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Abstract

Exact solvability of two typical examples of the discrete quantum mechanics,i.e. the dy-
namics of the Meixner-Pollaczek and the continuous Hahn polynomials withfull parameters,
is newly demonstrated both at the Schrödinger and Heisenberg picture levels. A new quasi-
exactly solvable difference equation is constructed by crossing these two dynamics, that is, the
quadratic potential function of the continuous Hahn polynomials is multiplied by the constant
phase factor of the Meixner-Pollaczek type. Its ordinary quantum mechanical counterpart, if
exists, does not seem to be known.

1 Introduction

As shown recently, Quasi-Exact Solvability (QES) is very closely related to exact solvability
[22, 17, 21]. If all the eigenvalues of a quantum mechanical system are known together with
the corresponding eigenfunctions, the system is exactly solvable in the Schrödinger picture. In
contrast, a system is QES if only a finite number (usually the lowest lying ones) of exact eigenval-
ues and eigenfunctions are known [26, 25, 24]. Among variouscharacterisations of quasi-exact
solvability [26, 25, 24, 12, 8], the existence of an invariant polynomial subspace is conceptually
simple. The method to obtain a QES system, advocated by the present author [22, 17, 21], by
deforming an exactly solvable system with an addition/multiplication of a higher order interaction
term together with a compensation term, exemplifies the structure of the invariant polynomial sub-
space rather clearly through the action of the similarity transformed HamiltonianÝH (3.5)–(3.7)
in terms of the pseudo groundstate wavefunctionφ0. This method was applied to the exactly solv-
able ordinary quantum mechanics [21] of one degree of freedom and multi-particle systems of
Calogero-Sutherland type [4, 23]. Recently new QES difference equations of one degree of free-
dom [22] and multi-particle systems [17] are obtained by theapplication of the same method to the
discrete quantum mechanics [14] for the Askey scheme of hypergeometric orthogonal polynomials
[1, 11] and for the Ruijsenaars-Schneider-van Diejen systems [20, 27].

Two of the exactly solvable discrete quantum mechanics discussed in [14, 15, 22], the Meixner-
Pollaczek and the continuous Hahn polynomials, are of special types in the sense that their param-
eters are a subset of the allowed ones.

The purpose of the present paper is three-fold. Firstly, to demonstrate the exact solvabil-
ity of the full dynamics of the Meixner-Pollaczek and the continuous Hahn polynomials in the
Schrödinger picture through shape invariance [7, 14]. Theexact Heisenberg operator solutions are
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also constructed through the closure relations (2.12), (2.26), (2.38). The structure of the invariant
polynomial subspace is shown explicitly by the action ofÝH on monomials of each degree (2.22),
(2.33). Secondly, to obtain a new QES difference equation bycrossing the above mentioned ex-
actly solvable dynamics. The new system has a quadratic potential with two complex parameters
(2.29) coming from the continuous Hahn polynomials and a constant multiplicative phase factor
e−iβ (2.17) coming from the Meixner-Pollaczek polynomials. Thirdly, to give comments on exact
Heisenberg operator solutions. The third part is closely related to the presentation in NEEDS 2007
Workshop by the present author, “Heisenberg operator solutions for the Calogero systems” [16].

This paper is organised as follows. In section two the exact solvability of the full dynamics
of the Meixner-Pollaczek and continuous Hahn polynomials is demonstrated after brief review of
the general setting of the discrete quantum mechanics appropriate for the Askey scheme of hyper-
geometric orthogonal polynomials. Section three is devoted to the new QES difference equation
obtained by crossing the dynamics of the full Meixner-Pollaczek and continuous Hahn polynomi-
als. Section four is for the comments on the exact Heisenbergoperator solutions. Their dynamical
roles, algebraic interpretation and the connection to the ‘quantum Liouville theorem’ are explained.

2 Hamiltonian Formulation for Dynamics of Hypergeometric Or-
thogonal Polynomials

It is well known that the classical orthogonal polynomials,the Hermite, Laguerre and Jacobi poly-
nomials with various degenerations (Gegenbauer, Legendre, etc) constitute the eigenfunctions of
exactly solvable quantum mechanics, for example, the harmonic oscillator without/with the cen-
trifugal potential, the Pöschl-Teller potential etc. Thus it is quite natural to expect that the Askey
scheme of hypergeometric orthogonal polynomials togetherwith their q-analogues, which are
generalisations/deformations of the classical orthogonal polynomials, also constitute the eigen-
functions of certain quantum mechanics-like systems, so that the orthogonality has a proper ex-
planation/interpretation. In ‘discrete’ quantum mechanics [14], a Hamiltonian formulation was
introduced for the dynamics of several typical examples of the Askey scheme of hypergeometric
orthogonal polynomials. Since these polynomials obey difference equations instead of differential
equations, the Hamiltonians contain the momentum operators in exponentiated form in contrast
to the second order polynomials in ordinary quantum mechanics. These examples of discrete
quantum mechanics are exactly solvable in the Schrödingerpicture due to the shape invariance
properties [7, 14] and their exact Heisenberg solutions aregiven in [15].

In this section we discuss two examples, the Meixner-Pollaczek polynomials and the contin-
uous Hahn polynomials, in their full generality. In our previous work on discrete quantum me-
chanics [14, 15], only the special case of the Meixner-Pollaczek polynomials with the phase angle
φ = π/2 and the special case of the continuous Hahn polynomials with two real parametersa1 and
a2 are discussed, partly because these special cases of the twopolynomials appear in several other
dynamical contexts [6, 3, 2] and, in particular, they appearin the description of the equilibrium
positions [19, 13, 14] of the classical Ruijsenaars-Schneider van Diejen systems [20, 27].

We show that the most general versions of these two families of polynomials, that is, the
Meixner-Pollaczek polynomials with a general phase angleφ and the continuous Hahn polyno-
mials with two complex parametersa1 anda2, correspond to discrete quantum systems that are
exactly solvable in the Schrödinger as well as in the Heisenberg picture. Later in section 3 we
show that a new quasi-exactly solvable system is obtained bycrossing these general Meixner-
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Pollaczek and continuous Hahn polynomials, that is, by multiplying the potential corresponding
to the general continuous Hahn polynomials with an extra phase factor. The resulting system is no
longer exactly solvable but it becomes quasi-exactly solvable after adding a compensation term.

2.1 General Setting

Here we recapitulate the basic notation and rudimentary facts of discrete quantum mechanics of
one degree of freedom. For details we refer to [14, 18]. The Hamiltonian of a discrete quantum
mechanical system of one degree of freedom to be discussed inthis paper has the following general
structure

H
def
=
È

V (x)ep
È

V (x)∗ +
È

V (x)∗ e−p
È

V (x)−V (x)−V (x)∗ (2.1)

=
È

V (x)e−i∂x
È

V (x)∗ +
È

V (x)∗ e+i∂x
È

V (x)−V (x)−V (x)∗, (2.2)

in which the potential functionV (x) = V (x ;λ ) depends, in general, on a set of parametersλ .
The exponentiated momentum operators cause a finite shift ofthe wavefunction in theimaginary
direction:e±i∂xφ(x) = φ(x± i). As in supersymmetric quantum mechanics [9, 5], the Hamiltonian
is always factorised

H = A†A, (2.3)

A† def
=
È

V (x)e−
i
2∂x −

È
V (x)∗ e

i
2∂x , A def

= e−
i
2∂x
È

V (x)∗− e
i
2∂x
È

V (x), (2.4)

which shows the (formal) hermiticity and positive semi-definiteness of the Hamiltonian. See the
discussion in§4 of [22] and in Appendix A of [18] for detailed realisation ofhermiticity. The
groundstate wavefunctionφ0(x) is annihilated by theA operator

Aφ0(x) = 0 =⇒ H φ0(x) = 0, (2.5)

which can be chosen real,φ0(x) ∈ R for x ∈ R . The eigenfunctions of the Hamiltonianφn(x) =
φn(x ;λ ) have the following general structure:

H φn(x) = Enφn(x) (n = 0,1,2, . . .), 0 = E0 < E1 < E2 < · · · , (2.6)

φn(x ;λ ) = φ0(x ;λ )Pn(η(x) ;λ ). (2.7)

HerePn is a polynomial inη(x), which is called a sinusoidal coordinate [15]. The orthogonality
theorem for the eigenfunctions belonging to different eigenvalues implies that{Pn} are orthogonal
polynomials with respect to the weightfunctionφ2

0 (x):Z
φ2

0 (x ;λ )Pn(η(x) ;λ )∗Pm(η(x) ;λ )dx ∝ δnm. (2.8)

The integration contour is the entire real line or a part of it. It is the entire line(−∞,∞) for the
caseη(x) = x. It is the half line(0,∞) for the caseη(x) = x2. It is a line segment(0,π) for the
caseη(x) = cosx.
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Shape Invariance If the reversed order HamiltonianAA† has the same form asA†A, i.e.

A(λ )A(λ )† = A(λ + δ)†A(λ + δ)+E1(λ ), (2.9)

the system is called shape invariant [7, 14]. Hereδ denotes the shift of the parameters and an
additive constantE1(λ ) is to be identified as the energy of the first excited level. Combined with
the basic fact of supersymmetric quantum mechanics that thetwo HamiltoniansA†A andAA† are
isospectral (except for the groundstate), shape invariance determines the entire energy spectrum
and the excited state eigenfunctions from the groundstate wavefunction:

En(λ ) =
n−1X
s=0

E1(λ + sδ), (2.10)

φn(x ;λ ) ∝ A(λ )†A(λ + δ)†A(λ +2δ)† · · ·A(λ +(n−1)δ )†φ0(x ;λ + nδ). (2.11)

This establishes the exact solvability in the Schrödingerpicture.

Heisenberg Operator Solution The sinusoidal coordinateη(x) has a remarkable property [15]
that the multiple commutators with the Hamiltonian can be reduced toη(x) itself and the first
commutator[H ,η ] through the closure relation

[H , [H ,η ] ] = η R0(H )+ [H ,η ]R1(H )+ R−1(H ). (2.12)

HereR0(H ) andR−1(H ) are in general quadratic polynomials inH , whereasR1(H ) is linear
in H . This leads to the exact Heisenberg operator solution for the sinusoidal coordinateη(x):

eitH η(x)e−itH = a(+)eiα+(H )t + a(−)eiα−(H )t −R−1(H )/R0(H ), (2.13)

α±(H )
def
= 1

2

�
R1(H )±

È
R1(H )2 +4R0(H )

�
, (2.14)

a(±) def
=
�
±[H ,η(x)]∓

�
η(x)+ R−1(H )/R0(H )

�
α∓(H )

� À �
α+(H )−α−(H )

�
.

(2.15)

The entire spectrum{En} can also be determined from (2.13) by starting fromE0 = 0 [15], as
done by Heisenberg and Pauli for the harmonic oscillator andthe hydrogen atom. The positive and
negative energy partsa(±) of the Heisenberg operator solutioneitH η(x)e−itH are the annihilation-
creation operators:

a(+)† = a(−), a(+)φn(x) ∝ φn+1(x), a(−)φn(x) ∝ φn−1(x). (2.16)

The general theory of exact Heisenberg operator solutions for exactly solvable multi-particle
systems is yet to be constructed. For the special case of the Calogero systems [4, 10], the totality
of Heisenberg operators are derived for any root systems [16]. For the classical root systemsA,
BC andD, the number of particles can be as large as wanted. See section 4 for comments on exact
Heisenberg operator solutions in general.
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2.2 Meixner-Pollaczek polynomials

The potential functionV (x) for the Meixner-Pollaczek polynomials is linear inx:

V (x ;λ )
def
= e−iβ (a+ ix), λ def

= a, (2.17)

0 < a ∈ R, φ ∈ R, β def
= φ − π

2
, 0 < φ < π. (2.18)

The parametera can always be chosen real, because a possible imaginary partaI can be absorbed
by the shift if x; x → x + aI . The positivity ofa > 0 (2.18) is required by the hermiticity (self-
adjointness) of the Hamiltonian (2.1). As shown in§4 of [22] and in Appendix A of [18], the
hermiticity is proved in terms of the Cauchy integration formula after the shifts of integration
contours,(−∞,∞) → (±i−∞,±i + ∞). For a > 0 there is no singularity within the integration
contours, since the singularities arising fromφ0(x;a) (2.19) are canceled by the zeros ofV (x) and
V (x)∗. Fora≤ 0, however, there appear other singularities ofφ0(x;a), which break the hermiticity.

The special case discussed in [14, 6, 2, 3] isβ = 0 or φ = π/2. The groundstate wavefunction
φ0, as annihilated by the operatorA, Aφ0 = 0, is given by

φ0(x ;a)
def
= eβx|Γ(a+ ix)| = e(φ− π

2 )x
È

Γ(a+ ix)Γ(a− ix). (2.19)

The similarity transformed HamiltonianÝH in terms of the groundstate wavefunctionφ0,ÝH def
= φ−1

0 ◦H ◦φ0 = V (x)
�
e−i∂x −1

�
+V (x)∗

�
ei∂x −1

�
(2.20)

= (a+ ix)e−iβ
�
e−i∂x −1

�
+(a− ix)eiβ

�
ei∂x −1

�
(2.21)

acts on the polynomial part of the wavefunction. It is obvious that ÝH maps a polynomial inx into
another and it is easy to verifyÝH xn = 2ncosβ xn + lower order terms, n ∈ Z+. (2.22)

Thus we can find a degreen polynomial eigenfunctionPn(x) of the similarity transformed Hamil-
tonian ÝHÝH Pn(x) = EnPn(x), En = 2ncosβ = 2nsinφ , n = 0,1,2, . . . . (2.23)

With proper normalisation it is called the Meixner-Pollaczek polynomial [11]. It is expressed in
terms of the hypergeometric series

P(a)
n (x ;φ) =

(2a)n

n!
einφ

2F1

�−n, a+ ix
2a

��� 1− e−2iφ
�
, (2.24)

in which (b)n is the standard Pochhammer symbol

(b)n
def
=

nY
k=1

(b+ k−1) = b(b+1) · · · (b+ n−1).

Shape invariance is also easy to verify:

A(x ;a)A(x ;a)† = A(x ;a+ 1
2)†A(x ;a+ 1

2)+E1(λ ), E1(λ ) = 2sinφ . (2.25)
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The parametera is increased by12 whereas the new parameterφ is invariant. SinceE1 is indepen-
dent of the shifted parametera, it is trivial to obtain the linear spectrumEn = 2nsinφ , which is the
same as (2.23).

The sinusoidal coordinate isη(x) = x. The closure relation (2.12) reads simply

[H , [H ,x]] = x4sin2φ +2cosφ H +2asin2φ , α±(H ) = ±2sinφ , (2.26)

indicating thatx undergoes a sinusoidal motion with the frequency 2sinφ . The Heisenberg opera-
tor solution is

eitH xe−itH = xcos[2t sinφ ]+ i[H ,x]
sin[2t sinφ ]

2sinφ

+
cosφ

2sin2φ
(H +2asinφ)(cos[2t sinφ ]−1). (2.27)

The annihilation-creation operators are:

a(±) = ± [H ,x]/(4sinφ)+
1
2

¨
x+

cosφ
2sin2φ

(H +2asinφ)

«
. (2.28)

Obviously the expressions (2.26)–(2.28) are drastically simplified for the special case ofφ = π/2
which were discussed in previous work [14, 15].

2.3 Continuous Hahn polynomials

The potential functionV (x) for the continuous Hahn polynomials is quadratic inx:

V (x ;λ )
def
= (a1 + ix)(a2 + ix), λ = (a1,a2),a1,a2 ∈ C, Re(a1) > 0,Re(a2) > 0. (2.29)

Again the positivity of the real parts of the parametersai, i = 1,2 is necessary for the hermiticity of
the Hamiltonian. The special case discussed in [14, 6, 2, 3] is for reala1 anda2. The groundstate
wavefunctionφ0, as annihilated by the operatorA, Aφ0 = 0, is given by

φ0(x ;λ )
def
=
È

Γ(a1 + ix)Γ(a2 + ix)Γ(a∗1− ix)Γ(a∗2− ix). (2.30)

The similarity transformed HamiltonianÝH in terms of the groundstate wavefunctionφ0,ÝH def
= φ−1

0 ◦H ◦φ0 = V (x)
�
e−i∂x −1

�
+V (x)∗

�
ei∂x −1

�
(2.31)

= (a1 + ix)(a2 + ix)
�
e−i∂x −1

�
+(a∗1− ix)(a∗2− ix)

�
ei∂x −1

�
(2.32)

acts on the polynomial part of the wavefunction. It is obvious that ÝH maps a polynomial inx into
another and it is easy to verifyÝH xn = n(n+ a1 + a∗1 + a2+ a∗2−1)xn + lower order terms, n ∈ Z+. (2.33)

Thus we can find a degreen polynomial eigenfunctionPn(x) of the similarity transformed Hamil-
tonian ÝHÝH Pn(x) = EnPn(x), En = n(n+ a1 + a∗1 + a2 + a∗2−1), n = 0,1,2, . . . . (2.34)
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With proper normalisation it is called the continuous Hahn polynomial [11]. It is expressed in
terms of the hypergeometric series

pn(x ;a1,a2,a
∗
1,a

∗
2) (2.35)

= in
(a1 + a∗1)n(a1 + a∗2)n

n! 3F2

�−n,n+ a1 + a2 + a∗1 + a∗2−1, a1 + ix
a1 + a∗1, a1 + a∗2

��� 1
�
.

Shape invariance is also easy to verify:

A(x ;a1,a2)A(x ;a1,a2)
† = A(x ;a1 + 1

2,a2 + 1
2)†A(x ;a1 + 1

2,a2 + 1
2)+E1(a1,a2), (2.36)

δ def
= (1

2, 1
2), E1(a1,a2) = b1, b1

def
= a1 + a2 + a∗1 + a∗2 = 2Re(a1 + a2). (2.37)

Here we have introduced an abbreviationb1 for convenience. The parametersa1 anda2 are in-
creased by12. SinceE1 is linearly dependent on the shifted parametersa1, anda2, it is trivial to
obtain the quadratic spectrumEn = n(n+a1+a2+a∗1+a∗2−1) = n(n+b1−1), which is the same
as (2.34). The sinusoidal coordinate isη(x) = x. The closure relation (2.12) reads simply

[H , [H ,x]] = x(4H + b1(b1−2))+2[H ,x]+ b2H + b3(b1−2), (2.38)

in which abbreviationsb2
def
= 2Im(a1+a2) andb3

def
= 2Im(a1a2) are used. The frequenciesα±(H )

are

α±(H )
def
= 1±2

√
H ′, H

′ def
= H +(b1−1)2/4, H

′φn = (n+(b1−1)/2)2φn. (2.39)

The Heisenberg operator solution reads

eitH xe−itH =x
−α−(H )eiα+(H )t + α+(H )eiα−(H )t

4
√

H ′ +[H ,x]
eiα+(H )t − eiα−(H )t

4
√

H ′

+
b2H + b3(b1−2)

4(H + b1(b1−2))

�
−α−(H )eiα+(H )t + α+(H )eiα−(H )t

4
√

H ′ −1

�
.

(2.40)

The annihilation and creation operators are:

a′(±) def
= a(±)4

√
H ′

= ±[H ,x]∓
�

x+
b2H + b3(b1−2)

4(H + b1(b1−2))

�
α∓(H ). (2.41)

Obviously the expressions (2.38)–(2.41) become drastically simplified for the special case ofb2 =
b3 = 0, which were discussed in previous work [14, 15].

3 New QES Difference Equation

Here we will discuss the discrete quantum mechanics obtained by crossing the Meixner-Pollaczek
and the continuous Hahn polynomials, that is, with the quadratic potential function of the continu-
ous Hahn polynomials (2.29) multiplied by a constant phase factore−iβ of the Meixner-Pollaczek
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type. As vaguely expected, the exact solvability is not realised. We will show, instead, that the
system is quasi-exactly solvable by adding a compensation term which is linear inx:

H
def
=
È

V (x)e−i∂x
È

V (x)∗ +
È

V (x)∗ e+i∂x
È

V (x)−V(x)−V (x)∗ + αM x (3.1)

= A†A + αM x, αM

def
= −2M sinβ , M ∈ Z+, (3.2)

V (x)
def
= (a1 + ix)(a2 + ix)e−iβ , a1,a2 ∈ C, Re(a1) > 0,Re(a2) > 0. (3.3)

It should be noted that the Hamiltonian is no longer positivesemi-definite but the hermiticity is
preserved. The main part, that is without the compensation term, is factorised as before (2.4). The
zero mode of theA operator

Aφ0 = 0 =⇒ φ0(x)
def
= eβx

È
Γ(a1 + ix)Γ(a2 + ix)Γ(a∗1− ix)Γ(a∗2− ix), (3.4)

is no longer the groundstate wavefunction. It is called the pseudo groundstate wavefunction [22].
The similarity transformed HamiltonianÝH in terms of the pseudo groundstate wavefunction

φ0, ÝH def
= φ−1

0 ◦H ◦φ0 = V (x)
�
e−i∂x −1

�
+V (x)∗

�
ei∂x −1

�
+ αM x (3.5)

= (a1 + ix)(a2 + ix)e−iβ
�
e−i∂x −1

�
+(a∗1− ix)(a∗2− ix)eiβ

�
ei∂x −1

�
−2M sinβ x, (3.6)

acts on the polynomial part of the wavefunction. It is obvious that ÝH maps a polynomial inx into
another and it is easy to verifyÝH xn = 2(−M + n)sinβ xn+1 + lower order terms, n ∈ Z+. (3.7)

This means that the system is not exactly solvable without the compensation term, but it is quasi-
exactly solvable, sinceÝH has an invariant polynomial subspace of degreeM :ÝH VM ⊆ VM , (3.8)

VM

def
= Span

�
1,x,x2, . . . ,xM

�
, dimVM = M +1. (3.9)

The HamiltonianH (3.2) is obviously hermitian (self-adjoint) and all the eigenvalues are real and
eigenfunctions can be chosen real. We can obtain a finite number (M + 1) of exact eigenvalues
and eigenfunctions for each givenM . The oscillation theorem linking the number of eigenvalues
(from the groundstate) to the zeros of eigenfunctions does not hold for difference equations. The
square integrability of all the eigenfunctions

R ∞
−∞ φ2(x)dx < ∞ is obvious. See [22] for other

examples of quasi-exactly solvable difference equations of one degree of freedom and [17] of
many degrees of freedom.

It is easy to demonstrate that multiplying the other potential functions [14], namely

V (x) def
=

(a1 + ix)(a2 + ix)(a3 + ix)
2ix(2ix+1)

, continuous dual Hahn, (3.10)

V (x) def
=

(a1 + ix)(a2 + ix)(a3 + ix)(a4 + ix)
2ix(2ix+1)

, Wilson, (3.11)

V (x) def
=

(1−a1z)(1−a2z)(1−a3z)(1−a4z)
(1− z2)(1−qz2)

, z = eix, Askey-Wilson, (3.12)
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by an extra constant phase factore−iβ , does not provide either exactly solvable or quasi-exactly
solvable dynamical systems. The situation is the same for various restrictions of the Askey-Wilson
polynomials.

It is also easy to see that for the systems discussed in [22], with the potentials

V (x) def
= (a1 + ix)(a2 + ix)(a3 + ix), (3.13)

V (x)
def
= (a1 + ix)(a2 + ix)(a3 + ix)(a4 + ix), (3.14)

V (x) def
=

(a1 + ix)(a2 + ix)(a3 + ix)(a4 + ix)(a5 + ix)
2ix(2ix+1)

, (3.15)

V (x) def
=

(a1 + ix)(a2 + ix)(a3 + ix)(a4 + ix)(a5 + ix)(a6 + ix)
2ix(2ix+1)

, (3.16)

V (x) def
=

(1−a1z)(1−a2z)(1−a3z)(1−a4z)(1−a5z)
(1− z2)(1−qz2)

, z = eix, (3.17)

the quasi-exact solvability is destroyed if they are multiplied by a constant phase factore−iβ .

4 Comments on Exact Heisenberg Operator Solutions

Let us start with a rather naive question; “What more do we learn from the exact Heisenberg op-
erator solutions when we already know the complete spectrumand the corresponding eigenfunc-
tions?” A small digression on the well known relationship between the Schrödinger and Heisen-
berg pictures would be useful. Suppose we have a complete setof solutions of the Schrödinger
equation

H φn = Enφn.

For any observableA, one can construct a (usually infinite) matrixÂ, Ânm = 〈φn|A|φm〉, satisfying
the Heisenberg equation of motion

∂ Â
∂ t

= i[H , Â].

Obviously such an exact Heisenberg operator solution does not teach us anything more.
But for a special choice of the observables, called the ‘sinusoidal coordinates’{η j}, j =

1, . . . ,r, with r being the number of degrees of freedom, the operators

{eiH tη je
−iH t}, j = 1, . . . ,r,

can be expressed explicitly in terms of the fundamental operators{η j}, H and a finite number of
multiple commutators of{η j} with the Hamiltonian[H , [H , [· · · ,η j]..]. These are the Heisen-
berg operator solutions found by Odake-Sasaki for a wide class of exactly solvable degree one
quantum mechanics including the discrete ones [15] and for typical multi-particle dynamics of
Calogero type for any root system [16]. It should be stressedthat the existence of sinusoidal coor-
dinates is not guaranteed at all. There are several exactly solvable degree one quantum mechanical
systems for which our construction of the Heisenberg operator solutions does not apply. Various
reduced Kepler problems and the Rosen-Morse potentials arethe typical examples. See [15] for
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more details. For multi-particle systems, the exact Heisenberg operator solutions are known [16]
only for the Calogero systems for any root system [4, 10]. There are other well-known exactly
solvable multi-particle systems; the Sutherland systems [23] and the Ruijsenaars-Schneider-van
Diejen systems [20, 27]. The name ‘sinusoidal’ implies thatthey all undergo sinusoidal motion
but not harmonic. In classical mechanics terms, the frequencies depend on the initial conditions.

From the point of view of analysis, the sinusoidal coordinates generate the polynomial eigen-
function{Pn}, φn = φ0Pn (φ0 is the groundstate wavefunction). In other words{Pn} are orthogonal
polynomials in{η j}. The exact Heisenberg operator solutions for{η j} provide the complete set of
multi-variable generalisation of thethree term recurrence relations, which characterise orthogonal
polynomials in one variable.

As stressed in [15, 16], the positive and negative frequencyparts of the Heisenberg operator
solutions are the sets ofannihilation-creation operators. They generate the entire set of eigenfunc-
tions algebraically, and thus form adynamical symmetry algebra together with the Hamiltonian
and possibly with the higher conserved quantities (Hamiltonians). The structure of these dynam-
ical symmetry algebras is identified only for a few special cases with one degree of freedom, for
example,su(1,1). It is a good challenge to identify the dynamical symmetry algebra and its ir-
reducible representations for each known exact Heisenbergoperator solution, for one and many
degrees of freedom. From the algebraic point of view, the three term recurrence relations for single
variable orthogonal polynomials correspond to the Clebsch-Gordan decomposition rules for rank
one algebras. The multi-particle version would simply correspond to the higher rank counterparts
of the Clebsch-Gordan decomposition rules.

From a more basic dynamics point of view, one could consider the exact Heisenberg operator
solutions and the associated annihilation-creation operators as an explicit but partial realisation of
the ‘quantum Liouville theorem’. The classical Liouville theorem asserts that one can construct by
quadrature only from the complete set of involutive conserved quantities the generating function
of a canonical transformation which brings the system to theaction-angle form. In contrast,
the usual formulation of the quantum Liouville theorem doesnot say anything about the second
half; that is the quantum mechanical counterpart of ‘bringing to the action-angle form’. The
complete set of the creation-annihilation operators play the corresponding role; ‘generating the
entire eigenfunctions from the groundstate wavefunction’. If such generated eigenstates were the
simultaneous eigenstates of the complete set of involutiveconserved quantities, one could say that
the quantum Liouville theorem is fully realised. It seems that there is still some way to go for that
goal.
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