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Abstract

We investigate the relationship between integrating facemdA —symmetries for ordinary

differential equations of arbitrary order. Some resultgtmexistence oh —symmetries are

used to prove an independent existence theorem for inbegrictors. A new method to
calculate integrating factors and the associated firsgiate is derived from the method to
computeA —symmetries and the associated reduction algorithm. Seseaaples illustrate

how the method works in practice and how the computationisapgpear in other methods
may be simplified.

1 Introduction
A classic result of A. Clairaut (1739) ensures that any firster equation
M(X,u) +N(x,u)ux =0 (1.2)

admits an integrating factor, i.e. a functign(x, u), such that the equivalent equatipiM (x, u) +
N(x,u)ux) = 0 is exact. Integrating factors are a powerful tool to intégrsome first-order differ-
ential equations although finding integrating factors camiore difficult than solving the original
equation.

For higher-order equations integrating factors have nemnlts® widely used. The determination
of integrating factors for anth-order ordinary differential equation requires the soluof annth-
order linear partial differential equation i+ 1 variables.

An alternative approach ([1],[2]) to find integrating fatas based on variational derivatives
of the form

50 0 0
du du X(?Ux X Oy

T (1.2)

whereDy denotes the total derivative operator with respect tbenote byu® = (u,uy, - - s Uk),
whereu; denotes the derivative of ordemf u with respect to the independent variableThe
integrating factorsu(x,u™1)) of ann-th order equation

M(x, U™ D)+ N(x,u™Y)u, =0 (1.3)
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are determined by the following equation:

2 (WM +Nu)) =0 (4

For first-order equations Eq. (1.4) becomes the singlefipatial differential equatiouM), —
(UN)x = 0, which always has an infinite number of solutions. Ref 2 the determining Eq. (1.4)
gives an over-determined system of two second-order lipadial differential equations ([2], Eqgs.
6.6.17-6.6.18), with only one dependent variable and thepadibility of which cannot ba priori
ensured. For equations of arbitrary order the equatiornigedkfrom (1.4) are rather complicated
and they have scarcely been studied.

In this paper we present a new independent approach to fiegkating factors for equations of
arbitrary order. For first-order scalar ordinary diffeiahéquations a well-known result of Sophus
Lie [5] states that a Lie point symmetry can be used to coostn integrating factor and con-
versely any integrating factor determines a Lie point sytnynaf the original equation. However,
there exist higher-order equations without Lie symmetities admit integrating factors or that are
exact ([11], pag. 182). In these cases Lie point symmetriefano help to find integrating factors
neither to characterize exact equations. Therefore weat@axpect a one-to-one correspondence
between Lie point symmetries and integrating factors faragigns of order higher than one. As
it is remarked in [4] generalised and nonlocal symmetriestralso be considered in the context
of the existence of integrating factors.

Although there are exact equations without Lie symmetad@y, exact equation always admit
aA—symmetry (also calle”—symmetry) and the associated algorithm of reduction gikies t
corresponding conserved form ([7], Theorem 3.2). As a apmesece of this result in this paper
we firstly prove that there exists)a—symmetry associated to any integrating factor (Theorem 1).
Next we investigate the converse problem and we establksbahnection betweeh—symmetries
and integrating factors for equations of any arbitrary ordehe main result (Theorem 2) states
that anyA —symmetry yields an integrating factor. This generalizesrdsult of Sophus Lie for
ordinary differential equations of arbitrary order.

For ordinary differential equations with analytic termsg ywrove (Theorem 3) an existence
theorem ofA —symmetries. This result leads to an indirect proof of thestexice of integrating
factors.

These theoretical results have interesting practical emuences: once A—symmetry has
been calculated, the associated integrating factor anbtinesponding first integral can be derived
from the reduction algorithm without additional computati

Several examples have been selected to exhibit differgetcés of the method: to show how
the method works in practice, to compare our method withehmsed on variational derivatives
and to illustrate the induction method used in the proof cédrem 2.

For simplicity all the results have been presented for soadmations. With some minor
changes the results and methods can be extended to systendinafy differential equations.

2 A—Symmetriesand Integrating Factors

2.1 A —Symmetriesassociated to integrating factors
Consider aith-order ordinary differential equation

A(x,u™) =0, (2.1)



302 C Muriel and J L Romero

where variablegx, u) are in some open sét € X x U ~R2. Fork € N, M& c X x U® denotes
the corresponding-jet space and the elementshf¥ are denoted byx,u®) = (x,u,ug, - - , u).

Suppose that Eq. (2.1) admits an integrating faqtgk, u®), for somek such that 0< k <
n— 1. The multiplication byu converts the left-hand side of (2.1) into the total derxatf some
functionA(x, u" ) :

p(x,u®) - A(x, u™) = Dy(A(x, U™ )Y). (2.2)

The exact equatioBy(A(x,u™ b)) = 0 admits aA —symmetry and the trivial reduction of order
A(x,u"V)=C, CeR,appears as consequence of the reduction algorithm assbémthat
A —symmetry ([7], Theorem 3.2). li € C*(M®) 0 <k < n—1, is any solution of the partial
differential equation:

n—-1 I

.;(DX+A)i(1)5—ui =0 when Dy(A(xu™b)) =0, (2.3)

then the vector field = g, is aA —symmetry of Eq. (2.1). By (2.2), we have that
VAL DA U™ Y))) = VAT A) A v (), (2.4)

It is clear that any solution of (2.1) is also a solutionmf(A(x,u™ 1)) = 0. Hence, ifv = d,

is aA —symmetry ofDy(A(x,u™Y)) = 0, with A satisfying (2.3), the left-hand side of (2.4) is
equal to zero when it is evaluated on solutions of Eq. (2.1pil&ly the second term in the right
member of (2.4) becomes equal to zero when it is evaluatesl-o®. Therefore

Hlz_o V(@) |z_o=0. (2.5)

From (2.5) we deduce the following theorem:
Theorem 1. Assume that (2.1) is a nth-order ordinary differential etjora that admits an inte-
grating factor u such thatu|;_, # 0. If A is any particular solution of (2.3), then the vector field
V=0, is aA—symmetry of (2.1).
Example. The second-order equation

2

U+ X 43 — 0 (2.6)
u X
admits two integrating factorg; = xuandu, = x3u:
w2 _u
(X, U) - (Wex +- UX + 3;)() = Dy(xuy + U%), (2.7)
w2 _u
U2(X, U) - (Ux +- UX + BYX) = Dy(x3uuy). (2.8)

DenoteA; (x,uM) = xuu + L. For Eq. (2.6) andly it can be checked that Eq. (2.3) can be written
as

XUy + 2u+ A1xu = 0. (2.9)
SinceA; = — (% + 2) is a solution of (2.9), Theorem 1 ensures that the vector fieldd, is a
A1—symmetry.

Similarly for A, = —% it can be checked that= g, is a A,—symmetry associated to the

integrating facton,.
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2.2 Integrating factorsassociated to A —symmetries

In this section we show how to obtain an integrating facta given ordinary differential equation
with a knownA —symmetry.

Theorem 2. Let
Ax,u™) =0 (2.10)

be a nth-order ordinary differential equation that admitsector field v as a —symmetry for
some functior € ¥(M®), 0< k < n. TheA —symmetry yields an integrating factg(x, u™?1)
of the equation.

Proof. By introducing canonical coordinates foy if necessary, it can be assumed that 9,.
We proceed by induction on the order of the equation. Singdiest-order equation does always
admit an integrating factor, we prove the theoremrfet 2. The corresponding Eq. (2.10) can be
written in explicit form as

Uxx = F (X, U, Uy). (2.11)
Letw(x, u,uy) be a first-order invariant of?(1! i.e., any particular solution of the equation:
Wy + Wy A (X, U, uy) = 0. (2.12)

The reduction process associated toAkhesymmetryv gives a first-order reduced equation of the
form Ar(X, W, wy) = O, the general solution of which is implicitly given by an eqoatof the form
G(x,w) =C,C e R. Itis clear thatDy(G(x,w(x,u,uy))) = 0 is an equivalent form of Eq. (2.11).
Therefore

(X, U, Uy) = Gy(X, U, W(X, U, Uy) ) - W, (X, U, Ux) (2.13)

is an integrating factor of (2.11).

Assume that the theorem is true for any ordinary differérdguation of ordem < n. Let
w = w(x,u®) be an invariant of/*(W!. The set{x,w(" ¥} is a set of functionally independent
invariants ofv*-("!. Since the subvariety

L ={(xuM): A(x,u™) = 0} (2.14)

is invariant forvi*:("! | by Proposition 2.18 in [10] there exists an invariant fuoetg(x, w"K))
the solution set of which coincides, locally, wity. By Proposition 2.10 in [10] there exists a
function H (x, u,w"¥)) such that

A, u™) = H (x, u,w" ). Ag(x, w4, (2.15)

The equatiomdr(x,w"K) = 0 is the reduced equation associated toXhesymmetryv. By our
inductive assumption there exists an integrating fagtor, w("k-1)) of the reduced equation,
namely

WD) Ag(x, W) = Dy((x, WD), (2.16)
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By writing w("~¥) in terms of variablegx, u™), (2.16) becomes

. o AGcu™)
(n=1)y 2\ HE )

X, U =
He ) H(x,um)

gl

= Dy(@(x,u"™ DY), (2.17)

Whereﬁfp andH denote the functiong, @ andH, respectively, written in terms of variables
(x,u). Therefore

AU D) (2.18)
H (x,um)
is an integrating factor of Eq. (2.10).
[

3 Existenceof A —Symmetriesand I ntegrating Factors

In the previous section it was proved the equivalence betweegrating factors andl—symmetries
of ordinary differential equations of arbitrary order. Wewnpresent an existence theorem for
A —symmetries, which provides an indirect proof of an existetieorem for integrating factors.

Theorem 3. Let 4, = F(x,u™ ) be a nth-order ordinary differential equation, where F is an
analytic function of its arguments. There exists a funcfigr u¥), for some k< n such that the
vector field v= 0, is aA —symmetry of the equation.

Proof. We try to find some function (x,u®), k < n— 1, such that
VAl g —F(x,u™ V) =0 when u,=F(x,u™b). (3.1)
In terms of the characteristi@ = 1 of vwe have

YA i(DX“)i(l)aiw (3.2)

Hence Eq. (3.1) can be written as

(DXJH\)”(l):_nzi(Dﬁ/\)i(l)(‘;—Ei when u, = F(x,u™?b). (3.3)

Since the set of analytic functions is closed under difféagion, it is clear that, ifA is an ana-
lytic function in (x,u®), then fori = 1,--- ,n— 1 the expressiofDy+ A ) (1) defines an analytical
function in variablegx, u**-1), which depends on the partial derivatives\ofip to orderi — 1.
To evaluate(Dy + A) (1) whenu, = F(x,u™ 1) we replaceu,,n, h > 0, by the corresponding
derivative ofF . The resulting expression depends in an analytic way uperatiablegx, u™1)
and on the partial derivatives af with respect to all its arguments up to order 1. It is easy to
see that in (3.3) the term

an—l) A
D (3.4)
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only appears in the first member and its coefficient is 1. Theeecondition (3.3) can be written
as a single partial differential equation forof the form:

an—l))\

W - (.?J(X7 U(nil),A (nil)), (35)

whereA ("1 denotes the partial derivatives df of order< n— 1, with respect to all its arguments
and functionG is an analytic function which does not dependgé(ﬁ%. With these conditions the
Cauchy-Kowalevski Theorem ([3]) ensures the existenceno@rmalytic solution of Eq. (3.5).
Any of these solutions = A (x,u®), k < n, satisfies condition (3.3) and the vector fielis a
A —symmetry of the equation.

[

As a corollary of Theorem 2 and Theorem 3 we have proved thanfirig result:

Corollary 1. Let u, = F(x,u™ ) be an n-th order ordinary differential equation, where F is a
an analytic function in some open subsef'M). There exists an integrating factar(x,u) for
some k< n.

4 Examples

4.1 Examplel

By using a method based on variational derivatives, N linagi([2], Example 6.6.5) has proved
that the second-order equation
2 (+X)u
T St PV 4.1)
u u
admits an integrating factor.

For this example we use the method based ersymmetries to calculate an integrating factor
for Eq. (4.1). Although this equation does not admit Lie paymmetries, by Theorem 3 we
know that Eq. (4.1) admits the vector field= d, as aA —symmetry, where\ is any particular
solution to the following equation:

(—2XUP — U2 + UL + X2UUy + XU ) Ay, + UPUAY + UPAy

+A 202 — (XU + XU+ 2uU) A 4 XUy + XU = 0, (4.2)

that corresponds to Eqg. (3.3).
For the sake of simplicity we try to find a solutidnof (4.2) of the formA (x,u) = A1 (X, u)ux +
A2(x,u). This ansatz leads to the following system

AU AU — Au+1=0, (4.3a)
2A1 AU + Ao U2 4+ Ayl — 240U+ X2+ X = 0, (4.3b)
A2U2 — 2XA 1% — A1U2 + Ao U? — X2Aou — xAou = 0. (4.3c)
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A particular solution of the first equation is given RBy(x,u) = l_11 The two remaining equations
become:

AW+ X2 +x=0, (4.4a)
A2U2 4 Aoy U? — 2xu— X2Aou — xAou— u = 0. (4.4b)

The general solution of the first equation is givenbyx,u) = Xﬁz+ 2+ A21(x). Since the last
equation become§,1(X)? + A3, (X)) U2 + (A21(X)X% + A21(X)X) u = 0, we can choosd;(x) = 0.
In consequence = g, is aA —symmetry forA (x,u) = W

In order to find an integrating factor associated wwe must find a first-order invariamt(x, u, uy)
of viA-(Wl. The equation that corresponds to (2.11) is

2
U X X
Wy -+ %wux —o. (4.5)

Itis clear thatw(x, u, Uy) = %‘ is a solution of (4.5). In terms dfx,w,w; } Eg. (4.1) becomes

uwy = 0, the general solution of which is given lby=C,C € R. According to (2.13) an integrating
factor is given by:

1
H(X, U, Ux) = Wy, (X, U, Ux) = o (4.6)

We observe that the method we have followed not only provibesintegrating factor but also
gives the conserved form of the equation without additiarahputation. In this example the

conserved form of the resulting equation is giver[b&(%) =0.

4.2 Example?2
The equation

X2 1
U+ gz HU+ 5 =0 (4.7)
has been considered in [6] as an example of equation witheusymmetries that can be inte-
grated, because it has\asymmetry.
According with the method proposed in [2] the integratingtdas i (x, u, uk) of (4.7) are deter-
mined by the equations (see Egs. 6.6.17-18 in [2]):

(—Au* — 207 — X) tyyu, + AU pug U + A U + 8igu® =0, (4.8a)
(—4u° — 2u3 — X2U) Uy, + (—4ugU® — 2u1U3 — UgXPU) tyy,
+4U4U%I-luu+ 8U1U4I-lxu+ 4UXXU4
+(—4ugu® + 2ugU? — 2xu+- 3upX?) ty, + (4U° 4+ 2u 4 X2u) iy
+(4u* — 207 — 3x%)u = 0.

(4.8b)

Although this system is linear i, the compatibility of the equations cannatpriori be de-
termined. The method based anr-symmetries may help to simplify the computations to find
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integrating factors and conserved forms: it does only megaiparticular solution of the first-order
partial differential equation corresponding to (3.3):

(=4 — x2u—2u) Ay, + A u*Ay 4 AUt = —4A 2u* — AUt 4 207 + 3¢ (4.9)

This equation is satisfied, for instance, bgx,u,uy) = % + X A first-order invariant ofvi?- (D]
is given byw(x,u,uy) = “—ux + 2—’32 and the general solution of the reduced equatigQna- w? +
1= 0is given in implicit form by arctafw) + x = C,C € R. Therefore an integrating factor that
corresponds to (2.13) is given by

1 1

H(X, U, Uy) = s—p———5 + = (4.10)
G R AT

and Dy (arctar{‘ + 5%) +x) = 0 is a conserved form of the equation. It does not seem obvious

how to findu directly from (4.8).

4.3 Example3

The method we have used in the proof of Theorem 2 allows thstarion of integrating factors
of an equation by using integrating factors of the reduceghton via aA -symmetry of the original
equation. In this example we show how the method works intip@aand how the original equation
can be written in a conserved form.

When an(n— 1)th-order equation of the form

Aly,w" Dy =0 (4.11)

is transformed by

y= y(X, U),
W= WO, ), } (4.12)

we obtain a nemth-order equation

A(x,u™) =0. (4.13)

In [7] (Th. 3.1) it is proved that any of these equations (#.48mits aA —symmetry and that
(4.11) is the corresponding reduced equation. In this wayrtkathod we have used in the proof of
Theorem 2 permits the construction of integrating factdrany equation of the family (4.13) by
using a known integrating factor of (4.11).

In this example we show how the method works in practice. Wisicler again the equation

Wt 25wt =0 (4.14)
T ans 2w '

By means of the transformation= x, w = “X—u‘l Eq. (4.14) is transformed into the third-order
equation

xeu? u Ue 1 (1—3uju  2(ux— 1)u)2<> : (4.15)

uXXX:U<_4(UX—1)3_2(ux—1) “utuT u2 ud
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This equation admits the vector field= d, as aA —symmetry [7] for

PR (4.16)

i.e. A = %L In terms of variablegx,u,w®} Eq. (4.15) becomes

2

X 1

As we proved in Example R(x,W,Wy) = =—wi—— + & is an integrating factor of the reduced

(W +2)
equation (4.14) and

(X, W, Wy ) | W +X—2+w+i =D <arctar(%+i)+x) (4.18)
I'l 9 VIV VX XX 4W3 2W — X W 2W2 . .
In consequence by (2.18)
IJ(X, W’Wl) . AP (u—1)3 (4 19)
T %26 2 42 2(_ 2 2 ’
u X2UB 44Uy — 1) (— U2+ Ug -+ Ul ) XUB+4( Uy — 1) 4U2 +4( Uy — 1) 2 (— U2+ Ug+ ULy )

is an integrating factor of Eq. (4.15) and

X oWk UU) )
2(uy—1)2 (uy—1)u B

Dy (x+ arctan( (4.20)

is the associated conserved form of Eq. (4.15).

5 Conclusions

In this paper we prove the equivalence between the existehiogegrating factors and the exis-
tence ofA —symmetries for ordinary differential equations of any advy ordem. This provides
an alternative approach to the problem of determining nattiay factors.

The method may simplify the computations derived by othethoas: from thel —symmetry
and the associated algorithm of reduction, the integrétiatpr and the associated first integrals
can be determined without additional computations.

We also provide an existence theoremiefsymmetries for ordinary differential equations of
arbitrary order that gives a new independent proof of theterte of integrating factors.

Several examples show how the method works in practiceyudittd several equations that
have no Lie point symmetries.
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