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Abstract

We show how partner symmetries of the elliptic and hyperbolic complex Monge-Ampère
equations (CMA and HCMA) provide a lift of non-invariant solutions of three- and two-
dimensional reduced equations, i.e., a lift of invariant solutions of the originalCMA and
HCMA equations, to non-invariant solutions of the latter four-dimensional equations. The
lift is applied to non-invariant solutions of the two-dimensional Helmholtz equation to yield
non-invariant solutions ofCMA, and to non-invariant solutions of three-dimensional wave
equation and three-dimensional hyperbolic Boyer-Finley equation to yield non-invariant solu-
tions ofHCMA. By using these solutions as metric potentials, it may be possible to construct
four-dimensional Ricci-flat metrics of Euclidean and ultra-hyperbolic signatures that have
non-zero curvature tensors and no Killing vectors.

1 Introduction

Solutions of Plebañski’s first and second heavenly equations yield a potential that determines
Ricci-flat (anti-)self-dual metrics on 4-dimensional complex manifolds [13]. In other words, these
”heavenly” metrics satisfy complex vacuum Einstein equations. In the case of the first heavenly
equation, physically important ones are two real cross sections of these complex metrics, Kähler
metrics with Euclidean or ultra-hyperbolic signature, when the first heavenly equation coincides
with the elliptic (CMA) and hyperbolic (HCMA) complex Monge-Ampère equation respectively.
In particular, among the solutionsu(z1, z̄1,z2, z̄2) of the ellipticCMA

u11̄u22̄−u12̄u21̄ = 1 (1.1)

there are gravitational instantons, the most important of which is K3, the Kummer surface [1].
The explicit construction of theK3 metric is still an unsolved challenging problem. The main dif-
ficulty is that this metric should have no Killing vectors andtherefore the corresponding solution
of CMA should be a non-invariant solution (with no point symmetries). That was a basic motive
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for us to develop methods for finding non-invariant solutions of nonlinear partial differential equa-
tions (PDEs). In the context of Lie’s theory of symmetries ofdifferential equations, the standard
method for solving nonlinear PDEs is symmetry reduction that yields only invariant solutions and
therefore cannot produce Kähler potential ofK3. Recently, we have developed method of partner
symmetries that yields non-invariant solutions to the elliptic and hyperbolicCMA and to the sec-
ond heavenly equation. Using them as metric potentials, we have obtained some heavenly metrics
with no Killing vectors [6, 7, 8] (nonexistence of conformalKilling vectors was not proved).

Here we develop further our method of partner symmetries so,that we are able now to obtain
non-invariant solutions of the four-dimensionalCMAandHCMAstarting from invariant solutions
of these equations that satisfy the corresponding reduced equations of lower (three and two) di-
mensions and these ”seed” solutions should be non-invariant solutions of the reduced equations.
We have called this procedure”lift” . In particular, we have obtained non-invariant solutions of
elliptic CMA (1.1) by the lift from solutions of two-dimensional Helmholtz equation and non-
invariant solutions of hyperbolicHCMA

u11̄u22̄−u12̄u21̄ = −1 (1.2)

by the lift from solutions of three-dimensional wave equation and of the three-dimensional hyper-
bolic Boyer-Finley equation [2]:

ψzz̄ = eψxψxx. (1.3)

In section 2 we discuss partner symmetries of the elliptic and hyperbolic complex Monge-
Ampère equations.

In section 3 we obtain non-invariant solutions of the elliptic CMAby the lift from two-dimensional
Helmholtz equation.

In section 4 we make the lift of solutions of three-dimensional wave equation to non-invariant
solutions of the hyperbolicHCMA.

In section 5 we use Legendre transformation ofHCMA and equations for rotational partner
symmetries to obtain hyperbolic Boyer-Finley equation (BF) and Bäcklund transformations for
BF that we discovered earlier [5].

In section 6, using results of the previous section, we obtain non-invariant solutions ofHCMA
by the lift from our non-invariant solutions to hyperbolicBF (1.3) that we obtained earlier [10].
Noninvariant solutions to the ellipticBF were obtained first by D. Calderbank and P. Tod [3]. A
little later, we had independently obtained these solutions to the ellipticBF and also non-invariant
solutions to the hyperbolicBF [10] by our version of the method of group foliation [12]. We had
also proved non-invariance of all these solutions.

By using non-invariant solutions ofHCMAas metric potentials, it may be possible to construct
metrics with ultra-hyperbolic signature that have no Killing vectors [9]. A comprehensive survey
of results on four-dimensional anti-self-dual metrics with the ultra-hyperbolic (neutral) signature
was given by M. Dunajski and S. West in [4].

We are working now on a modification of this method in order to obtain non-invariant solutions
of the ellipticCMA (1.1) by the lift from solutions of the three-dimensional elliptic BF [2]

ψzz̄+eψxψxx = 0 (1.4)

to non-invariant solutions of the ellipticCMA (1.1) with the final goal to obtain Ricci-flat heavenly
metrics with Euclidean signature that admit no Killing vectors.
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2 Partner symmetries of complex Monge-Amp̀ere equations

The hyperbolic and ellipticCMAhave the same set of symmetries whose characteristicsϕ satisfy
the condition

u22̄ϕ11̄ +u11̄ϕ22̄−u21̄ϕ12̄−u12̄ϕ21̄ = 0. (2.1)

Define the operators

L1 = λ (u12̄D1̄−u11̄D2̄), L2 = λ (u22̄D1̄−u21̄D2̄), (2.2)

whereDi,Dī are operators of total derivatives with respect tozi , z̄i andλ is a complex constant.
Then the symmetry condition (2.1) can be expressed as a totaldivergence

D1L2ϕ = D2L1ϕ (2.3)

so that locally there exists a symmetry potentialψ defined by the differential equations

ψ1 = L1ϕ , ψ2 = L2ϕ . (2.4)

It is easy to see that ifϕ satisfies (2.3), thenψ also satisfies (2.3) and so the potentialψ of a
symmetryϕ is itself a symmetry ofCMA [6, 8]. Theseϕ andψ are calledpartner symmetries.

Differential equations (2.4) are recursion relations for symmetries

ψ = R1ϕ , ψ = R2ϕ (2.5)

with the recursion operators

R1 = D−1
1 L1, R2 = D−1

2 L2. (2.6)

The transformation inverse to (2.4) is obtained by taking complex conjugates of equations (2.4),
solving them algebraically with respect toϕ1 andϕ2, and usingCMA:

ϕ1 = ∓λ̄−1(u12̄ψ1̄−u11̄ψ2̄), ϕ2 = ∓λ̄−1(u22̄ψ1̄−u21̄ψ2̄) (2.7)

where the minus and plus signs correspond to the elliptic andhyperbolicCMA respectively. Note
that if |λ | = 1 the inverse transformation (2.7) reads

ϕ = ∓R1ψ , ϕ = ∓R2ψ , (2.8)

and then forHCMA there is a simplifying choiceψ = ϕ , when the transformation (2.4) coincides
with its inverse (2.7) and becomes

ϕ1 = λ (u12̄ϕ1̄−u11̄ϕ2̄), ϕ2 = λ (u22̄ϕ1̄−u21̄ϕ2̄). (2.9)

The two operators in (2.9) form the Lax pair of Mason and Newman [11] and hence all integrability
conditions of system (2.9) and the complex conjugate equations

ϕ1̄ = λ−1(u21̄ϕ1−u11̄ϕ2), ϕ2̄ = λ−1(u22̄ϕ1−u12̄ϕ2) (2.10)
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are identically satisfied as a consequence of these equations andHCMA. The same is true for
equations (2.7) together with their complex conjugates forelliptic CMA since they can be written
in the form (2.9), (2.10) for the complex potentialΦ = ϕ + iψ .

If we choose forϕ a characteristic of any Lie point symmetry ofHCMA, then (2.9) and (2.10)
become differential constraints, joined toHCMA, that select some particular solutions ofHCMA.
Equations (2.9) and (2.10) are not independent: any three equations out of the four ones imply
the fourth equation together withHCMA itself as their algebraic consequences. Alternatively, any
two of these four equations together withHCMA imply the remaining two constraints. In sections
4 and 5 we shall useHCMA together with the first equations in (2.9) and (2.10)

ϕ1 = λ (u12̄ϕ1̄−u11̄ϕ2̄), ϕ1̄ = λ−1(u21̄ϕ1−u11̄ϕ2) (2.11)

as basic independent equations: the original PDE and two constraints for one unknownu.

3 Lift of non-invariant solutions of elliptic CMA from two-d imensio-
nal Helmholtz equation

For the ellipticCMA the ansatzψ = ϕ implies the trivial solutionϕ = ψ = 0, so in this section we
use the more general equations (2.7) withϕ 6= ψ and|λ | = 1.

Introducing real variablesx,y,z, t by the relationsz1 = (x+ iy)/2, z2 = (t + iz)/2, we consider
the ellipticCMA (1.1) in a real form

(uxx+uyy)(uzz+utt)− (uxt +uyz)
2− (uyt −uxz)

2 = 1. (3.1)

First, consider solutions that are invariant under translations inx, selected by the conditionu1 +
u1̄ ≡ 2ux = 0, for which (3.1) reduces to

uyy(uzz+utt)−u2
yz−u2

yt = 1 ⇐⇒ uyyu22̄−uy2uy2̄ = 1. (3.2)

Applying to this the Legendre transformationv= u−yuy, p= uy, we obtain the three-dimensional
Laplace equation

v22̄ +vpp = 0. (3.3)

We consider now solutions of (3.3) that are invariant under the symmetry generatorX = v∂v + ∂p

due to the conditionvp− v = 0 and thus imply further reduction of (3.3). Thenv = epθ(z2, z̄2),
whereθ satisfies the Helmholtz equation

θ22̄ + θ = 0. (3.4)

In order to make a lift from solutions of these low-dimensional reduced linear equations to non-
invariant solutions of four-dimensional ellipticCMA, we need to arrive at these equations without
symmetry reduction. For this purpose we choose the symmetries of translations and dilations

ϕ = u1 +u1̄, ψ = u−z1u1− z̄1u1̄, (3.5)

respectively, for characteristics of partner symmetries in the equations (2.7) (with the minus sign)
and their complex conjugates.
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After the Legendre transformation

v = u−z1u1− z̄1u1̄, p = u1, p̄ = u1̄ (3.6)

in the new variablesp, p̄,v formulas (3.5) becomeϕ = p+ p̄, ψ = v and ellipticCMA(1.1) takes
the form

vpp̄v22̄−vp2̄vp̄2 = vpp̄v22̄−v2
pp̄ (3.7)

wherev = v(p, p̄,z2, z̄2). The Legendre transformation (3.6) maps the equations (2.7) with the
choice of symmetries (3.5), their complex conjugates and the transformedCMA (3.7) to the fol-
lowing system of five independent equations (for more details see [6])

vpp = Avpp̄, vp2̄ = Cvpp̄, v22̄ = Bvpp̄ (3.8)

together with their complex conjugates. Here the coefficients are defined as

A =
1+v2

p+ iv2

∆
, B =

v2v2̄ + i(v2−v2̄)

∆
, C =

vpv2̄ + i(vp−vp̄)

∆

where∆ = 1+vpvp̄. Equations (3.8) imply one more equation [6]

vpp̄ = 1+vpvp̄ (3.9)

as their differential consequence. We note once again that the transformedCMA (3.7) is satisfied
automatically on solutions of (3.8) and (3.9).

The logarithmic substitutionv = − lnw linearizes equations (3.8) and (3.9) in the form

wpp̄ +w = 0, wpp+w− iw2 = 0, (3.10)

wp2̄− i(wp−wp̄) = 0, w22̄− i(w2−w2̄) = 0

plus two complex conjugate equations. System (3.10) implies

w22̄− (wpp+wp̄p̄−2wpp̄) = 0. (3.11)

If p = α + iβ , p̄ = α − iβ , then in real variablesα andβ (3.11) becomes the three-dimensional
Laplace equation

w22̄ +wββ = 0 (3.12)

which coincides with (3.3) up to a change in variables, whilethe first equation (3.10) coincides
with the two-dimensional Helmholtz equation (3.4) in the new variables.

Thus, if we know a solution of one of these low-dimensional equations, depending on arbitrary
constants, we consider them as arbitrary functions of all other variables that do not appear explic-
itly in this equation. Then all the other equations (3.10) determine a dependence of these functions
on these parameters and so we obtain a non-invariant solution of the four-dimensional equation
(3.7). We call this a lift of invariant solutions ofCMA, satisfying the reduced equation (3.3) or
(3.4), to noninvariant solutions ofCMA.
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For example, let us consider a lift from Helmholtz equation (3.4), that coincides in new vari-
ables with the first equation (3.10), starting from its solution of the form

w = ∑
j

A j(z2, z̄2)
{

e2sj Re(α j p)Re
(

Fje
2iIm(α j p)

)

+e−2sjRe(α j p)Re
(

G je
2iIm(α j p)

)}

. (3.13)

Then other equations (3.10) imply the following restrictions on solution (3.13)

A j = exp
{

2Im
(

(

α2
j (s

2
j +1)+1

)

z2

)}

, sj =
√

1−1/|α j |2,

while α j ,Fj ,G j are arbitrary complex constants. This is a non-invariant solution of the Legendre-
transformedCMA [6].

4 Lift of non-invariant solutions of hyperbolic CMA from
three-dimensional wave equation

For the translational symmetry reduction we will need the real form of HCMA obtained by the
change of variablesz1 = (x+ iy)/2, z̄1 = (x− iy)/2, z2 = (t + iz)/2, z2 = (t − iz)/2:

(uxx+uyy)(uzz+utt)− (uxt +uyz)
2− (uyt −uxz)

2 = −1. (4.1)

We consider solutions of (4.1), invariant under translations inx, that are selected by the condition
ux = 0. Then (4.1) reduces to

uyy(uzz+utt)−u2
yz−u2

yt = −1. (4.2)

Applying to (4.2) the Legendre transformation

v = u−yuy, q = uy (4.3)

we end up with the three-dimensional wave equation

vqq = vtt +vzz (4.4)

for the new unknownv = v(q, t,z).
Now we will not perform any symmetry reduction but use equations (2.9) and (2.10) for partner

symmetries withϕ equal to the characteristic of the symmetry of translationsin x: ϕ = u1 + u1̄,
andλ = i. With these choices, after the Legendre transformation similar to (4.3)

v = u−z1uz1− z̄1uz̄1, p = ux, q = uy (4.5)

the real form (4.1) ofHCMAbecomes

(vpp+vqq)(vtt +vzz)− (vpt −vqz)
2− (vpz+vqt)

2 = vppvqq−v2
pq, (4.6)

while (2.9) and (2.10) yield only three independent equations [8]

vqq = vpz+vqt, (4.7a)
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vpq = vqz−vpt, (4.7b)

vqq = vtt +vzz. (4.7c)

Equation (4.7c) formally coincides with the three-dimensional wave equation (4.4) that determines
solutions of (4.6), invariant under translations inx. However, the unknownv in this equation
depends also on the fourth variablep, so that (4.7c) depends on an extra parameterp and therefore
it is actually not the reduced equation (4.4). Note that the transformed non-reducedHCMA (4.6)
is a consequence of the system (4.7a–4.7c) and so the latter equations determine some partial
solutions of (4.6).

The solution set of (4.7c) can be written as the double Fourier integral

v =

+∞
∫

−∞

+∞
∫

−∞

(

a(p,α ,β )exp
{

−i
(

αt + βz+
√

α2 + β 2q
)}

+b(p,α ,β )exp
{

−i
(

αt + βz−
√

α2 + β 2q
)})

dα dβ . (4.8)

Imposing the remaining equations (4.7a) and (4.7b) on solution (4.8), we finally obtain the general
solution of the system (4.7a)–(4.7c)

v =

+∞
∫

−∞

+∞
∫

−∞

(

a(α ,β )exp

{

−i
√

α2 + β 2

(

√

α2+ β 2 + α
β

p+q

)}

+b(α ,β )exp

{

−i
√

α2+ β 2

(

√

α2 + β 2−α
β

p−q

)})

e−i(αt+βz)dα dβ . (4.9)

which is a partial solution of the Legendre-transformedHCMA (4.6).
Thus, using equations (4.7a)–(4.7c), implied by our choiceof partner symmetries, we have

made a lift of solutions of the reduced equation (4.4) to a setof particular solutions of four-
dimensional Legendre-transformedHCMA (4.6).

5 Rotational partner symmetries, Legendre transformationand
Boyer-Finley equation

Boyer-Finley equation usually arises from rotational symmetry reduction ofHCMA, subjected to
the combination of the point and Legendre transformation inthe first pair of variablesz1, z̄1

z1 = eζ1, z̄1 = eζ̄1, ζ1 = ψq, ζ̄1 = ψq̄, u = qψq + q̄ψq̄−ψ , uζ1
= q, uζ̄1

= q̄. (5.1)

Here we do not perform any symmetry reduction but still applythe same transformation (5.1) to
HCMA and the two independent constraints (2.11), renamez2 = z and chooseϕ as the rotational
symmetry characteristicϕ = i(z1u1− z̄1u1̄) = i(q− q̄). ThenHCMAbecomes

ψqq̄ψzz̄−ψqz̄ψq̄z+eψq+ψq̄(ψqqψq̄q̄−ψ2
qq̄) = 0, (5.2)

whereψ(q, q̄,z, z̄) is the new unknown, and the constraints (2.11) take the form

eψq̄(ψq̄q̄ + ψqq̄) = λψqz̄, λeψq(ψqq+ ψqq̄) = ψq̄z. (5.3)
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Now, we expressψqz̄ andψq̄z from (5.3) and substitute them intoHCMA (5.2) with the result

ψzz̄ = eψq+ψq̄(ψqq+2ψqq̄ + ψq̄q̄). (5.4)

In the real coordinatesx,y in the complexq-plane (q = x+ iy, q̄ = x− iy), (5.4) becomes the
(hyperbolic) Boyer-Finley equation

ψzz̄ = eψxψxx. (5.5)

The constraints (5.3) take the form

ψzx+ iψzy = 2λ
[

e(ψx−iψy)/2
]

x
, ψz̄x− iψz̄y = 2λ−1

[

e(ψx+iψy)/2
]

x
. (5.6)

The variabley does not appear explicitly in the Boyer-Finley equation (5.5), and so it can be
regarded as a parameter of a symmetry group of this equation:a change ofy does not affect the
equation. Letω be any symmetry characteristic of the Boyer-Finley equation in the form

ψ̃zz̄ = exp(ψ̃xx), (5.7)

related to (5.5) by the substitutionψ = ψ̃x. Then a symmetry characteristic of (5.5) isiωx (where
the factori is introduced for convenience) and the Lie equation for the group with the parametery
reads

ψy = iωx. (5.8)

Eliminating ψy in the constraints (5.6) with the aid of (5.8) and then integrating the result with
respect tox, we obtain

ωz = ψz−2λe(ψx+ωx)/2, ωz̄ = −ψz̄+2λ−1e(ψx−ωx)/2. (5.9)

These are Bäcklund transformations for the Boyer-Finley equation that we discovered earlier [5].
The differential compatibility condition(ωz)z̄ = (ωz̄)z of the system (5.9) reproduces the Boyer-
Finley equation (5.5), while the compatibility condition in the form(ψz)z̄ = (ψz̄)z yields the equa-
tion for symmetry characteristics of the Boyer-Finley equation (5.7):

ωzz̄−eψxωxx = 0. (5.10)

Thus, without any symmetry reduction, the Boyer-Finley equation arises as a linear combina-
tion of the Legendre-transformedHCMAand differential constraints (5.3) implied by our choice of
rotational symmetry for both partner symmetries. Furthermore, the differential constraints them-
selves turn out to be Bäcklund transformations for the Boyer-Finley equation in a new disguise.

6 Lift of solutions of Boyer-Finley equation to non-invariant
solutions of HCMA

Now consider a reverse procedure. We start with the three-dimensional Boyer-Finley equation to-
gether with its Bäcklund transformations, differentiated with respect tox, and consider a symmetry
group parameter as the fourth coordinatey in these equations, according to (5.8). Then we arrive
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at 4–dimensional Legendre-transformedHCMA as a linear combination of these three equations.
As a consequence, the partner symmetries lift three-dimensional non-invariant solutions ofBF,
that are still invariant solutions ofHCMA, to four-dimensional non-invariant solutions ofHCMA.

We start with non-invariant solutions to the hyperbolicBF

vzz̄ = (ev)xx (6.1)

that we had obtained earlier in [10] by our version of the method of group foliation. Those so-
lutions involve a couple of arbitrary holomorphic and anti-holomorphic functionsb(z) and b̄(z̄)
that arise as ”constants” of integrations. In our construction, BF equation (5.5) and its solutions
depend also on the fourth variable, the parametery, and hence the ”constants” of integration,b
andb̄, should also depend ony:

v(x,y,z, z̄) = ln [x+b(z,y)]+ ln [x+ b̄(z̄,y)]−2ln(z+ z̄). (6.2)

BF equations (5.5) and (6.1) are related to each other by the substitution v = ψx and hence solu-
tions of (5.5),ψ =

∫

vdx, are obtained by integrating the formula (6.2) with respectto x with the
”constant” of integrationF(z, z̄,y):

ψ = [x+b(z,y)] ln [x+b(z,y)]+ [x+ b̄(z̄,y)] ln [x+ b̄(z̄,y)]

−2x[ln(z+ z̄)+1]+F(z, z̄,y). (6.3)

For arbitrary functionsb, b̄, andF, this is a solution toBF (5.5). The unknowny-dependence in
(6.3) is determined by the requirement thatψ should also satisfy the Legendre-transformedHCMA
(5.2).

We substitute the expression (6.3) forψ in HCMA (5.2) and, since all thex-dependence in
(6.3) is known explicitly, (5.2) splits into several equations, corresponding to groups of terms with
a different dependence onx. We were able to solve these equations and make a complete analysis
of all possible solutions. They have the form

ψ = [q+b(z)] ln [q+b(z)]+ [q̄+ b̄(z̄)] ln [q̄+ b̄(z̄)]

−(q+ q̄)[ln(z+ z̄)+1]+

∫ ∫

b(z)+ b̄(z̄)
(z+ z̄)2 dzd̄z+ r(y), (6.4a)

ψ = [q+b(z)] ln [q+b(z)]+ [q̄+ b̄(z̄)] ln [q̄+ b̄(z̄)]

−(q+ q̄)[ln(z+ z̄)+1]+

∫ ∫

b(z)+ b̄(z̄)
(z+ z̄)2 dzd̄z

+2iy ln

(

z̄
z

)

+ r(y), (6.4b)

ψ = [q+b(z)] ln [q+b(z)]+ [q̄+ b̄(z̄)] ln [q̄+ b̄(z̄)]

−(q+ q̄)[ln(z+ z̄)+1]+
∫ ∫

b(z)+ b̄(z̄)
(z+ z̄)2 dzd̄z

+2i
∫

ln

[

z̄+2ik(y)
z−2ik(y)

]

dy+ r(y). (6.4c)
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Here r(y) and k(y) are arbitrary smooth real-valued functions, whileb(z) and b̄(z̄) are arbi-
trary holomorphic and anti-holomorphic functions of one complex variable that arise when the
y-dependence ofb(z,y) andb̄(z̄,y) is completely determined. Solution (6.4b) is a particular sim-
ple case of the more general solution (6.4c) whenk(y) = 0.

Note that, by construction, we have obtained the solutions of HCMA that satisfy only one addi-
tional differential constraint, the Boyer-Finley equation, though we have two constraint equations
produced by partner symmetries. If we require that both constraints should be satisfied, we obtain
a subset of solutions that are invariant with respect to non-local symmetries ofHCMA, though
this does not mean invariant solutions in the usual sense [6,8]. For solutions with such special
property we have

r(y) = 2(α −π)y+ r0 (6.5)

r(y) = 2αy+ r0 (6.6)

in (6.4a) and(6.4b,6.4c) respectively. Herer0 is an arbitrary real constant andλ = eiα .
It can be proved that if the functionsb(z), b̄(z̄) are not constants, the formulas (6.4a)–(6.4c)

yield non-invariant solutions of (5.2). As a consequence, by the reasoning similar to [8], the
ultra-hyperbolic metrics governed by the potentialsψ in (6.4a)–(6.4c) have no Killing vectors [9]
(though nonexistence of conformal Killing vectors was not proved).

7 Conclusions

We are interested in obtaining non-invariant solutions of four-dimensional heavenly equations
because they may yield gravitational metrics with no Killing vectors. This is a characteristic
property of the famous gravitational instantonK3 where the metric potential should be a non-
invariant solution of the elliptic complex Monge-Ampère equation. Constructing an explicit metric
on K3 is our final goal. In this paper we have used a new approach forsolving such a problem
which we call ”lift”. We use partner symmetries for lifting invariant solutions of elliptic and
hyperbolicCMA, that satisfy equations of lower dimensions, to non-invariant solutions ofCMA.

A symmetry reduction of a partial differential equation reduces by one the number of indepen-
dent variables in the original equation, so that the reducedequation is easier to solve. Its solutions
are solutions of the original PDE that are invariant under the symmetry that was used in the reduc-
tion. Even if we found non-invariant solutions of the reduced equation, it would only mean that
no further symmetry reduction was made and they would still be invariant solutions of the original
equation.

For complex Monge-Ampère equations, we have shown that partner symmetries provide a pro-
cedure reverse to the symmetry reduction: a lift of invariant solutions ofCMA to non-invariant
solutions ofCMA. This means holographic property of the symmetry used for the reduction, i.e.
the information on solutions is not completely lost under the reduction but can be reconstructed
for a certain class of non-invariant solutions. We have performed such a procedure for the el-
liptic and hyperbolicCMA and obtained non-invariant solutions of these equations. Using these
solutions as metric potentials, it may be possible to obtaingravitational metrics of Euclidean and
ultra-hyperbolic signatures that have no Killing vectors [9]. We are now developing a modified lift-
ing procedure from non-invariant solutions of the ellipticBoyer-Finley equation to non-invariant
solutions of the ellipticCMA.
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