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Abstract

Nonlinear ODEs invariant under the group SIKPare solved numerically. We show that
solution methods incorporating the Lie point symmetriesv/fute better results than standard
methods.

1 Introduction

Historically Lie group theory started out as a theory of sfanmations of solutions of ordinary
and partial differential equations. Differential equascare still one of the most important appli-
cations of Lie groups [6]. The most common use of Lie groumipen this field is to perform
symmetry reduction. For ordinary differential equatio@DE), this means that Lie point sym-
metries are used to reduce the order of the equation. If time®try group is large enough the
order of the ODE can be reduced to zero. This is equivalenbtaiing the general solution of
the ODE, possibly in implicit form. For partial differentiaquations (PDE), symmetry reduction
means a reduction of the number of independent variablesisualy leads to exact analytical
solutions, albeit particular ones.

The purpose of this article is to discuss a different appboaof Lie groups in the theory of
differential equations and to present some new results awteramples. This application can be
calledsymmetry preserving discretization of differential eduad and its purpose is to improve
numerical methods for solving differential equations.His @article we restrict ourselves to ODEs.
For recent reviews with references to original articles[5e@].
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The idea is to start from a given ODE of order N

FyY,Y',..yV)=0 (1.1)

and its known Lie point symmetry group G with a Lie algebrate(symmetry algebra) realized
by vector fields of the form

X =&(XY)0+ @(x,y)dy (1.2)

(1.1) is replaced by an invariant difference scheme, i.gstem of two equations

Ea(naXn+K,Xn+K+1, '--aXn+L,yn+KaYn+K+l, '--’yn+L) = 0 (13)
a=12 L-—K=N, N>M

relating the variables x and y in M different points.

The scheme (1.3) is constructed so as to be invariant unedeatie group G as the ODE (1.1).
This means that equations (1.3) must be annihilated on $b&ition set by the prolongations of
the vector fields (1.2)

er(Ea)‘EleZ:O =0 (1-4)

where thediscrete prolongatioris

n+L
prX =% {&04¥)0% + (%)} (1.5

i=n+K

In practise, this means that we can proceed as follows:

1. Find theN-th order differential invariant&’(x,y,y',....y)), j = 1,...,J, of the group G and
rewrite the ODE (1.1) in terms of these invariants :

FOS1S,...,15) =0 (1.6)
2. Find the difference invariantg(n, Xn+ K, -+, Xn+L, YniK, - YniL ) Of the same group G.

3. Expand the difference invariants in Taylor series aboutesreference point, s&¥n,Yn).
Choose such difference invariants that we have

lj =15+0(e) (1.7)

i.e. such that the leading terms in the expansion coincidgsaxcorresponding differential invari-
ant € — 0 is the continuous limit).

4. Write the difference scheme (1.3) in terms of differems@riantsl;. In the continuous limit
we will have

Ev(ly,..l5) =0 =2 FQS15,...,15) =0 (1.8)
Ex(ly,...15) =0 =2 0=0



364 A Bourlioux et al.

In the invariant discretization the lattice is not given epr but emerges as part of the solution
of the difference scheme.

In physics and other fields of science, symmetries of a syarenoften better known than the
dynamics and symmetries of equations can be more impottantexplicit solutions. Preserving
symmetries in numerical calculations can be expected toavepthe results, specially global fea-
tures of solutions.

The invariant discretization should be compared to what Wlecell standard discretizations
The lattice is given a priori, usually a uniform one. The OLEL] is discretized by replacing all
derivatives by usual finite differences, e.qg.,

u(an) u(xn)
U= —""7"7", Xn—II|I+ 1.9
X 1 Xo ( )

and similarly for higher order derivatives.

Recent articles devoted to theoretical aspects of inviadisaretization of ODEs include [3, 7,
4]. In Ref.[1] it was shown on several examples that the sytnmareserving schemes provide
better accuracy than standard ones and numerical solutioss to singularities where standard
schemes fail. Here we will show that similar results holdtimen situations.

2 A twodimensional realization of the algebra sl(2,R)
2.1 Theliealgebraand theinvariant ODEs
Let us consider the sI(R) algebra with a basis realized by the vector fields
X1 =0y, Xo=xd+yd,  Xo=2xyd+Yd, . (2.1)
It can be extended to a gl{R) algebra by adding
X4 = Y8, (2.2)

to the basis. Let us prolong these vector fields so they aatraniibnsF (x,y,y,y’,y"”). The action
of the corresponding SL(R) group on the prolonged space with local coordingtey,y,y”’,y" }
allows two differential invariants, namely

s — fo;:y IS — W 2.3)
Using these invariants we can write a second and a third amdariant ODE, namely
2xy' +y = yy® (2.4)
and
XYY" —3y") c
T —Fa) (2.5)

y/5
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wherey is a constant and F(z) is an arbitrary function. The ODE (2i8))be invariant under the
group GL(2R), including the dilatations generated By if we restrictF (2) to beF (z) = aZ¥/2.
Eq. (2.5) specializes to

XYY" —3y"?) = a(2xy' +y)*?y*? (2.6)

whereaq is a constant.

By construction the ODEs (2.4) and (2.6) have symmetry alggethat make it possible to re-
duce them to quadratures.

For eqg. (2.4) this provides two explicit solutions

ybié\/y—Cx C#0
Y12(X) = (2.7)
Yo £ —X C=0.

The two branches of the solution for£0 intersect foxx = y/C where we havg; =y, = yp.
After they become complex, the solution foe= y/C remains finite but all its derivatives become
infinite.

For eg. (2.6) the quadratures lead to an implicit solution :

X
y=Yo+C1 / elo 1(919sqy (2.8)
0

where f(X) satisfies

a-va2i1
f(x)—i 1 (VXiX+1+a-Va?+l < VaZi1 >_1 2.9)
C 2 |Kx \ /XT(x) +1+a+vaZ+1 '

(K+#£0, C; andyg are constants).

Eq. (2.6) provides a good example. The symmetry group i®largugh to reduce to quadra-
tures. This however really means that we have replacederdiffial equation for y(x) by a func-
tional equation (2.9) for f(x). To obtain a gragh- y(x) we still have to do numerical calculations.

2.2 Thedifferenceinvariants

Let us consider four pointg on a line and the valueg = y(x) at these points :

(Xn—1,Xn, Xn+1, X042, Yn—1, Yn: Yn 1, Yns2) (2.10)

The SL(2R) group generated by the prolongation of the vector fieldk) (2. the points (2.10)
will transform these points in the (x,y) plane but will leasgrtain functions of them invariant. We
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calculate these invariants using known methods [2,..THé result is that out of these coordinates
we can construct five 4-point difference invariants

N _ Yn—Yn-1 N+l _ Yn+1—Yn |+l Yni1—Yn-1 (2.11)
! VX1’ 1 VX 1%n 2 vV Xn+1Xn—1
M2 — Yny2 = Yni1 2 _ Y2 =¥ (2.12)

v Xn+2Xn+1 ’ 2 v/ Xn+2Xn

We mention that]"™, 112 are just upshifts of], 1572 is an upshift of J**. Moreover,], 17+
andIQJrl involve coordlnates of the first three pomts only.

Let us now obtain difference schemes for the ODEs (2.4) ar).(2/e put
hn = Xn — Xn -1, Pni1 = Xnt1— X, Pni2 = Xnt2 — Xnt1 (2.13)
and expandnk = Y(X+k) @bout some pointy. First of all, we notice that the equation
ntl_jn_g (2.14)
provides a good lattice. Indeed expanding (2.14) about ¢ g, we obtain

X !
1y = L -+ LY 2 )+ (2.15)
In the continuous limit we put

wherea, are constants of the order, ~ 1 and takes — 0. From eq. (2.14) and (2.15), we see
that fore — 0 we have

On+1— On ~ 0(€) (2.17)

Let us now approximate the continuous invariaditandl$ of eq. (2.3). To obtainf, we need
3 points(n—1,n,n+1) or (n,n+1,n+2). From the expansion of ¥ and1]"*, we see that the
correct expression is

|n+1_(|n+|n+1) 2X)/,—|—y’ _3y'/2_|_y'y'//
1 1 2
I = |2n|n+l(|n+|r]1-+l) =y M- ixe—ag =4 o) (2.18)

and similarly forJ*2 (an upshift ofJ)*1). We can now considefl ], 17" 172 g0+ 3021 a5 a
basis for the four point difference invariants. Bdfh* andJ]2 have the dlfferentlal invarian§
as their continuous limit. Moreover, on the lattice (2.]Ih)$ is an approximation of the ordef
(see (2.15), (2.17), (2.18)).

To approximate$ we must use all 4 points. Indeed, we have

ni2 3 J:T+2 - J:r|_1+l X2 1" 12 RV
K = 5 W = —y,5 (yy 3y ) hn+2 - hn X yvy y y )
(2.19)
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where R is some differential expression (that is easy toutatie). Thusk™?2 goes tol5 for
£ — 0 and provides an approximation of ordgron the lattice (2.14) (since (2.14) implies also
|72 = |71 — |0 = 1; with |; independent of n).

2.3 Difference schemesfor the second order equation
We put
=y, IM=1t=1 . (2.20)
From eg. (2.20) we obtain

I+ = |1(%|12+2) -3 . (2.21)

Sincel; is a constant (depending on the initial conditid®s, yo,x1,Y1)) B will also be a con-
stant.

The scheme (2.20) can be solved explicitly %gr1 andy,. 1 and we obtain

Y — V-1 2  BXn-1Yn— (Yn—Yn-1)¥n-1

BXn—1— (Yn—Yn-1) r Y= BXn—1— (Yn—Yn-1)

(2.22)

Xn+1 = Xp-1

Thus, the invariant scheme is an explicit and linear one aokaver it is of the ordeg?. By
comparison, a standard scheme of orgfewill be implicit andy,, 1 will be obtained by solving
a cubic equation. An explicit standard scheme will be of bideWe mention here that it is the
difference scheme that converges to the ODE ikeThis does not guarantee that the same is true
for the solutions.

2.4 Difference schemefor thethird order ODE

From eqg. (2.19) we see that an invariant difference schemthéothird order equation (2.5) is
obtained by putting

KM2=fF@Mh, =it =1y . (2.23)

Alternatively, we can put
Jn+l Jn+2
Kn+2:|:<% , IM2=10=1 . (2.24)

Both schemes converge to the ODE lik& The scheme (2.23) can be solved explicitly for
Xn+2, Yni2 @nd we obtain

Xn Yn — Wht1Yn+a

S L— — 2.25
2= T I o (2.25)
where we have defined
I12 n+1 n+1 Xn
Whi1 = 7 [21F (7)) + 9] [ o— (2.26)

4 Xn+1
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We stress thalt; is a constant (independent of n and determined by the imitiatlitions) but
Jf*l and hencew,; depend on n and must be calculated at each step using

4
A S— — VY1 —2l - 2.27
1 NeoverowT f[yn+1 Yn—1— 2l1y/Xn+1Xn—1] (2.27)

Thus the SL(ZR) invariant scheme is a very simple one for any functd@d;): X,.+2 andyn 2
are obtained explicitly in terms of their valuesrat- 1, n andn+ 1. The standard scheme will
be nonlinear and hence implicit. The conditigh= 17" in (2.23) is actually quite restrictive for
third (and higher) order ODEs. The constant | is determingthb initial conditions and (2.23)
imposes a relation betwesf0), y'(0) andy’(0). For general initial conditions a relation of the
type I?*l = yl] is more suitabley is determined in terms of the initial conditions).

3 Onedimensional realization of s(2,R)

3.1 Theliealgebraand differential invariants

The Lie algebra is realized by the vector fields
Xl = ay, X2 = yay, X3 = yzay (31)
S0 X is an invariant quatity. The lowest order differentralariant is the Schwartzian derivative
1 3
1= Y —2y?) . 3.2

Thus the equation
Y=Y = (33)

will be invariant under this realization of SL{) for any functionF (x). ForF(x) =const. eq (3.3)
is invariant under GL(R) generated by (3.1) an¢, = d«. ForF (x) =0 the ODE is invariant under
SL(2R)®SL(2JR).

3.2 Invariant difference scheme

The ODE (3.3) can be approximated by a four point differerateeme. The space of difference
invariants is five dimensional and is generated by

RM2 — (Yn+2 —Yn) (Yn+1 — Yn-1) 7 e e Y
(Yn+2 - yn+1) (yn+l — yn) Xn-1 n n+1 Xn+-2 ( )

and the ODE (3.3) is approximated by

4_Rn+2
I — o = F(xn,h) (3.5)

hny1=hn=h, F (%,0) = F(x) (3.6)
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Figure 1: Behaviour of the symmetry preserving scheme messihgularity for eq. (2.4)

We have chosen a uniform lattice but any equaBg®, 1, X, Xn+1,%+2) = O will provide an
alternative invariant lattice.

The scheme (3.5) can be solved explicitly and we obtain

Xn+2 = ¥n+1+h= (n+2)h+xo

Kn(Yn —Yn-1)¥n+1— (Ynt1 — Yn-1)¥n
, = 3.7
iz Kn(Yn —¥n-1) = (Yn+1 — Yn-1) S
where we have put
h? h
Expandingd™2 in (3.5) about the point, + g we obtain

1 1" 3 /.
Kn = 5" = 3¥%) +0(0F)

(3.9)
Thus the scheme (3.7) approximates the ODE (3.3) with secaiet accuracy and the scheme
is explicit and linear.

A standard scheme which is second order accurate will bédihphdyy,., » will be calculated
from an algebraic equation (at least quadratic).

369
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Figure 2: Discretization errors for standard and symmeteg@rving schemes for eq. (2.6)—=
—1 for a regular solution
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Figure 3: Behaviour of the symmetry preserving scheme neargallarity for eq. (2.6)

4 Numerical analysis

In this section we concentrate on the two-dimensionalzatdin of sl(2R) and apply the symme-
try preserving and standard schemes to (2.4) and (2.5).0ree slumerical results concerning the
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one-dimensional realization of slR) see Ref.[1].

4.1 Second order equations

The general solution of (2.4) is given in (2.7) for£ 0. On Fig. 1 we show the exact solutioys
(increasing branch) ang (decreasing branch) for= 150,y, = 5, C = €2. The step for the exact
solution wash = 0.05. The symmetry preserving method integratesip to the singularity at
X = Xp = y/C ~ 20.3 then continues along the second brapgto its ‘initial’ value. The standard
method fails to converge close to the singularity (wherestilation becomes complex).

4.2 Third order equation

Let us now consider eq. (2.6) with=—1. We putl{‘+1 =yl wherey is determined by the initial
conditions. As the step h tends to zeyayill tend to y = 1 as required in eq. (2.14).

On Fig. 2 we compare the accuracies of the standard and syynpreserving scheme. Since
in this case no exact analytic solution is available we campéth a reference solution using a
Matlab Runge-Kutta scheme with a tolerance on the errortget-a 10~°. The initial conditions
were set ayo = 1, y;, = 10,y; = —4 and this corresponds to a solution with no singularity @n th
real axis for 0< x < 16. We see that the accuracy is better for the symmetry piagescheme
by a factor of 10.

A singular solution is shown on Fig. 3. The initial conditiowere set ajg =1,y; =1,y5 =3
and a singularity occurs for~ 1.7. Matlab solvers and standard schemes stop providing@adut
close to the singularity. The symmetry preserving methqa@gches the singularity closely and
then continues along the second branch of the singularisoeltbwards an appropriate initial
condition. Qualitatively we have the same features as fersgcond order equation (2.4). The
solution itself stays finite but its derivative becomes iitdimt the singularity.

5 Conclusions

The main conclusion that we draw from the examples so faridered is that the symmetry pre-

serving schemes are actually simpler than the standard deshave shown that they can be
explicitly solved (see eq. (2.22) and (2.25)) while presarvwsecond order accuracy. Not sur-
prisingly, the numerical calculations confirm that the syatmy preserving schemes have better
accuracy and provide better results close to singularities

A specific conclusion from Fig. 1 and Fig. 3, born out by othearaples [1], is that the sym-
metry preserving method provides qualitative informatitnout singularities of the solutions, not
available from standard methods. We can not only pinpomptbsition of the singularity. We also
see from the curves that the solution itself remains finite,its derivative becomes infinite. In
addition we see that it is a square root type singularitye&utlif we follow the solution backwards
from the singularity ak = x, we see two different branches. For the second order equ@idh
this behaviour is obvious from the explicit solution (2.Fpr the third order equation (2.6) this is
not visible without numerical calculations.
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