞
dy[q(y),Z(y)]

])
,

whereπ0(X) = ad−1
J ◦ adJ(X). The symplectic formsΩ(k)

CBC can be expressed in terms of the
scattering data forL(λ ):

Ω(k)
CBC =

ck

2π

M

∑
ν=1

∫

λ∈lν∪lM+ν
dλλ k

(
Ω+

0,ν(λ )−Ω−
0,ν(λ )

)
,

Ω±
0,ν(λ ) =

〈
D̂±

ν (λ )T̂∓
ν (λ )δT∓

ν (λ )D±
ν (λ )∧ Ŝ±ν (λ )δS±ν (λ )

〉
. (4.16)

Note that the kernels ofΩ(k)
CBC differ only by the factorλ k so all of them can be casted into canonical

form simultaneously.
The phase spaceMgauge of the gauge equivalent to the CBC systems is the manifold of all

S (x, t) determined by the second relation in (4.2). The family of compatible 2-forms is:

Ω̃(k)
gauge=

i
4

∫ ∞

−∞
dxtr

(
δS(0) ∧ Λ̃k[S(0),δS(0)(x, t)]

)
. (4.17)

HereΛ̃ is the recursion operator for the gauge equivalent to the CBCsystems:

Λ̃±Z̃ = iad−1
S(x) (1− π̃0(x))

{
dZ̃
dx

+
2

∑
k=1

[h̃k(x),ad−1
S (x)]

∫ x

±∞
dy
〈
[h̃k(y),ad−1

S (y)Sy], Z̃(y)
〉

,

}

whereh̃k(x, t) = g−1(x, t)Hkg(x, t), and〈Hk,H j〉 = 〈h̃k(x, t), h̃ j (x, t)〉 = δ jk.
The spectral theory of these two operatorsΛ andΛ̃ underlie all the fundamental properties of

these two classes of gauge equivalent NLEE, for details see [18]. Note that the gauge transforma-
tion relates nontrivially the symplectic structures, i.e.Ω(k)

NLSE≃ Ω̃(k+2)
HFE [26, 18].

5 Conclusions

In the present article the gauge-equivalent models, related to the Lax pair (4.1) are studied and their
relations to the “canonical” systems (1.1), (1.2) are established. This includes: the description of
the class of nonlinear evolutionary equations solvable by the inverse scattering method (Section
4.1), the minimal set of scattering data (Section 4.2); the integrals of motion and the hierarchies
of Hamiltonian structures (Section 4.3).
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We will finish this article with several concluding remarks.To CBC systems and their gauge
equivalent one can apply the analysis [18] and derive the completeness relations for the corre-
sponding system of squared solutions. Such analysis will allow one to prove the pair-wise com-
patibility of the Hamiltonian structures and eventually toderive their action-angle variables, see
e.g. [27] and [5] for theAr-series.

For the case of singularJ (α(J) = 0) the construction of FASmν(x, t,λ ) andm̃ν(x, t,λ ) requires
the use of generalized Gauss decomposition in which the factorsD±

ν (λ ) are block-diagonal, while
T±

ν (t,λ ) andS±ν (t,λ ) are block-triangular. This will be addressed to a subsequent paper.
The approach presented here allows one to consider CBC systems with more generalλ - de-

pendence, like the Principal Chiral field models and other relativistic invariant fiels theories [29].
If g ≃ so(5) then the corresponding gauge equivalent system describes isoparametric surfaces

[10].
Finally, some open problems are:

1) to study the internal structure of the soliton solutions and soliton interactions (for both types of
systems);
2) to study reductions of the gauge equivalent to CBC systems.
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