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Abstract

We show how partner symmetries of the elliptic and hypethotimplex Monge-Ampeére
equations CMA and HCMA) provide a lift of non-invariant solutions of three- and two
dimensional reduced equations, i.e., a lift of invariariugons of the originalCMA and
HCMA equations, to non-invariant solutions of the latter foimehsional equations. The
lift is applied to non-invariant solutions of the two-dimgonal Helmholtz equation to yield
non-invariant solutions oEMA, and to non-invariant solutions of three-dimensional wave
equation and three-dimensional hyperbolic Boyer-Fintpyation to yield non-invariant solu-
tions of HCMA. By using these solutions as metric potentials, it may bsiptesto construct
four-dimensional Ricci-flat metrics of Euclidean and ultrgperbolic signatures that have
non-zero curvature tensors and no Killing vectors.

1 Introduction

Solutions of Plebafiski's first and second heavenly eqgustigeld a potential that determines
Ricci-flat (anti-)self-dual metrics on 4-dimensional cdexpmanifolds [13]. In other words, these
"heavenly” metrics satisfy complex vacuum Einstein equai In the case of the first heavenly
equation, physically important ones are two real cross@ebf these complex metrics, Kahler
metrics with Euclidean or ultra-hyperbolic signature, wihbe first heavenly equation coincides
with the elliptic CMA) and hyperbolic HCMA) complex Monge-Ampére equation respectively.
In particular, among the solution§z;,z;,2,,2) of the ellipticCMA

Uplps — Upplpy =1 (1.1

there are gravitational instantons, the most important loitkvis K3, the Kummer surface [1].
The explicit construction of thE3 metric is still an unsolved challenging problem. The main d
ficulty is that this metric should have no Killing vectors ahérefore the corresponding solution
of CMA should be a non-invariant solution (with no point symmeixierhat was a basic motive
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for us to develop methods for finding non-invariant solusiafinonlinear partial differential equa-
tions (PDESs). In the context of Lie's theory of symmetrieddferential equations, the standard
method for solving nonlinear PDESs is symmetry reduction ¥ields only invariant solutions and
therefore cannot produce Kahler potentiak. Recently, we have developed method of partner
symmetries that yields non-invariant solutions to thepgtliand hyperboli€MA and to the sec-
ond heavenly equation. Using them as metric potentials,ave bbtained some heavenly metrics
with no Killing vectors [6, 7, 8] (nonexistence of conformiélling vectors was not proved).

Here we develop further our method of partner symmetrieshst,we are able now to obtain
non-invariant solutions of the four-dimensior@ A andHCMA starting from invariant solutions
of these equations that satisfy the corresponding redugedtiens of lower (three and two) di-
mensions and these "seed” solutions should be non-intas@ations of the reduced equations.
We have called this proceduféft” . In particular, we have obtained non-invariant solutiohs o
elliptic CMA (1.1) by the lift from solutions of two-dimensional Helmkwlequation and non-
invariant solutions of hyperboliElCMA

Upglgs — Upalpy = —1 (1.2)

by the lift from solutions of three-dimensional wave eqoiatand of the three-dimensional hyper-
bolic Boyer-Finley equation [2]:

Yz = Gl Yxx (1.3)

In section 2 we discuss partner symmetries of the elliptid yperbolic complex Monge-
Ampeére equations.

In section 3 we obtain non-invariant solutions of the ellitMAby the lift from two-dimensional
Helmholtz equation.

In section 4 we make the lift of solutions of three-dimenslonave equation to non-invariant
solutions of the hyperbolielCMA

In section 5 we use Legendre transformatiorH&EMA and equations for rotational partner
symmetries to obtain hyperbolic Boyer-Finley equati®i) and Backlund transformations for
BF that we discovered earlier [5].

In section 6, using results of the previous section, we abtan-invariant solutions diCMA
by the lift from our non-invariant solutions to hyperboBd= (1.3) that we obtained earlier [10].
Noninvariant solutions to the elliptiBF were obtained first by D. Calderbank and P. Tod [3]. A
little later, we had independently obtained these solstiorthe ellipticBF and also non-invariant
solutions to the hyperboliBF [10] by our version of the method of group foliation [12]. Wach
also proved non-invariance of all these solutions.

By using non-invariant solutions 6fCMAas metric potentials, it may be possible to construct
metrics with ultra-hyperbolic signature that have no Kijivectors [9]. A comprehensive survey
of results on four-dimensional anti-self-dual metricshatthe ultra-hyperbolic (neutral) signature
was given by M. Dunajski and S. West in [4].

We are working now on a modification of this method in orderlitatn non-invariant solutions
of the ellipticCMA (1.1) by the lift from solutions of the three-dimensiondiptic BF [2]

Wzt ¥ Py =0 (1.4)

to non-invariant solutions of the ellipt€MA (1.1) with the final goal to obtain Ricci-flat heavenly
metrics with Euclidean signature that admit no Killing \arst
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2 Partner symmetries of complex Monge-Amgre equations

The hyperbolic and ellipti€MA have the same set of symmetries whose characteristsegisfy
the condition

Uy P17 + Up7os — Uyig5 — Upapor = 0. (2.1)
Define the operators
L1 =A(u;zD1—uiiD3), Lz = A(upDi—uyD3), (2.2)

whereD;, D;iare operators of total derivatives with respectt@ andA is a complex constant.
Then the symmetry condition (2.1) can be expressed as aligtafjence

Dilo¢ =Dol1¢ (2.3)
so that locally there exists a symmetry potentfatiefined by the differential equations
=L, (=L2¢p. (2.4

It is easy to see that ip satisfies (2.3), they also satisfies (2.3) and so the potentjabf a
symmetryg is itself a symmetry o€EMA[6, 8]. Thesep andy are calledpartner symmetries
Differential equations (2.4) are recursion relations fommetries

U=Ri¢p, Y=R9 (2.5)
with the recursion operators
Ri=D;'L;, Ro=D,L,. (2.6)

The transformation inverse to (2.4) is obtained by takingnplex conjugates of equations (2.4),
solving them algebraically with respect¢e and¢,, and usingCMA:

01= TA (Ul —Uths), 02 = TA (U — Upi ) 2.7)

where the minus and plus signs correspond to the elliptidgpérbolicCMA respectively. Note
that if |A | = 1 the inverse transformation (2.7) reads

¢ = :FRll-nUa ¢ = :FRZan) (28)

and then foHCMAthere is a simplifying choicg/ = ¢, when the transformation (2.4) coincides
with its inverse (2.7) and becomes

¢1=A(Uz0T—U702), P2 = A (U1 — Up16h3). (2.9)

The two operators in (2.9) form the Lax pair of Mason and Newifid] and hence all integrability
conditions of system (2.9) and the complex conjugate eojsti

¢1 =2 "(Upphr — wi02), b3 =2 (Uyz1— Us392) (2.10)
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are identically satisfied as a consequence of these eqsaimtHCMA. The same is true for
equations (2.7) together with their complex conjugatesfigstic CMA since they can be written
in the form (2.9), (2.10) for the complex potentil= ¢ +iy.

If we choose forp a characteristic of any Lie point symmetryldCMA, then (2.9) and (2.10)
become differential constraints, joinedH’&€CMA, that select some particular solutionsfiEMA.
Equations (2.9) and (2.10) are not independent: any threatieqs out of the four ones imply
the fourth equation together withCMA itself as their algebraic consequences. Alternatively, an
two of these four equations together wiiCMAimply the remaining two constraints. In sections
4 and 5 we shall used CMAtogether with the first equations in (2.9) and (2.10)

$1=A(Uuzhs — Wi0s), d7=A (Uyphs— Uyid2) (2.11)

as basic independent equations: the original PDE and twsti@nts for one unknown.

3 Lift of non-invariant solutions of elliptic CMA from two-d imensio-
nal Helmholtz equation

For the ellipticCMAthe ansatzy = ¢ implies the trivial solutionp = ¢y = 0, so in this section we
use the more general equations (2.7) Witk ¢ and|A| = 1.

Introducing real variables,y, z t by the relations; = (X+1y)/2, z = (t +iz) /2, we consider
the ellipticCMA(1.1) in a real form

(Ux + Uyy) (Uzz+ Wre) — (Ut + Uyz)* — (Uyt — Uyg)® = 1. (3.1)

First, consider solutions that are invariant under trdiwsla inx, selected by the conditiom +
uy = 2ux = 0, for which (3.1) reduces to

Uy (Uzz+ Ut ) — UG, — Uy = 1 <= Upylps — Uplyz = 1. (3.2)

Applying to this the Legendre transformation- u—yu, p = uy, we obtain the three-dimensional
Laplace equation

We consider now solutions of (3.3) that are invariant untersymmetry generatot = vo, + dp
due to the conditiorv, — v = 0 and thus imply further reduction of (3.3). Ther=€e"6(2,2),
where8 satisfies the Helmholtz equation

In order to make a lift from solutions of these low-dimensibreduced linear equations to non-
invariant solutions of four-dimensional elliptieMA, we need to arrive at these equations without
symmetry reduction. For this purpose we choose the symesaifitranslations and dilations

¢ = u; +ug, Y =u—2zu — 27Uy, (3.5)

respectively, for characteristics of partner symmetnethe equations (2.7) (with the minus sign)
and their complex conjugates.
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After the Legendre transformation

V=U-2z1lh —ZU;, p=U;, p=us (3.6)

in the new variableg, p,vformulas (3.5) becom¢ = p+p, @ =vand ellipticCMA(1.1) takes
the form

VppVaz — VpaVpz = VppVaz — Vo (3.7)
wherev = v(p, p,2,2). The Legendre transformation (3.6) maps the equationg @tf the
choice of symmetries (3.5), their complex conjugates apdrdnsformedCMA (3.7) to the fol-
lowing system of five independent equations (for more detak [6])

Vpp=AVpp, V2 =CVpp, Vo3 =BVpp (3.8)

together with their complex conjugates. Here the coeffisiane defined as

1+ vEtive B VVatilva—Ve) . VpVz+i(vp—Vp)
N A T A T A

whereA = 1+ vpvp. Equations (3.8) imply one more equation [6]
Vpp = 14+ VpVvpy (3.9)

as their differential consequence. We note once againtbkaransformed@MA (3.7) is satisfied
automatically on solutions of (3.8) and (3.9).

The logarithmic substitutiorn = — Inw linearizes equations (3.8) and (3.9) in the form
Wpp+W =0, Wpp+W—iwp =0, (3.10)
ng—i(wp—wry) =0, Wos — i (W2 —W5) =0

plus two complex conjugate equations. System (3.10) iraplie

If p=a+iB, p=a—iB, thenin real variablesr andf (3.11) becomes the three-dimensional
Laplace equation

W2§+WBB =0 (3.12)

which coincides with (3.3) up to a change in variables, wtiike first equation (3.10) coincides
with the two-dimensional Helmholtz equation (3.4) in thevnariables.

Thus, if we know a solution of one of these low-dimensionalaipns, depending on arbitrary
constants, we consider them as arbitrary functions of botariables that do not appear explic-
itly in this equation. Then all the other equations (3.10dkdmine a dependence of these functions
on these parameters and so we obtain a non-invariant solofithe four-dimensional equation
(3.7). We call this a lift of invariant solutions @MA, satisfying the reduced equation (3.3) or
(3.4), to noninvariant solutions GMA.
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For example, let us consider a lift from Helmholtz equati8m), that coincides in new vari-
ables with the first equation (3.10), starting from its solutof the form

w=Y A(2,%) {5 REIPRe(FAMEP ) 1 e ERAEPRe (G2 @ ) L. (3.13)
J

Then other equations (3.10) imply the following restrinsoon solution (3.13)

Aj:exp{ZIm((ajZ(stJrl)Jrl)zz)}, sj=1/1-1/|a;|?,
while aj,F;, Gj are arbitrary complex constants. This is a non-invariahit&m of the Legendre-

transformedCMA[6].

4 Lift of non-invariant solutions of hyperbolic CMA from
three-dimensional wave equation

For the translational symmetry reduction we will need thed ferm of HCMA obtained by the
change of variables = (x+1y)/2,z1 = (x—1iy)/2, 2= (t+iz) /2, = (t —iz)/2:

(Uxx+ uyy)(uzz+ Urt) — (Uxe + Uyz)2 — (Uyt — sz)2 =-1 (4.1)

We consider solutions of (4.1), invariant under transkaiox, that are selected by the condition
Ux = 0. Then (4.1) reduces to

Uyy(Uzz+ Ut) — UG, — Uy = —1. (4.2)
Applying to (4.2) the Legendre transformation

V=Uu—yu, q=u (4.3)
we end up with the three-dimensional wave equation

Vg = Vit + Vzz (4.4)

for the new unknowv = v(q,t, z).

Now we will not perform any symmetry reduction but use equati(2.9) and (2.10) for partner
symmetries withp equal to the characteristic of the symmetry of translations ¢ = u; + ug,
andA =i. With these choices, after the Legendre transformatiorilaito (4.3)

V=U—2Z1Ug — Z1Uz, P=Uy, 0=Uy (4.5)
the real form (4.1) oHCMAbecomes

(Vpp+ Vaa) (Vit + Vzz) — (Vpt — Vg2)* — (Vpz+ V) * = VppVag — V[23q7 (4.6)
while (2.9) and (2.10) yield only three independent equnestif8]

Vgq = Vpz+ Vat, (4.73)
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Vpg = Vgz — Vpt; (4.7b)

Equation (4.7c) formally coincides with the three-dimensil wave equation (4.4) that determines
solutions of (4.6), invariant under translationsxn However, the unknowv in this equation
depends also on the fourth varialgeso that (4.7c) depends on an extra paramgterd therefore
it is actually not the reduced equation (4.4). Note that thesformed non-reducddCMA (4.6)
is a consequence of the system (4.7a—4.7c) and so the lgtiati@ns determine some partial
solutions of (4.6).

The solution set of (4.7c) can be written as the double Foiniegral

v= 7m7w(a(p,a,ﬁ)e><p{—i (at+pz+ a2+ p2q) }
+b(p, a,B)exp{—i (at +Bz— \/a2+[32q> }) da dB. (4.8)

Imposing the remaining equations (4.7a) and (4.7b) onisol{#.8), we finally obtain the general
solution of the system (4.7a)—(4.7¢)

o0 40
o= | [ (epremnf -vaeme (Y ) |
+b(or,[3)exp{—i\/ﬁl32 <—VGZ+BB2_ap— q) }) e (@B gq dp. (4.9)

which is a partial solution of the Legendre-transfornt¢@MA (4.6).

Thus, using equations (4.7a)—(4.7c), implied by our chaiteartner symmetries, we have
made a lift of solutions of the reduced equation (4.4) to aoégtarticular solutions of four-
dimensional Legendre-transformetCMA (4.6).

5 Rotational partner symmetries, Legendre transformationand
Boyer-Finley equation

Boyer-Finley equation usually arises from rotational systmy reduction oHCMA, subjected to
the combination of the point and Legendre transformatiahénfirst pair of variableg;,z

3 = eZ17 Z_l = eZ17 Zl = qu Z_l = wav u= QWq +q_WcT_ W7 UZ1 =q, uZl = q_ (51)

Here we do not perform any symmetry reduction but still aghl same transformation (5.1) to
HCMA and the two independent constraints (2.11), renamez and choose as the rotational
symmetry characteristi¢ = i(zu; — zu7) =i(q—q). ThenHCMAbecomes

WogWz — Wezte + ¥ 3 (WoaWeg — W) = O, (5.2)
wherey(q,q,z z) is the new unknown, and the constraints (2.11) take the form

Y (Pag+ Wog) = AW A% (Yo + Yoq) = Yar- (5.3)
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Now, we expresgg; and gz from (5.3) and substitute them intdCMA (5.2) with the result

Wz = ¥ ¥ (Poq + 2Wgg+ Yag)- (5.4)

In the real coordinates,y in the complexg-plane ¢ = x+iy, q= x—iy), (5.4) becomes the
(hyperbolic) Boyer-Finley equation

Yz = e Yxx (5-5)

The constraints (5.3) take the form

Woct 1oy =27 [WW/2] iy =222 [iZ] | (5.6)
X X
The variabley does not appear explicitly in the Boyer-Finley equatiorbl5and so it can be
regarded as a parameter of a symmetry group of this equatichange ofy does not affect the
equation. Leto be any symmetry characteristic of the Boyer-Finley equaiticthe form

Pz = exp(Px), (5.7)

related to (5.5) by the substitutiap = . Then a symmetry characteristic of (5.5)ds (where
the factori is introduced for convenience) and the Lie equation for ttoaig with the parameter
reads

Wy = i (5.8)

Eliminating ¢y in the constraints (5.6) with the aid of (5.8) and then inéigg the result with
respect to, we obtain

W, = Yy, — 2)\e(¢’x+(’~&)/2’ Wy = _wz—_i_z/\*le(wxf("&)/zl (59)

These are Backlund transformations for the Boyer-Finlgyat¢ion that we discovered earlier [5].
The differential compatibility conditiofic,)z = (), of the system (5.9) reproduces the Boyer-
Finley equation (5.5), while the compatibility conditiamthe form(y;)z = (y;); yields the equa-
tion for symmetry characteristics of the Boyer-Finley eipra(5.7):

Wz — €% Wy = 0. (5.10)

Thus, without any symmetry reduction, the Boyer-Finleya@n arises as a linear combina-
tion of the Legendre-transformatiCMAand differential constraints (5.3) implied by our choice of
rotational symmetry for both partner symmetries. Furtraamthe differential constraints them-
selves turn out to be Backlund transformations for the B&yeley equation in a new disguise.

6 Lift of solutions of Boyer-Finley equation to non-invariant
solutions of HCMA

Now consider a reverse procedure. We start with the thneesional Boyer-Finley equation to-
gether with its Backlund transformations, differentcateith respect tx, and consider a symmetry
group parameter as the fourth coordingiea these equations, according to (5.8). Then we arrive
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at 4—-dimensional Legendre-transformd@MA as a linear combination of these three equations.
As a consequence, the partner symmetries lift three-diimeaisnon-invariant solutions dBF,
that are still invariant solutions ?diCMA, to four-dimensional non-invariant solutionsldCMA.

We start with non-invariant solutions to the hyperbdie

Vz = (&) (6.1)

that we had obtained earlier in [10] by our version of the radtbf group foliation. Those so-
lutions involve a couple of arbitrary holomorphic and amiomorphic functiond(z) andb(z)
that arise as "constants” of integrations. In our constou¢tBF equation (5.5) and its solutions
depend also on the fourth variable, the paramgtemd hence the "constants” of integratidn,
andb, should also depend gn

V(X,Y,2,Z) = In[x+b(z y)] +In[x+b(Zy)] — 2In(z+Z). (6.2)

BF equations (5.5) and (6.1) are related to each other by thatititlon v = (% and hence solu-
tions of (5.5),y = [vdx are obtained by integrating the formula (6.2) with respect with the
"constant” of integratior(z,z,y):

W = [x+b(zy)]In [x+b(z,y)] + [x+b(Zy)]In[x+b(Z y)]
—2X[In(z+2)+ 1] +F(zzy). (6.3)

For arbitrary functiond, b, andF, this is a solution tBF (5.5). The unknowry-dependence in
(6.3) is determined by the requirement tijeshould also satisfy the Legendre-transforriseiMA
(5.2).

We substitute the expression (6.3) figrin HCMA (5.2) and, since all th&-dependence in
(6.3) is known explicitly, (5.2) splits into several equets, corresponding to groups of terms with
a different dependence onWe were able to solve these equations and make a compldysiana
of all possible solutions. They have the form

W = [a+b(2)]In[q+b(2)] + [a+b(Z)] In [§+b(Z)]

—(q+@[n(z+D +1 +// +§22)d &1 (y), (6.4a)

¥ = [q+b(2)]In[q+b(2)] + [G+b(Z)] In [G+ b(Z)]
(4[N (z+D+1 + // )_t;z)ddz_

+ 2iyIn <§) +r(y), (6.4b)

Y = [a-+b(2)]In[a+b(2)] + G+ b(@]In[q+b(2)]
—(q+0g)[In z+2)+1+// @ %’z}ddz‘

+2/I [Z+2Ik ]dy+r(y). (6.4c)
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Herer(y) and k(y) are arbitrary smooth real-valued functions, while) and b(z) are arbi-
trary holomorphic and anti-holomorphic functions of onengbex variable that arise when the
y-dependence df(z,y) andb(zy) is completely determined. Solution (6.4b) is a particular-s
ple case of the more general solution (6.4c) when = 0.

Note that, by construction, we have obtained the solutiéi$@M Athat satisfy only one addi-
tional differential constraint, the Boyer-Finley equatidghough we have two constraint equations
produced by partner symmetries. If we require that bothtcaimés should be satisfied, we obtain
a subset of solutions that are invariant with respect to Inoal symmetries o0HCMA, though
this does not mean invariant solutions in the usual sens@][&;or solutions with such special
property we have

r(y) =2(a —my+ro (6.5)
r(y) =2ay+ro (6.6)

in (6.4a) and(6.4b, 6.4c) respectively. Herey is an arbitrary real constant and= ea,

It can be proved that if the functiori¥z), b(z) are not constants, the formulas (6.4a)—(6.4c)
yield non-invariant solutions of (5.2). As a consequencethe reasoning similar to [8], the
ultra-hyperbolic metrics governed by the potentiglén (6.4a)—(6.4c¢) have no Killing vectors [9]
(though nonexistence of conformal Killing vectors was natved).

7 Conclusions

We are interested in obtaining non-invariant solutions afrfdimensional heavenly equations
because they may yield gravitational metrics with no Kglimectors. This is a characteristic
property of the famous gravitational instant&i3 where the metric potential should be a non-
invariant solution of the elliptic complex Monge-Ampemguation. Constructing an explicit metric
on K3 is our final goal. In this paper we have used a new approackolging such a problem
which we call "lift”. We use partner symmetries for liftingnvariant solutions of elliptic and
hyperbolicCMA, that satisfy equations of lower dimensions, to non-iramtrsolutions oCMA.

A symmetry reduction of a partial differential equationueds by one the number of indepen-
dent variables in the original equation, so that the redecgdtion is easier to solve. Its solutions
are solutions of the original PDE that are invariant underdymmetry that was used in the reduc-
tion. Even if we found non-invariant solutions of the reddieguation, it would only mean that
no further symmetry reduction was made and they would stilhizariant solutions of the original
equation.

For complex Monge-Ampére equations, we have shown thaégrasymmetries provide a pro-
cedure reverse to the symmetry reduction: a lift of invargsiutions ofCMA to non-invariant
solutions ofCMA. This means holographic property of the symmetry used frdduction, i.e.
the information on solutions is not completely lost under tbduction but can be reconstructed
for a certain class of non-invariant solutions. We have qrereéd such a procedure for the el-
liptic and hyperbolicCMA and obtained non-invariant solutions of these equatiorsndthese
solutions as metric potentials, it may be possible to olgaavitational metrics of Euclidean and
ultra-hyperbolic signatures that have no Killing vect@p We are now developing a modified lift-
ing procedure from non-invariant solutions of the ellifBioyer-Finley equation to non-invariant
solutions of the elliptiCMA
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