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Abstract

We study the dynamics of a particle moving on ®ig(2) group manifold. An exact quan-
tization of this system is accomplished by finding the ugitand irreducible representations
of a finite-dimensional Lie subalgebra of the whole Poisdgelara in phase space. In fact,
the basic position and momentum operators, as well as théltdaran, are found in the en-
veloping algebra of the anti-de Sitter groB@3,2). The present algorithm mimics the one
previously used in Ref. [1]. Our construction can be exteridenore general semi-simple Lie
groups. This framework would allow us to achieve the quaitin of the geodesic motion in
a symmetric pseudo-Riemannian manifold.

1 Introduction

Since the pioneering work by Wigner [2] a huge amount of papere been devoted to the anal-
ysis of solvable quantum systems through their symmetrld®y constitute a powerful tool in
the explicit construction of eigenstates and eigenvalfiesgiven symmetrical Hamiltonian. But
symmetry can be taken beyond this technical ability andidensd as the basic bricks for (fun-
damental) physical systems in the sense that all objectterkto it, such as space-time, solution
manifold, wave functions, quantum operators, etc., canxpéoitly constructed from canonical
structures on a particular Lie group. This viewpoint hasnb@emonstrated in many finite- and
infinite-dimensional cases by applying a Group Approachuar@ization (GAQ) developed since
the original paper [3], where the quantum free Galileanigarand the harmonic oscillator were
derived. Then, this algorithm has been applied to less eltanegroups as those associated with
relativistic particles, in particular the relativistic fin@onic oscillator [4, 5, 6], field theories in
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curved space-times, non-linearmodels, the Virasoro group and others concerning conforma
symmetry and quantum gravity (see, for instance [7, 8, 9]).

In applying this GAQ it appears the necessity of finding witihnplete accuracy the structure of
a given Lie group, considered as the basic symmetry groupeoédrresponding physical system,
from which any referent to this problem can be derived. Ha@ven many practical cases, the
fully understanding of such a symmetry is nearly tantamdaargolve the classical equations of
motion (something that GAQ is intended to avoid). In fack ttassical HamiltonianH, of a
particular physical problem scarcely closes a Poissonigebia with the standard coordinatg,
and momentump. In this situation one has to resort to a possibly infiniteelsional Poisson
subalgebra containingH, g, p) or, alternatively, as we shall do in the present contrilytto look
for a slightly different, finite-dimensional Poisson sugetira in the enveloping algebra of which
the original functionsH,q, p) can be found, and then quantized. After all, in the GAQ scheme
not only the generators of the original gro@can be quantized, but also the entire universal
enveloping algebra. This procedure has been explicitlyezeld in dealing with the quantum
dynamics of a particle in a (modified) Poschl-Teller patrtl], where the “first-order” groujis
used wasSL(2,R).

The present paper is organized as follows. In the next seei® briefly introduce a group-
theoretical framework to achieve a natunain-canonical quantizatiowhere symmetry plays an
essential role and a notion witegrability also naturally arises. In Sec. 3 we sketch the example
of the free non-relativistic particle as a prototype ofdgmable) quantum linear system. In Sec.
4 the free relativistic particle constitutes an examplerofrdaermediary step between linear and
non-linear systems; a physical system the equations ofhwdie linear but the Lagrangian is
not. Finally in Sec. 5. the case of the dynamics on$hk2) manifold is explicitly presented
to exemplify the scheme of treatment of a class of physicablems whose symmetries can be
found in the enveloping algebra of a finite-dimensional Lieup.

2 Group Approach to Quantization

The essential idea underlying this group framework for g@ation consists in selecting a given
subalgebra@~ of the classical Poisson algebra includifig, pi, x!, 1) and finding itsunitary ir-
reducible representation@unirreps), which constitute the possilijeantizations Although the
actual procedure for finding unirreps might not be what yealhtters from the physical point of
view we proceed along a well-defined algorithm to obtain tiienany Lie group.

The basic idea 06AQ consists in havingwo mutually commutingcopies of the Lie algebra
¢ of a groupG of strict symmetryof a given physical system), that is,

26~ G ~ 2RG)

in such a way that one copy, let us sayR(G), plays the role opre-Quantum Operatoracting
(by usual derivation) on complex (wave) functions @nwhereas the othet%L(é), is used to
reducethe representation in a manrempatiblewith the action of the operators, thus providing
thetrue quantization
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In fact, from the group lavg” = g =g of any groupG, we can read two different actions:

/!

g = dxg=Lgg

g" = d*9=Ryd
The two actions commute and so do the generé@r&ndf(ﬂ; of theleft andright actions respec-
tively, i.e.

(X5, X5 =0 Vvab.

The generator§(§ are right-invariant vector fields closing a Lie algebﬁéf,R(é), isomorphic to
the tangent space ® at the identity%. The same, changirig— R, applies taX* € %'—(G).

Another manifestation of the commutation between left ghtrtranslations corresponds to
the invariance of the left-invariant canonical 1-formf®-°}, dual to{X}}, with respect to the
right-invariant vector fields, that is,

L;@GLb =0, {6} dual base to{Xt}

and the other way aroundl ¢~ R). In particular, we may resort to a natumnabariant volumecw on
the group manifold in order to build up an actual scalar pobdé wave functions. In fact:

Li(8-" A 8- A--- N 6Y) = Lgsw = 0, VXE € 2°R(G), d = dim(G)

We should then be able to recover attlysical ingredientsf quantum systems out afgebraic
structures In particular, the Poincaré-Cartan fol®pc and the phase space itsélf = (X, Pj)
should be regained from a group stfict symmetnyG. In fact, in the special case of a Lie group
which bears a central extension structure with structuoe (1) parameterized b§ € C such
that ||? = 1, as we are in fact considering, the group manif6ldtself can be endowed with
the structure of a principal bundle with an invariant coriwec thus generalizing the notion of
guantum manifold

More precisely, thé) (1)-component of the left-invariant canonical form (dual te wertical
generatoiX}, i.e. 6-¢)(X}) = 1) will be namedQuantization Form

0= GL(Z)

and generalizes theoinca-Cartan form@pc of Classical Mechanics. The quantization form
remainsstrictly invariantunder the grouis in the sense that

L@ =0 VXR e 27R(G)

whereasOpc is, in general, onlysemi-invariant that is to say, it is invariant except for a total
differential.

It should be stressed that a tr@antum Manifoldin the sense oGeometric Quantization
[10, 11] could be achieved by taking in the pé'ﬂ;:, O} the quotient by the action of the left
subgroup generated by the characteristic modul®,0énd a further quotient by the structure
subgroupd (1) provides theClassical Solution Manifold Mr classicaPhase SpaceEven more,
those left-invariant vector fields

Xt /ixed®@=0=iy.0
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constitute theClassical Equations of MotionOn the other hand, the right-invariant vector fields
are used to provide classical functions on the phase spatact| the functions

are stable under the action of the left-invariant vectod§ieéh the characteristic module & the
equations of motion, and then constitute Neether Invariants

As far as the quantum theory is concerned, the above-meuwtiguotient by the classical equa-
tions of motion are really not needed . We consider the spioenaplex functiong¥ on the whole
groupG and restrict them to only (1)-functions, that is, those which are homogeneous of degree
one on the argumerdt = €% € U (1). Wave functions thus satisfy

—
KW =w.

On these functions the right-invariant vector fields acpesQuantum Operatorby ordinary
derivation. They are, in fact, Hermitian operators withpexs to the invariant volume defined
above. However, this action is not a proper quantizatiorhefRoisson algebra of the Noether
Invariants (associated with the symplectic structurergimed®) since there is a set of non-trivial
operators commuting with this representation. In factttadl left-invariant vector fields do com-
mute with the right-invariant ones, i.e. the (pre-quantepgrators. According to Schur's Lemma
those operators must be trivialized. To this end we defiRelarizationsubalgebra? as:a maxi-
mal left subalgebra containing the Characteristic subalgeand excluding the central generator
The role of a Polarization is then that @ducingthe representation which now constitutes a true
Quantization We then impose on wave functions the Polarization conuitio

Xtw=0, vXt e 2

The integration volumev can be restricted to the Hilbert space of polarized wavetfons with
a canonical procedure a bit technical for the scope of thegmtecontribution. We refer the reader
to Ref. [8].

3 Linear Systems

Typical linear systems are those for which the classical ianian describing the motion closes
afinite-dimensiona(if the system has a finite number of degree of freedom) atgefih the posi-
tionsx and the canonical momengg, that is to say{H, X, pj, 1} is afinite Poisson subalgebra of
the general Poisson algebra of Noether invariants. Caabmiomenta are defined in terms of the
Lagrangian (for a regular Hamiltoniary = pix — H through the standard expressipin= %—';{,i.
Since in this case the basic Noether invariants enter a-ilivitensional algebra, we only have to
proceed according to the general scheme reported abovedny dpplication. We expose briefly
the

Example of the free non-relativistic particle .
This system is described by the classicafrangian.Z = %m?z, from which we derive the
canonical momenta;p= %—';{i = mx. Fortunately, for this linear system the canonical Poisson
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bracket ofx, pj, andH = % close the Heisenberg-Weyl algebra with evolution

X, p} = 5}1'
Hxp = -8
{vai} = 07

which completed with the additional Noether invariantsegeting the rotations}{(= n;;*x! p)

3.9} = nijl.(Jk

{J,H} = 0
{3, 0} = mj*m
{3, Xj} = .jkxk

constitutes the Lie algebra of tisentrally extended Galilei group

Since we dispose of a well-defined, finite-dimensional grotigymmetry we only have to
apply step by step the algorithm GAQ just described. To thi we exponentiate the algebra
above and find the following group law in terms of the paramsdtex, g, €:

t" = t'+t
!/

X" = 2’+I¥(Z‘)X+%t
p’ = Pp'+R(E)p

g'2 g2 1
=21 — 1 2 \/1 - 2 _—’/ =
£ \/—1—48—1— +48+2£><s
7" = '7XRP+G(PRPIPZ/2I/N

whereR is the rotation matrix around the direction &fthrough the angle Zsi‘r’r%‘. We have
introduced the constalifitto turn the exponent dimensionless.

The left-invariant vector fields are:

- 0 p o 1p?_
L _ Y L -F =
T i Tm T Ram

~ )
% = Rz

~ J 1

L _ Z 4 =g=
5 = R
~§L _ X(LE)SU(Z)
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and those invariant on the right:

=2

KR %+%rﬁz

X5 = a%+im%+%trsz

RR = xg)wzmzx%mx%
~$ = iZ:—Z+h.C.EE,

where X%, SU2 and X8 SU2) are the left- and right-invariant generators of the subgru(2)
itself and their actual expression does really not mattéristmoment; see the last section.
The quantization 1-form, dual , is

_ gedp Parapde
O=-X-dp 2mdt+ﬁiZ ,
from which we can compute the characteristic module:

Yo = (X", X¢) -
As a module it is generated by the vector fields associatddtimite translation and rotations.
There exists a Polarization, which is:
P = (XX %)
By imposing the polarization conditionX'W = 0,¥X- € &2, along with theU (1)-function
condition, we arrive at a wave function of the form:
i 02
W% Bt ) = {e han'd(p),

where¢ (p) is an arbitrary function, save for normalization.
The quantum operators will be now proportional to the rightriant vector fields, that is:

= _ R
= —ifiX}

_ %R

= ihXg

—iXE.

Their action on the wave functions, once they are restritdexhly ¢ (p), is:

p?

9P

Pé (P) (3.1)

0
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It is clearly observed that these operators take the usyaessions in Quantum Mechanics. It
should be also remarked that the operafoxsJ are written as a function of the basic orieg K:

~ 1:

E = —P°
2m

J = —PxK

4 Simple “Non-Linear” Systems

As a preliminary step towards non-linearity, we shall cdasithe simpler example of ttieee rel-

ativistic particlewith classical Lagrangiat’ = —mc/1— f:—; As was previously commented,
even though the corresponding equations of motion arerlitiea “non-linearity” (non-quadratic,
indeed) of the Lagrangian causes the impossibility of asi finite-dimensional algebra contain-
ingH, X, p;. Let us present the problem very quickly. The canonical mumare derived in the
standard way fronZ:

0y
D= 5%

_ _
1-2

as well as the Hamiltonian:

H=Xp—%= mc?.z = /P2c2 + mect = poc

1-%

c2
where we make use of the traditional definition of four-motoen{ p, } = {po, pi }.
Let us try to close the basic Poisson subalgebra includingve find

{X.pj} = &1 (canonical Poisson bracket)
{H.p} = 0
o P P 1P
but {H,x} = cpo (~ . 2m3+'")

So, the classical function#, X, p;, 1) do not closea finite Lie algebra. They “close” an algebra
with structure constantdependingon theenergy H= pgc.

Here, two different options arise. One option consistsyimg to close an infinite-dimensional
Poisson subalgebra by defining new functions which are qtiacand beyond in the basic func-
tionsx and pj. This can be done order by order in the paramé(ewhich now plays the role of
“coupling constant”. But there is another, far simpler wipessible, which consists in looking for
new “basic functions”, closing a finite-dimensional suledd, in terms of which we can rewrite
the old basic functions. Here we proceed along this last line

To this end we define the classical functidhs= 2.x'. Then, the new algebrad, p;, ki, J%, 1)
does clos®n the Poincaré algebra:

i Po __Ri
{po, K} = {po, - X} =——
{pQ’ pl} =0
(K, K} = —n;*nkx™p? = —n; koK
i 91— (Poi oy _ Pos
K.pt = { X pit=_9
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If we quantize the Poincaré group, we regain the origimdinite-dimensiongl algebra of
guantum operators inside its enveloping algebra:

(A, K, % ~ (polkl+klp—1> J¥ 1)

To do that we parameterize a central extension of the P@ngeyup by (abstract) variables
{a0, 4, v, & ¢} so that the, let us say, right-invariant generators regredbe respective func-
tions{H, B, Kk, J, 1} as Noether invariants as well as the Poisson brackets above.

We are not going to present here the precise details of thatigation of the Poincaré group
nor insist in those typical problems related to the “positiperator” in quantum relativity that can
be read from, for instance, Ref. [12]. Let us just commernt tiewave functiongre solutions of
a higher-order Polarizatio? = 0, with

2imc? -~

P = (X0 = ()2 - A(R)? - Ko %, %)

from which we arrive at a wave function which depends only®anda and satisfies the ordinary
Klein-Gordon equation in variable§ andx:

(O+m)y =0,

_ M
after the change* = ZixH.

5 (True) Non-Linear Systems: Dynamics orSU(2)

We end the presentation by sketching the way in which the ddgaonstrated in the previous
section can really apply to a non-trivial problem. Let ustdtg parameterizing rotations with a
vector X in the rotation-axis direction and with modulus

ol o ®
|)(|_25|nE

_ 72 2
R()?)H:(l—%)5 \/1—X—’7 kX + XXJ

In these coordinates the canonical left-invariant 1-forassl:

[ X2 xxj
1——5 =+ n,mx
44/1—

and in terms of these thmarticle-o-Model Lagrangiaracquires the following expression:

XiXi

BT

1 L) al(i) oms 1
A= E&J em(')en(J)Xan =5

isi = Lg xix
XX =Saix'x

Proceeding much in the same way followed in the previous@gowve compute the canonical
momenta:

oN i
o7 — 9 X

m:d)'(
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and the Hamiltonian:

B 1 ..
H=TX' —N= 59’1”71711

We asume the canonical bracket between the basic fungtioasd r7:

(X, m} = o added with

{(#,xy = —gtn
1. .
7, i} = §(x~n)m,

so that(.#, x', m;, 1) do not closea finite-dimensional Lie algebra.
However, we may define the following set of négoordinates”, “momenta” and even;'en-
ergy” and“angular momenta”

(pi Ezgfliir[j’ ki = \/2%”)(17 E=2v27, K= r]('?nnXmTln> .

They close the Lie algebra &Q(3,2) i.e. an Anti-de Sitter algebra. That is, the basic brackets:

{E.p'} = K
{K,pj} = 9,

along with the induced ones:

KK} = '3 {p, p'} = —n'k
{309} = nid {30k} = 0K
(3.0} = np* {EJ}=0

close a finite-dimensional Lie algebra to which we may apbty GAQ. (Notethe minus sign in
the first line, which states that the involved grousig(3,2) and notSQ(4,1)).

We then quantize the Anti-de Sitter group so that the orlgjparators%z, i, X} can be found
in its enveloping algebrahrough the expression:

2. = 5 (@9 +00)) X = 55 (A VR RA) )

In so doing we parameterize a central extension of the Aatitter group by (abstract) vari-
ables{a’, &, v, &, {}, which mimic those for the Poincaré group. In the same wayoge that
the right-invariant generators associated with thoserpatars reproduce corresponding functions
{E, pi, kI, JX, 1} as Noether invariants satisfying the Poisson bracketseabov

At this point it should be stressed that the parameteand the corresponding quantum oper-
ators (essentially the right generat&g) are associated with ordinary rotations on Anti-de Sitter
space-time, whereas tiyeparameters correspond to “translations” on $u#2) manifold.

We shall not give here the explicit group law for the groupialsles (which can be found in
Refs. [13, 14]), limiting ourselves to write the explicitmrssion for the left-invariant vector fields

(A

(o]l
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on the extende&O(B, 2) group:

o1 w? 02 0 w? 0 0
Ko = (@Dt + (L 225 (o)) 375 + (20+ o5 (20(a-0) ~ok)a) - 2
1w2 ) 0
- qaelear V)@ -2, a V)v+a) =~
2
b (0@ )~ Ex (BT o]} { (@@ 0+ (L (&)~ 1)
. 1 . 2 2 0
= LROGgdEr2a V>>+2qv<1—%<a°>2m@
2
+ (%ﬂz Z’Cz(1+za V))vv——aqvva) ja
1 w? O /)
- el y —ak) (v )
(200t 2020+ Q(E <)~ 2(E x V) x o]
W’ 5 W 0020 =
+ (42 °(@+2(@- V) + 20(1 - 55 @)DV}
. ) 9 9
Xy = ER(e) S5t W 55— (29— & x V) x 5!
~EL - X(Ffz)su()
)Zq% = Z—Z‘l'hC_E
where
Ga = 1+4;(§2—(a0)2), = V1+V2, k =1+2v? and g, = 1—%2

Following the same steps as those given in the case of thedéigroup we look for a higher-
order polarization leading to the configuration-space reespntation”. In fact, the simplest possi-
bility turns out to be generated by a combination of genesaflormally analogous to that of the

Poincaré case, although now the generators are obvioiffdyedt.

From the polarization conditio®”(y = 0 we again arrive at a wave function depending only

onal, d and satisfying a Klein-Gordon-like equation wlB©(3,2) D’Alembertian operator given
by

2 2 2 2 2

0\2 W ) 02y 9 oW W~ o 02y 9

O = 2{[16 (@) ra (8+ F(ra—(a) ))]—daoz_a §[40+7§(ra—(a) )]—dao
LW w? ooy 021 w? w? 0 d

— [16+r2 (8+—( —(a

2 0)2 5 02 _L‘2

_ 280 3 Y 12— (a0)2
28. ra C2 (8+ C2 (ra (a) ))aa()ar } qar27

)2))]dr r[32+ (4o+7 (r2—(a

a

where
} 1 9 P 1 92
2_ H _
= 56, 36, "% 56,) ~ g, 962
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is the square of the standard orbital angular momentum tpefsave for a factoh) andr, =
va-a

Thewave functionsire

—2icAp arcsin _omd

p@Ea) =e W Y (60 (1 2 2 &) (G 1)
where

Al = %

E = (g+2n—|—l 1\/9+4;;22—48€)

g = 2F1(—n,n+|+g—)\n|,l+g;—f—;q§r§)

and¢ is a free parameter related to tteero-point energy”. On this representation the operators
corresponding to the original functions, i and the energy?’ can be realized.

Although one can verify by an explicit computation thgf, a°) is actually a solution of the
wave equation, a large amount of time can be saved by perigrmiRef. [15], egn. (64)-(66),
the change of variables

2 . 0
t = garc&n(%> , X = 0ad,

\/Ac? + w?qga?

which leads to expressions analogous to ours, althoughdatkto describe the qguantum evolution
of a free particle moving on an Anti-de Sitter space-time.

As a general comment, we would like to bring the attentiorhefreader to a potential normal-
ordering problem appearing in going from the envelopingehig of the auxiliary group to the
guantum version of the canonical variables in the origiragﬂangian formalism. We are referring
in particular to the “change” of quantum variables of tharicd ~ Z¢(Py T 4k ‘1) (in the case
of the free particle). A more general prescription for noi‘-maierlng can be addressed following
some sort of “perturbative” group approach to quantizatlarfact, it is possible to close order by
order in some constants (like@ in the relativistic particle, the structure constants thelves for
the sigma model, or coupling constants in general) a Liebségeshich joins together the original
variables and those in the auxiliary group. Then, applyli@group-quantization technique up to
a certain order we arrive at the correct prescription of gugrator at the given order.

To conclude we must recognize that at present we are unalskate the class of non-linear
systems to which this mechanism can be applied, althougtn effert is being done in this direc-
tion.
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