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Abstract

Exact solvability of two typical examples of the discreteagtum mechanicd,e. the dy-
namics of the Meixner-Pollaczek and the continuous Hahyrowhials withfull parameters,

is newly demonstrated both at the Schrodinger and Heisgrgeture levels. A new quasi-
exactly solvable difference equation is constructed bgsirg these two dynamics, that is, the
quadratic potential function of the continuous Hahn polyids is multiplied by the constant
phase factor of the Meixner-Pollaczek type. Its ordinargrgum mechanical counterpart, if
exists, does not seem to be known.

1 Introduction

As shown recently, Quasi-Exact Solvability (QES) is vergsely related to exact solvability

[22, 17, 21]. If all the eigenvalues of a quantum mechanigatesn are known together with

the corresponding eigenfunctions, the system is exactiyable in the Schrodinger picture. In

contrast, a system is QES if only a finite number (usually tinekt lying ones) of exact eigenval-
ues and eigenfunctions are known [26, 25, 24]. Among varahasacterisations of quasi-exact
solvability [26, 25, 24, 12, 8], the existence of an invatipolynomial subspace is conceptually
simple. The method to obtain a QES system, advocated by #semr author [22, 17, 21], by

deforming an exactly solvable system with an addition/iplittation of a higher order interaction

term together with a compensation term, exemplifies thettre of the invariant polynomial sub-

space rather clearly through the action of the similarigznsformed Hamiltoniaw?’ (3.5)—(3.7)

in terms of the pseudo groundstate wavefunctipnThis method was applied to the exactly solv-
able ordinary quantum mechanics [21] of one degree of frmedod multi-particle systems of

Calogero-Sutherland type [4, 23]. Recently new QES diffeeeequations of one degree of free-
dom [22] and multi-particle systems [17] are obtained byapplication of the same method to the
discrete quantum mechanics [14] for the Askey scheme ofrlggoenetric orthogonal polynomials

[1, 11] and for the Ruijsenaars-Schneider-van Diejen syst0, 27].

Two of the exactly solvable discrete quantum mechanicsudgsed in [14, 15, 22], the Meixner-
Pollaczek and the continuous Hahn polynomials, are of apggies in the sense that their param-
eters are a subset of the allowed ones.

The purpose of the present paper is three-fold. Firstly, dmahstrate the exact solvabil-
ity of the full dynamics of the Meixner-Pollaczek and the tionous Hahn polynomials in the
Schrodinger picture through shape invariance [7, 14]. &teet Heisenberg operator solutions are
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also constructed through the closure relations (2.126§2(2.38). The structure of the invariant
polynomial subspace is shown explicitly by the actiorz6fon monomials of each degree (2.22),
(2.33). Secondly, to obtain a new QES difference equationrbygsing the above mentioned ex-
actly solvable dynamics. The new system has a quadratioftavith two complex parameters
(2.29) coming from the continuous Hahn polynomials and astaom multiplicative phase factor
e '# (2.17) coming from the Meixner-Pollaczek polynomials. rAhy, to give comments on exact
Heisenberg operator solutions. The third part is closdbted to the presentation in NEEDS 2007
Workshop by the present author, “Heisenberg operatorisokifor the Calogero systems” [16].
This paper is organised as follows. In section two the exale@ability of the full dynamics
of the Meixner-Pollaczek and continuous Hahn polynomisldeémonstrated after brief review of
the general setting of the discrete quantum mechanics pipat® for the Askey scheme of hyper-
geometric orthogonal polynomials. Section three is del/tdethe new QES difference equation
obtained by crossing the dynamics of the full Meixner-Raik and continuous Hahn polynomi-
als. Section four is for the comments on the exact Heisentygegator solutions. Their dynamical
roles, algebraic interpretation and the connection todbaritum Liouville theorent are explained.

2 Hamiltonian Formulation for Dynamics of Hypergeometric Or-
thogonal Polynomials

It is well known that the classical orthogonal polynomidfee Hermite, Laguerre and Jacobi poly-
nomials with various degenerations (Gegenbauer, Legentireconstitute the eigenfunctions of
exactly solvable quantum mechanics, for example, the haigrascillator without/with the cen-
trifugal potential, the Pdschl-Teller potential etc. Bhuis quite natural to expect that the Askey
scheme of hypergeometric orthogonal polynomials togetbith their g-analogues, which are
generalisations/deformations of the classical orthogpolynomials, also constitute the eigen-
functions of certain quantum mechanics-like systems, abttte orthogonality has a proper ex-
planation/interpretation. In ‘discrete’ quantum meclkariil4], a Hamiltonian formulation was
introduced for the dynamics of several typical exampledefAskey scheme of hypergeometric
orthogonal polynomials. Since these polynomials obeythffice equations instead of differential
equations, the Hamiltonians contain the momentum operatoexponentiated form in contrast
to the second order polynomials in ordinary quantum medsaniThese examples of discrete
guantum mechanics are exactly solvable in the Schrodipipture due to the shape invariance
properties [7, 14] and their exact Heisenberg solutiongaen in [15].

In this section we discuss two examples, the Meixner-Podliagolynomials and the contin-
uous Hahn polynomials, in their full generality. In our pimys work on discrete quantum me-
chanics [14, 15], only the special case of the Meixner-Raé#&t polynomials with the phase angle
@ = 11/2 and the special case of the continuous Hahn polynomialstwi real parameters and
a, are discussed, partly because these special cases of tpelgmomials appear in several other
dynamical contexts [6, 3, 2] and, in particular, they appeahe description of the equilibrium
positions [19, 13, 14] of the classical Ruijsenaars-Saterevan Diejen systems [20, 27].

We show that the most general versions of these two familigsolynomials, that is, the
Meixner-Pollaczek polynomials with a general phase aigénd the continuous Hahn polyno-
mials with two complex parameteges anday, correspond to discrete quantum systems that are
exactly solvable in the Schrodinger as well as in the Héiegm picture. Later in section 3 we
show that a new quasi-exactly solvable system is obtainedrtmsing these general Meixner-
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Pollaczek and continuous Hahn polynomials, that is, by iplylhg the potential corresponding
to the general continuous Hahn polynomials with an extraelfiactor. The resulting system is no
longer exactly solvable but it becomes quasi-exactly sbbvafter adding a compensation term.

2.1 General Setting

Here we recapitulate the basic notation and rudimentang fafcdiscrete quantum mechanics of
one degree of freedom. For details we refer to [14, 18]. Thmilianian of a discrete quantum

mechanical system of one degree of freedom to be discussiaid paper has the following general
structure

2 LN X)W () + NV () e PV (X) —V (X) — (x)* 2.1)
= V(X e N ()% + WV (x) €%V (x) -V (x (2.2)

in which the potential functio (x) =V (x;A) depends, in general, on a set of paramefers
The exponentiated momentum operators cause a finite shitieafiavefunction in themaginary
direction: 1% q(x) = @(x=£i). As in supersymmetric quantum mechanics [9, 5], the Hanidio
is always factorised

H =ATA, (2.3)
AT AN (e 2% — N (x)re2®,  ALe 280 A (x)r — e2%\ NV (x), (2.4)
which shows the (formal) hermiticity and positive semi-diééiness of the Hamiltonian. See the

discussion ing4 of [22] and in Appendix A of [18] for detailed realisation bérmiticity. The
groundstate wavefunctiogy(x) is annihilated by thé\ operator

Ap(X) =0 = HA@(x)=0, (2.5)

which can be chosen reah(x) € R for x € R . The eigenfunctions of the Hamiltoniam(x) =
@ (X;A) have the following general structure:

A ;X)) =mm(x) (n=0,1,2,...), 0=&H<E<EE< -, (2.6)
®(X;A) = @A )P(N(X);A). 2.7)
HereR, is a polynomial inn(x), which is called a sinusoidal coordinate [15]. The orthagity

theorem for the eigenfunctions belonging to different eigéues implies thatP,} are orthogonal
polynomials with respect to the weightfunctigg(x):

[ BOAPUN(X):2) R (30:1) D . 28)

The integration contour is the entire real line or a part oftiis the entire line{—, ) for the
casen (x) = x. Itis the half line(0, ) for the case)(x) = x?. Itis a line segment0, 1) for the
caser) (X) = Cosx.
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Shapelnvariance If the reversed order Hamiltonia®A' has the same form #§ A, i.e.
AMAMNT =AML +8)TA +8) + &N, (2.9)

the system is called shape invariant [7, 14]. Hérdenotes the shift of the parameters and an
additive constan#i(A) is to be identified as the energy of the first excited level. Gioed with
the basic fact of supersymmetric quantum mechanics thatihélamiltoniansATA andAAT are
isospectral (except for the groundstate), shape invazigetermines the entire energy spectrum
and the excited state eigenfunctions from the groundstatefunction:

n—1

En(A) =" 1A +59), (2.10)
s=0
@A) OAQN)TAN +8)TAN +28)---A(A + (n—1)3) @ (x; A 4 nd). (2.11)

This establishes the exact solvability in the Schrodingeture.

Heisenberg Operator Solution The sinusoidal coordinate(x) has a remarkable property [15]
that the multiple commutators with the Hamiltonian can beuced ton (x) itself and the first
commutator.7#, n] through the closure relation

2,17 ,n]] = nRo(H) + [, n]Ru(A) + Ro(H). (2.12)

HereRy(##") andR_1(¢) are in general quadratic polynomials.i#, whereas; (.77) is linear
in .. This leads to the exact Heisenberg operator solution #sihusoidal coordinate (X):

& n(x)e I = P (N | g O R () [Ro(H), (2.13)
a: () B 5 (Re() £ /Ru(H)2 + 4Ro(H) ), (2.14)
a®) ¥ (i[%ﬂ,n(x)] ¥ (nx) +R_1(«%”)/Ro(%”))a¢(%”)) / (@ () —a_ ()

(2.15)

The entire spectrurfé,} can also be determined from (2.13) by starting frégn= 0 [15], as
done by Heisenberg and Pauli for the harmonic oscillatortbadhydrogen atom. The positive and
negative energy part®) of the Heisenberg operator solutigh” n (x)e "' are the annihilation-
creation operators:

a9 =a), aY@(0 0@a®. a0, (2.16)

The general theory of exact Heisenberg operator solutioneXactly solvable multi-particle
systems is yet to be constructed. For the special case ofalog€o systems [4, 10], the totality
of Heisenberg operators are derived for any root systemis Bdr the classical root systems
BC andD, the number of particles can be as large as wanted. Seersédtio comments on exact
Heisenberg operator solutions in general.
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2.2 Meixner-Pollaczek polynomials
The potential functioV (x) for the Meixner-Pollaczek polynomials is linearnin

V(x;A) EeBatix), AL (2.17)

0<acR, @cR, Bd:ef<p—’—2T, 0O<p<m (2.18)
The parametea can always be chosen real, because a possible imaginarg; gart be absorbed
by the shift ifx; x — X+ & . The positivity ofa > 0 (2.18) is required by the hermiticity (self-
adjointness) of the Hamiltonian (2.1). As showngi of [22] and in Appendix A of [18], the
hermiticity is proved in terms of the Cauchy integrationnfimila after the shifts of integration
contours,(—oo, ) — (£i — oo, £i 4+ 00). Fora > 0 there is no singularity within the integration
contours, since the singularities arising frgpix; a) (2.19) are canceled by the zerosvyk) and
V(x)*. Fora< 0, however, there appear other singularitiegyk; a), which break the hermiticity.

The special case discussed in [14, 6, 2, F is 0 or @ = 11/2. The groundstate wavefunction
¢, as annihilated by the operatar Agy = 0, is given by

w(x;a) L' |r(a+ix)| = e@ 2%/ (a+ixr(a—ix). (2.19)

The similarity transformed Hamiltonias in terms of the groundstate wavefunctigg
A E ot o=V (x) (6% 1) +V(x)* (% 1) (2.20)
= (a+ix)e P (e'%—1)+(a—ix)Pf (d%—1) (2.21)

acts on the polynomial part of the wavefunction. Itis ob\‘sidaluat%zmaps a polynomial i into
another and it is easy to verify

X" = 2ncosB X + lower order terms ne Z.,. (2.22)

Thus we can find a degreepolynomial eigenfunctior®,(x) of the similarity transformed Hamil-
tonian.s?

HPa(X) = EPn(X), & =2ncosf =2nsing, n=0,1,2,.... (2.23)

With proper normalisation it is called the Meixner-Pollakzpolynomial [11]. It is expressed in
terms of the hypergeometric series

(@) (- _ (Za)n ing —N, a+ix _ a2
R (xig) = MR (T, T | 1-e??), (2.24)
in which (b),, is the standard Pochhammer symbol

(b)n d:Eff[(b+k—1) =b(b+1)---(b+n—1).
k=1

Shape invariance is also easy to verify:

Ax;a)Ax;a)" = Axa+ 3 A a+ ) +61(), &(d) =2sing. (2.25)
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The parametea is increased by% whereas the new parametgis invariant. Sincef; is indepen-
dent of the shifted parametayit is trivial to obtain the linear spectru#}, = 2nsing, which is the
same as (2.23).

The sinusoidal coordinate ig(x) = x. The closure relation (2.12) reads simply
(A, [, X]] = x4sirf @+ 2cosp. i + 2asit g,  aL(H) = +2sing, (2.26)

indicating thatx undergoes a sinusoidal motion with the frequency #®sifhe Heisenberg opera-
tor solution is

€ xe " = xcog2tsing] +i[.#, x| %ﬁ;@
cosQp . .
T+ 2 2t -1). 2.27
Zsinz(p( +2asing)(cog2tsing] — 1) (2.27)
The annihilation-creation operators are:
. 1 Ccosp .
(+) — b
al +[,X/(4sing) + 5 {x+ Zsinztp(%Jr 2asm<p)}. (2.28)

Obviously the expressions (2.26)—(2.28) are drasticathypbfied for the special case af = 11/2
which were discussed in previous work [14, 15].

2.3 Continuous Hahn polynomials

The potential functiotV (x) for the continuous Hahn polynomials is quadraticin
V(x;A) € (ay +ix)(a +ix), A =(ana),a5,8cC, Relay)>0,Re(@)>0. (2.29)

Again the positivity of the real parts of the paramet&rs = 1, 2 is necessary for the hermiticity of
the Hamiltonian. The special case discussed in [14, 6, & f8}irealay anda,. The groundstate
wavefunctiongy, as annihilated by the operatdr Agy = 0, is given by

@A) LT (@ +iX)M (3 +ix)T (& — iX)T (a5 — ix). (2.30)

The similarity transformed Hamiltonias in terms of the groundstate wavefuncti@s)
A E ot o=V (x) (6% 1) +V(x)* (% 1) (2.31)
= (a+ixX)(az +ix) (€% — 1) + (a] —ix)(a; —ix) (€% — 1) (2.32)

acts on the polynomial part of the wavefunction. It is obgitiat#’ maps a polynomial in into
another and it is easy to verify

X =n(n+ay +aj +ax+ a5 — 1)x" + lower order terms ne Z.. (2.33)

Thus we can find a degreepolynomial eigenfunctior®,(x) of the similarity transformed Hamil-
tonian7

AP (X) = EPn(X), En=n(N+a+a +ax+a;—1), n=012.... (2.34)
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With proper normalisation it is called the continuous Halwfypomial [11]. It is expressed in
terms of the hypergeometric series

Pn(X;au,82,81,385) (2.35)

:in(a1+a’i)n(a1+a’§)n FZ(—n,n+a1+a2+a’i+a§—l, aj +ix ‘ 1)
3 ata,ay+a )

n!

Shape invariance is also easy to verify:
A(x;a1,a)A(X;a1,8)" = A(x e + 3,80+ 3)TAM a1 + 3,80+ 3) + Si(an, &), (2.36)
o dZEf(%’ 5, &la,a)=by, by ©fa1 +ay+aj + a5 — 2Re(a + a). (2.37)

Here we have introduced an abbreviationfor convenience. The parametersanda, are in-
creased b;%. Sinceé is linearly dependent on the shifted parametarsanday, it is trivial to
obtain the quadratic spectrufy = n(n+as +ax+aj +as — 1) = n(n+by — 1), which is the same
as (2.34). The sinusoidal coordinateiéx) = x. The closure relation (2.12) reads simply

[e%ﬁ, [%,XH = X(4J“f+ bl(bl — 2)) + 2[%,X] 4+ b + b3(b1 — 2), (2.38)

in which abbreviation®, d:EfZIm(al +ap) andbs d:efZIm(alaz) are used. The frequencies (7))
are

ar(A) 112V, A C A+ (0,128, A g = (n+ (01— 1)/2)%@. (2.39)

The Heisenberg operator solution reads

G ot _y —a_()eN N L a, (7)o (N N ga+ ()t _ da- (At
4y 4y A
ba 7 + ba(by — 2) <—a<=%ﬂ>é“+<%”>t +o ()T 1>
A(A + by (b1 —2)) NEZ '
(2.40)
The annihilation and creation operators are:
NCLENCOYNE7Z
by 7 + b3(b1 — 2) >
= £[H,X X a (). 241

Obviously the expressions (2.38)—(2.41) become draltisahplified for the special case bf =
bs = 0, which were discussed in previous work [14, 15].

3 New QESDifference Equation

Here we will discuss the discrete quantum mechanics olatdigerossing the Meixner-Pollaczek
and the continuous Hahn polynomials, that is, with the caizipotential function of the continu-
ous Hahn polynomials (2.29) multiplied by a constant phaseofe'# of the Meixner-Pollaczek
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type. As vaguely expected, the exact solvability is notisedl We will show, instead, that the
system is quasi-exactly solvable by adding a compensaiom Wwhich is linear irx:

2 LN () e %N ()7 + N (x) e N () — V(X )"+ ayX (3.1)
= ATA+ a yx, a, % 2.75sinB, .//leZ+, (3.2)
V(x) 2'(a +ix)(a +ix)e®, a;,aeC, Relay)>0,Re(@) > 0. (3.3)

It should be noted that the Hamiltonian is no longer positigai-definite but the hermiticity is
preserved. The main part, that is without the compensation, tis factorised as before (2.4). The
zero mode of thé operator

A = 0= @(x) £ /T (an+ix) (a2 + iX)T (& — iX)T (a5 — i), (3.4)

is no longer the groundstate wavefunction. Itis called theupo groundstate wavefunction [22].
The similarity transformed HamiltoniagZ” in terms of the pseudo groundstate wavefunction

@,

A E o o=V (x) (6% 1) +V(X)" (6%~ 1) +a,x (3.5)
= (a+ix)(az +ix)e P (7% — 1) + (a] —ix) (a5 — ix)€P (€% 1)
— 2.4 sinB X, (3.6)

acts on the polynomial part of the wavefunction. It is obgitiat#’ maps a polynomial in into
another and it is easy to verify

K = 2(— M +n)sinBx*L + lower order terms ne Z, . (3.7)

This means that the system is not exactly solvable withaittmpensation term, but it is quasi-
exactly solvable, sincgZ has an invariant polynomial subspace of degvée

AV iy Yy, (3.8)

def

Yy Z Span1,x,... . x"], dim¥, =.4+1 (3.9)

The HamiltoniansZ (3.2) is obviously hermitian (self-adjoint) and all the eigalues are real and
eigenfunctions can be chosen real. We can obtain a finite euf + 1) of exact eigenvalues
and eigenfunctions for each give#. The oscillation theorem linking the number of eigenvalues
(from the groundstate) to the zeros of eigenfunctions doésold for difference equations. The
square integrability of all the eigenfunctions’, @?(x)dx < o is obvious. See [22] for other
examples of quasi-exactly solvable difference equatldnsne degree of freedom and [17] of
many degrees of freedom.

It is easy to demonstrate that multiplying the other poggritinctions [14], namely

V(x) & (@ + 'XZ)I(XE(IZZ:( i:)l()a?’ +ix) , continuous dual Hahn (3.10)
V( ) d:ef (al+ ix)(aZZ‘i;E)g)((a—ii‘)iX)(m"*’ix)’ Wi|SOI'1, (3_11)
V(x) & (1-22) ((11__122?((11__(;? (1-a42) . z=¢€X Askey-Wilson (3.12)
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by an extra constant phase faceor?, does not provide either exactly solvable or quasi-exactly
solvable dynamical systems. The situation is the same faugrestrictions of the Askey-Wilson
polynomials.

It is also easy to see that for the systems discussed in [2] tlne potentials

V(x) d:Ef(alJrix) (ag +ix)(ag +1ix), (3.13)
V (x) &' (a +ix)(ap +ix) (ag + iX) (a4 + iX), (3.14)
v (x) 2 (B X az+l><2)|()(6(1;;:<)1;\4+i><)(as+iX)7 (3.15)
v(x e Bt @+ ix)(a:;; 2&5 ) (@ + %) (36 + 1) (3.16)
vi(x der @)= ?2121(;(?3_2) é; 22)(1-32)  _ ix. (3.17)

the quasi-exact solvability is destroyed if they are miiip by a constant phase factr'?.

4 Commentson Exact Heisenberg Operator Solutions

Let us start with a rather naive question; “What more do wenlé@m the exact Heisenberg op-
erator solutions when we already know the complete specamuinthe corresponding eigenfunc-
tions?” A small digression on the well known relationshipgviieen the Schrodinger and Heisen-
berg pictures would be useful. Suppose we have a completd setutions of the Schrodinger

equation

I @h = Enth.

For any observabled, one can construct a (usually infinite) matAxAnm = {(@n|Al@m), satisfying
the Heisenberg equation of motion

(?A

3t =i, A

Obviously such an exact Heisenberg operator solution doeach us anything more.
But for a special choice of the observables, called the &ial coordinates{n;}, j =
1,....r, with r being the number of degrees of freedom, the operators

{eli;ftrlje_lft}7 J :17"'7r7

can be expressed explicitly in terms of the fundamentalaipes{n;}, # and a finite number of
multiple commutators ofn;} with the Hamiltonian[7Z’,[7,[--- ,n;]..]. These are the Heisen-
berg operator solutions found by Odake-Sasaki for a widssctd exactly solvable degree one
guantum mechanics including the discrete ones [15] andyfaical multi-particle dynamics of
Calogero type for any root system [16]. It should be stregisatithe existence of sinusoidal coor-
dinates is not guaranteed at all. There are several exatigide degree one quantum mechanical
systems for which our construction of the Heisenberg opesalutions does not apply. Various
reduced Kepler problems and the Rosen-Morse potentialthargypical examples. See [15] for
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more details. For multi-particle systems, the exact Hdisam operator solutions are known [16]
only for the Calogero systems for any root system [4, 10]. r&tere other well-known exactly
solvable multi-particle systems; the Sutherland syste28% §nd the Ruijsenaars-Schneider-van
Diejen systems [20, 27]. The name ‘sinusoidal’ implies tialy all undergo sinusoidal motion
but not harmonic. In classical mechanics terms, the fregjgsrdepend on the initial conditions.

From the point of view of analysis, the sinusoidal coordésagenerate the polynomial eigen-
function{P,}, & = @k, (@ is the groundstate wavefunction). In other wof&%} are orthogonal
polynomials in{n; }. The exact Heisenberg operator solutions{igr} provide the complete set of
multi-variable generalisation of thiaree term recurrence relations, which characterise orthogonal
polynomials in one variable.

As stressed in [15, 16], the positive and negative frequgraays of the Heisenberg operator
solutions are the sets afnihilation-creation operators. They generate the entire set of eigenfunc-
tions algebraically, and thus formdynamical symmetry algebra together with the Hamiltonian
and possibly with the higher conserved quantities (Hamigtos). The structure of these dynam-
ical symmetry algebras is identified only for a few speciaesawith one degree of freedom, for
example,su(1,1). Itis a good challenge to identify the dynamical symmetigeala and its ir-
reducible representations for each known exact Heisertqgggator solution, for one and many
degrees of freedom. From the algebraic point of view, thegherm recurrence relations for single
variable orthogonal polynomials correspond to the ClelSoldan decomposition rules for rank
one algebras. The multi-particle version would simply espond to the higher rank counterparts
of the Clebsch-Gordan decomposition rules.

From a more basic dynamics point of view, one could considerekact Heisenberg operator
solutions and the associated annihilation-creation épexas an explicit but partial realisation of
the ‘quantum Liouville theorem'. The classical Liouville theorem asserts that one cantrocisby
qguadrature only from the complete set of involutive consdrguantities the generating function
of a canonical transformation which brings the system todtteon-angle form. In contrast,
the usual formulation of the quantum Liouville theorem does say anything about the second
half; that is the quantum mechanical counterpart of ‘briggto the action-angle form’. The
complete set of the creation-annihilation operators pheeydorresponding role; ‘generating the
entire eigenfunctions from the groundstate wavefunctitisuch generated eigenstates were the
simultaneous eigenstates of the complete set of involativeserved quantities, one could say that
the quantum Liouville theorem is fully realised. It seemattinere is still some way to go for that
goal.

Acknowledgments. R. S. thanks Satoru Odake for useful comments. This workppated in
part by Grants-in-Aid for Scientific Research from the Minisof Education, Culture, Sports,
Science and Technology, N0.18340061 and N0.19540179.
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