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Abstract

We investigate the relationship between integrating factors andλ−symmetries for ordinary
differential equations of arbitrary order. Some results onthe existence ofλ−symmetries are
used to prove an independent existence theorem for integrating factors. A new method to
calculate integrating factors and the associated first integrals is derived from the method to
computeλ−symmetries and the associated reduction algorithm. Several examples illustrate
how the method works in practice and how the computations that appear in other methods
may be simplified.

1 Introduction

A classic result of A. Clairaut (1739) ensures that any first-order equation

M(x,u)+N(x,u)ux = 0 (1.1)

admits an integrating factor, i.e. a function,µ(x,u), such that the equivalent equationµ(M(x,u)+
N(x,u)ux) = 0 is exact. Integrating factors are a powerful tool to integrate some first-order differ-
ential equations although finding integrating factors can be more difficult than solving the original
equation.

For higher-order equations integrating factors have not been so widely used. The determination
of integrating factors for annth-order ordinary differential equation requires the solution of annth-
order linear partial differential equation inn+1 variables.

An alternative approach ([1],[2]) to find integrating factors is based on variational derivatives
of the form

δ
δu

=
∂
∂u

−Dx
∂

∂ux
+D2

x
∂

∂uxx
+ · · · , (1.2)

whereDx denotes the total derivative operator with respect tox. Denote byu(k) = (u,u1, · · · ,uk),
whereui denotes the derivative of orderi of u with respect to the independent variablex. The
integrating factorsµ(x,u(n−1)) of ann-th order equation

M(x,u(n−1))+N(x,u(n−1))un = 0 (1.3)
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are determined by the following equation:

δ
δu

(µ(M +Nun)) = 0. (1.4)

For first-order equations Eq. (1.4) becomes the single linear partial differential equation(µM)u−
(µN)x = 0, which always has an infinite number of solutions. Forn = 2 the determining Eq. (1.4)
gives an over-determined system of two second-order linearpartial differential equations ([2], Eqs.
6.6.17-6.6.18), with only one dependent variable and the compatibility of which cannot bea priori
ensured. For equations of arbitrary order the equations derived from (1.4) are rather complicated
and they have scarcely been studied.

In this paper we present a new independent approach to find integrating factors for equations of
arbitrary order. For first-order scalar ordinary differential equations a well-known result of Sophus
Lie [5] states that a Lie point symmetry can be used to construct an integrating factor and con-
versely any integrating factor determines a Lie point symmetry of the original equation. However,
there exist higher-order equations without Lie symmetriesthat admit integrating factors or that are
exact ([11], pag. 182). In these cases Lie point symmetries are of no help to find integrating factors
neither to characterize exact equations. Therefore we cannot expect a one-to-one correspondence
between Lie point symmetries and integrating factors for equations of order higher than one. As
it is remarked in [4] generalised and nonlocal symmetries must also be considered in the context
of the existence of integrating factors.

Although there are exact equations without Lie symmetries,any exact equation always admit
a λ−symmetry (also calledC ∞−symmetry) and the associated algorithm of reduction gives the
corresponding conserved form ([7], Theorem 3.2). As a consequence of this result in this paper
we firstly prove that there exists aλ−symmetry associated to any integrating factor (Theorem 1).
Next we investigate the converse problem and we establish the connection betweenλ−symmetries
and integrating factors for equations of any arbitrary order. The main result (Theorem 2) states
that anyλ−symmetry yields an integrating factor. This generalizes the result of Sophus Lie for
ordinary differential equations of arbitrary order.

For ordinary differential equations with analytic terms, we prove (Theorem 3) an existence
theorem ofλ−symmetries. This result leads to an indirect proof of the existence of integrating
factors.

These theoretical results have interesting practical consequences: once aλ−symmetry has
been calculated, the associated integrating factor and thecorresponding first integral can be derived
from the reduction algorithm without additional computation.

Several examples have been selected to exhibit different aspects of the method: to show how
the method works in practice, to compare our method with those based on variational derivatives
and to illustrate the induction method used in the proof of Theorem 2.

For simplicity all the results have been presented for scalar equations. With some minor
changes the results and methods can be extended to systems ofordinary differential equations.

2 λ−Symmetries and Integrating Factors

2.1 λ−Symmetries associated to integrating factors

Consider anth-order ordinary differential equation

∆̃(x,u(n)) = 0, (2.1)



302 C Muriel and J L Romero

where variables(x,u) are in some open setM ⊂ X×U ≃ R
2. Fork∈ N, M(k) ⊂ X×U (k) denotes

the correspondingk-jet space and the elements ofM(k) are denoted by(x,u(k)) = (x,u,u1, · · · ,uk).
Suppose that Eq. (2.1) admits an integrating factor,µ(x,u(k)), for somek such that 0≤ k ≤

n−1. The multiplication byµ converts the left-hand side of (2.1) into the total derivative of some
function∆(x,u(n−1)) :

µ(x,u(k)) · ∆̃(x,u(n)) = Dx(∆(x,u(n−1))). (2.2)

The exact equationDx(∆(x,u(n−1))) = 0 admits aλ−symmetry and the trivial reduction of order
∆(x,u(n−1)) = C, C ∈ R, appears as consequence of the reduction algorithm associated to that
λ−symmetry ([7], Theorem 3.2). Ifλ ∈ C∞(M(k)),0 ≤ k ≤ n− 1, is any solution of the partial
differential equation:

n−1

∑
i=0

(Dx + λ )i(1)
∂∆
∂ui

= 0 when Dx(∆(x,u(n−1))) = 0, (2.3)

then the vector fieldv = ∂u is aλ−symmetry of Eq. (2.1). By (2.2), we have that

v[λ ,(n)](Dx(∆(x,u(n−1)))) = µ ·v[λ ,(n)](∆̃)+ ∆̃ ·v[λ ,(n)](µ). (2.4)

It is clear that any solution of (2.1) is also a solution ofDx(∆(x,u(n−1))) = 0. Hence, ifv = ∂u

is a λ−symmetry ofDx(∆(x,u(n−1))) = 0, with λ satisfying (2.3), the left-hand side of (2.4) is
equal to zero when it is evaluated on solutions of Eq. (2.1). Similarly the second term in the right
member of (2.4) becomes equal to zero when it is evaluated on∆̃ = 0. Therefore

µ |∆̃=0 ·v
[λ ,(n)](∆̃)|∆̃=0 = 0. (2.5)

From (2.5) we deduce the following theorem:

Theorem 1. Assume that (2.1) is a nth-order ordinary differential equation that admits an inte-
grating factorµ such thatµ |∆̃=0 6= 0. If λ is any particular solution of (2.3), then the vector field
v = ∂u is a λ−symmetry of (2.1).

Example. The second-order equation

uxx+
u2

x

u
+3

ux

x
= 0 (2.6)

admits two integrating factorsµ1 = xu andµ2 = x3u :

µ1(x,u) · (uxx+
u2

x

u
+3

ux

x
) = Dx(xuux +u2), (2.7)

µ2(x,u) · (uxx+
u2

x

u
+3

ux

x
) = Dx(x

3uux). (2.8)

Denote∆1(x,u(1)) = xuux+u2. For Eq. (2.6) andµ1 it can be checked that Eq. (2.3) can be written
as

xux +2u+ λ1xu= 0. (2.9)

Sinceλ1 = −
(ux

u + 2
x

)
is a solution of (2.9), Theorem 1 ensures that the vector fieldv = ∂u is a

λ1−symmetry.
Similarly for λ2 = −ux

u it can be checked thatv = ∂u is a λ2−symmetry associated to the
integrating factorµ2.
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2.2 Integrating factors associated to λ−symmetries

In this section we show how to obtain an integrating factor ofa given ordinary differential equation
with a knownλ−symmetry.

Theorem 2. Let

∆̃(x,u(n)) = 0 (2.10)

be a nth-order ordinary differential equation that admits avector field v as aλ−symmetry for
some functionλ ∈C (M(k)), 0≤ k < n . Theλ−symmetry yields an integrating factorµ(x,u(n−1))
of the equation.

Proof. By introducing canonical coordinates forv, if necessary, it can be assumed thatv = ∂u.

We proceed by induction on the order of the equation. Since any first-order equation does always
admit an integrating factor, we prove the theorem forn = 2. The corresponding Eq. (2.10) can be
written in explicit form as

uxx = F(x,u,ux). (2.11)

Let w(x,u,ux) be a first-order invariant ofv[λ ,(1)] i.e., any particular solution of the equation:

wu +wuxλ (x,u,ux) = 0. (2.12)

The reduction process associated to theλ−symmetryv gives a first-order reduced equation of the
form ∆R(x,w,wx) = 0, the general solution of which is implicitly given by an equation of the form
G(x,w) = C,C ∈ R. It is clear thatDx(G(x,w(x,u,ux))) = 0 is an equivalent form of Eq. (2.11).
Therefore

µ(x,u,ux) = Gw(x,u,w(x,u,ux)) ·wux(x,u,ux) (2.13)

is an integrating factor of (2.11).
Assume that the theorem is true for any ordinary differential equation of orderm < n. Let

w = w(x,u(k)) be an invariant ofv[λ ,(n)]. The set{x,w(n−k)} is a set of functionally independent
invariants ofv[λ ,(n)]. Since the subvariety

L∆ = {(x,u(n)) : ∆̃(x,u(n)) = 0} (2.14)

is invariant forv[λ ,(n)], by Proposition 2.18 in [10] there exists an invariant function ∆R(x,w(n−k))
the solution set of which coincides, locally, withL∆. By Proposition 2.10 in [10] there exists a
functionH(x,u,w(n−k)) such that

∆̃(x,u(n)) = H(x,u,w(n−k)) ·∆R(x,w(n−k)). (2.15)

The equation∆R(x,w(n−k)) = 0 is the reduced equation associated to theλ−symmetryv. By our
inductive assumption there exists an integrating factorµ(x,w(n−k−1)) of the reduced equation,
namely

µ(x,w(n−k−1)) ·∆R(x,w(n−k)) = Dx(φ(x,w(n−k−1))). (2.16)
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By writing w(n−k) in terms of variables(x,u(n)), (2.16) becomes

µ̃(x,u(n−1)) ·
∆̃(x,u(n))

H̃(x,u(n))
= Dx(φ̃ (x,u(n−1))), (2.17)

where µ̃ , φ̃ and H̃ denote the functionsµ , φ andH, respectively, written in terms of variables
(x,u(n)). Therefore

µ̃(x,u(n−1))

H̃(x,u(n))
(2.18)

is an integrating factor of Eq. (2.10).
�

3 Existence of λ−Symmetries and Integrating Factors

In the previous section it was proved the equivalence between integrating factors andλ−symmetries
of ordinary differential equations of arbitrary order. We now present an existence theorem for
λ−symmetries, which provides an indirect proof of an existence theorem for integrating factors.

Theorem 3. Let un = F(x,u(n−1)) be a nth-order ordinary differential equation, where F is an
analytic function of its arguments. There exists a functionλ (x,u(k)), for some k< n such that the
vector field v= ∂u is a λ−symmetry of the equation.

Proof. We try to find some functionλ (x,u(k)), k≤ n−1, such that

v[λ ,(n)](un−F(x,u(n−1))) = 0 when un = F(x,u(n−1)). (3.1)

In terms of the characteristicQ≡ 1 of v we have

v[λ ,(n)] =
n

∑
i=0

(Dx + λ )i(1)
∂

∂ui
. (3.2)

Hence Eq. (3.1) can be written as

(Dx + λ )n(1) =
n−1

∑
i=0

(Dx + λ )i(1)
∂F
∂ui

when un = F(x,u(n−1)). (3.3)

Since the set of analytic functions is closed under differentiation, it is clear that, ifλ is an ana-
lytic function in(x,u(k)), then fori = 1, · · · ,n−1 the expression(Dx+λ )i(1) defines an analytical
function in variables(x,u(k+i−1)), which depends on the partial derivatives ofλ up to orderi −1.

To evaluate(Dx + λ )i(1) whenun = F(x,u(n−1)) we replaceun+h, h ≥ 0, by the corresponding
derivative ofF. The resulting expression depends in an analytic way upon the variables(x,u(n−1))
and on the partial derivatives ofλ with respect to all its arguments up to orderi −1. It is easy to
see that in (3.3) the term

∂ n−1)λ
∂xn−1)

(3.4)
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only appears in the first member and its coefficient is 1. Therefore condition (3.3) can be written
as a single partial differential equation forλ of the form:

∂ n−1)λ
∂xn−1 = G(x,u(n−1)

,λ (n−1)), (3.5)

whereλ (n−1) denotes the partial derivatives ofλ , of order≤ n−1, with respect to all its arguments
and functionG is an analytic function which does not depend on∂ n−1)λ

∂xn−1) . With these conditions the
Cauchy-Kowalevski Theorem ([3]) ensures the existence of an analytic solution of Eq. (3.5).
Any of these solutionsλ = λ (x,u(k)), k < n, satisfies condition (3.3) and the vector fieldv is a
λ−symmetry of the equation.

�

As a corollary of Theorem 2 and Theorem 3 we have proved the following result:

Corollary 1. Let un = F(x,u(n−1)) be an n-th order ordinary differential equation, where F is a
an analytic function in some open subset M(n−1). There exists an integrating factorµ(x,u(k)) for
some k< n.

4 Examples

4.1 Example 1

By using a method based on variational derivatives, N Ibragimov ([2], Example 6.6.5) has proved
that the second-order equation

uxx−
u2

x

u
−

(
x2 +x

)
ux

u
+2x+1= 0 (4.1)

admits an integrating factor.
For this example we use the method based onλ−symmetries to calculate an integrating factor

for Eq. (4.1). Although this equation does not admit Lie point symmetries, by Theorem 3 we
know that Eq. (4.1) admits the vector fieldv = ∂u as aλ−symmetry, whereλ is any particular
solution to the following equation:

(−2xu2−u2 +uu2
x +x2uux +xuux)λux +u2uxλu +u2λx

+λ 2u2− (x2u+xu+2uux)λ +x2ux +xux = 0,
(4.2)

that corresponds to Eq. (3.3).
For the sake of simplicity we try to find a solutionλ of (4.2) of the formλ (x,u) = λ1(x,u)ux +

λ2(x,u). This ansatz leads to the following system

λ 2
1 u2 + λ1uu2−λ1u+1 = 0, (4.3a)

2λ1λ2u2 + λ2uu2 + λ1xu
2−2λ2u+x2 +x = 0, (4.3b)

λ 2
2 u2−2xλ1u2−λ1u2 + λ2xu

2−x2λ2u−xλ2u = 0. (4.3c)
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A particular solution of the first equation is given byλ1(x,u) = 1
u. The two remaining equations

become:

λ2uu2 +x2 +x = 0, (4.4a)

λ 2
2 u2 + λ2xu

2−2xu−x2λ2u−xλ2u−u = 0. (4.4b)

The general solution of the first equation is given byλ2(x,u) = x2

u + x
u + λ21(x). Since the last

equation becomes
(
λ21(x)2 + λ ′

21(x)
)

u2 +
(
λ21(x)x2 + λ21(x)x

)
u = 0, we can chooseλ21(x) = 0.

In consequencev = ∂u is aλ−symmetry forλ (x,u) = ux+x2+x
u .

In order to find an integrating factor associated toλ we must find a first-order invariantw(x,u,ux)
of v[λ ,(1)]. The equation that corresponds to (2.11) is

wu +
ux +x2 +x

u
wux = 0. (4.5)

It is clear thatw(x,u,ux) = ux+x2+x
u is a solution of (4.5). In terms of{x,w,w1} Eq. (4.1) becomes

uw1 = 0, the general solution of which is given byw=C,C∈R. According to (2.13) an integrating
factor is given by:

µ(x,u,ux) = wux(x,u,ux) =
1
u
. (4.6)

We observe that the method we have followed not only providesthe integrating factor but also
gives the conserved form of the equation without additionalcomputation. In this example the

conserved form of the resulting equation is given byDx

(
ux+x2+x

u

)
= 0.

4.2 Example 2

The equation

uxx+
x2

4u3 +u+
1
2u

= 0 (4.7)

has been considered in [6] as an example of equation without Lie symmetries that can be inte-
grated, because it has aλ -symmetry.

According with the method proposed in [2] the integrating factorsµ(x,u,ux) of (4.7) are deter-
mined by the equations (see Eqs. 6.6.17-18 in [2]):

(−4u4−2u2−x2)µu1u1 +4u1µuu1u
3 +4µxu1u

3 +8µuu3 = 0, (4.8a)

(−4u5−2u3−x2u)µxu1 +(−4u1u5−2u1u3−u1x2u)µuu1

+4u4u2
1µuu+8u1u4µxu+4µxxu4

+(−4u1u4 +2u1u2−2xu+3u1x2)µu1 +(4u5 +2u3 +x2u)µu

+(4u4−2u2−3x2)µ = 0.

(4.8b)

Although this system is linear inµ , the compatibility of the equations cannota priori be de-
termined. The method based onλ−symmetries may help to simplify the computations to find
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integrating factors and conserved forms: it does only require a particular solution of the first-order
partial differential equation corresponding to (3.3):

(−4u5−x2u−2u3)λux +4u1u4λu +4u4λx = −4λ 2u4−4u4 +2u2 +3x2
. (4.9)

This equation is satisfied, for instance, byλ (x,u,ux) = ux
u + x

u2 . A first-order invariant ofv[λ ,(1)]

is given byw(x,u,ux) = ux
u + x

2u2 and the general solution of the reduced equationwx + w2 +
1 = 0 is given in implicit form by arctan(w)+ x = C,C ∈ R. Therefore an integrating factor that
corresponds to (2.13) is given by

µ(x,u,ux) =
1

1+(ux
u + x

2u2 )2 +
1
u

(4.10)

andDx
(
arctan(ux

u + x
2u2 )+x

)
= 0 is a conserved form of the equation. It does not seem obvious

how to findµ directly from (4.8).

4.3 Example 3

The method we have used in the proof of Theorem 2 allows the construction of integrating factors
of an equation by using integrating factors of the reduced equation via aλ -symmetry of the original
equation. In this example we show how the method works in practice and how the original equation
can be written in a conserved form.

When an(n−1)th-order equation of the form

∆(y,w(n−1)) = 0 (4.11)

is transformed by

y = y(x,u),
w = w(x,u,ux),

}
(4.12)

we obtain a newnth-order equation

∆̃(x,u(n)) = 0. (4.13)

In [7] (Th. 3.1) it is proved that any of these equations (4.13) admits aλ−symmetry and that
(4.11) is the corresponding reduced equation. In this way the method we have used in the proof of
Theorem 2 permits the construction of integrating factors of any equation of the family (4.13) by
using a known integrating factor of (4.11).

In this example we show how the method works in practice. We consider again the equation

wxx+
x2

4w3 +w+
1

2w
= 0. (4.14)

By means of the transformationy = x, w = ux−1
u Eq. (4.14) is transformed into the third-order

equation

uxxx = u

(
−

x2u3

4(ux−1)3 −
u

2(ux−1)
−

ux

u
+

1
u
−

(1−3ux)uxx

u2 −
2(ux−1)u2

x

u3

)
. (4.15)
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This equation admits the vector fieldv = ∂u as aλ−symmetry [7] for

λ = −
wu

wux

, (4.16)

i.e. λ = ux−1
u . In terms of variables{x,u,w(2)} Eq. (4.15) becomes

u(wxx+
x2

4w3 +w+
1

2w
) = 0. (4.17)

As we proved in Example 2µ(x,w,wx) = 1
1+( wx

w + x
2w2 )2 + 1

w is an integrating factor of the reduced

equation (4.14) and

µ(x,w,wx)

(
wxx+

x2

4w3 +w+
1

2w

)
= Dx

(
arctan(

wx

w
+

x
2w2)+x

)
. (4.18)

In consequence by (2.18)

µ(x,w,w1)

u
= 4u2(ux−1)3

x2u6+4(ux−1)(−u2
x+ux+uuxx)xu3+4(ux−1)4u2+4(ux−1)2(−u2

x+ux+uuxx)
2 (4.19)

is an integrating factor of Eq. (4.15) and

Dx

(
x+arctan

(
xu2

2(ux−1)2 +
−u2

x +ux +uuxx

(ux−1)u

))
= 0 (4.20)

is the associated conserved form of Eq. (4.15).

5 Conclusions

In this paper we prove the equivalence between the existenceof integrating factors and the exis-
tence ofλ−symmetries for ordinary differential equations of any arbitrary ordern. This provides
an alternative approach to the problem of determining integrating factors.

The method may simplify the computations derived by other methods: from theλ−symmetry
and the associated algorithm of reduction, the integratingfactor and the associated first integrals
can be determined without additional computations.

We also provide an existence theorem ofλ−symmetries for ordinary differential equations of
arbitrary order that gives a new independent proof of the existence of integrating factors.

Several examples show how the method works in practice, including several equations that
have no Lie point symmetries.
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