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Abstract

The maximal superintegrability of the intrinsic harmonscitlator potential oN-dimensional
spaces with constant curvature is revisited from the pdintew of sl(2)-Poisson coalgebra
symmetry. It is shown how this algebraic approach leads twadgbtforward definition of
a new large family of quasi-maximally superintegrable peyations of the intrinsic oscilla-
tor on such spaces. Moreover, the generalization of thistcaction to thos&l-dimensional
spaces with non-constant curvature that are endowedsiih-coalgebra symmetry is pre-
sented. As the first examples of the latter class of systeatls,the oscillator potential on an
N-dimensional Darboux space as well as several familiessajutasi-maximally superinte-
grable anharmonic perturbations are explicitly consgdct

1 Introduction

The Poisson-coalgebraic “dynamical” symmetry underlyatigthe superintegrable Hamiltonian
systems that we shall present in the sequel can be summaszéte following quite general

result [1, 2]: Let(q,p) = ((da,---,Gn), (P1,---, Pn)) beN pairs of canonical variables with respect
to the Poisson bracket

N 79f dg dg df>
f.gl = =222 ) 1.1
{0} i21<0qidpi g dpi (1)

and let us consider the three functions given by

2% @ =S d.0=SNaob
q iql ) p i p| ) q p %\ql pl' (12)
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Then, giverany smooth functions#’, the Hamiltonian
HN = (9% p?,q-p) (1.3)

defines arN-dimensional KID) classical superintegrable Hamiltonighi™N) with (2N — 3) func-
tionally independent integrals of the motion that are eihi given by

m N
C™="% (apj—aip)>,  Cum= 2 (aipj —ajp)?, (1.4)
N-m+1<i<j

1<i<j

wherem=2,...,N andC™) =Cy,. Furthermore, the sets of functions given{ty™,C(™} and
{HN .Cm} (m=2,...,N) define two sets ol integrals in involution. Proofs, technical details
and further generalizations can be found in [1, 2] but, & gdint, some remarks concerning the
symmetry and superintegrability propertiesttf¥) are in order.

e Remark 1. If the three functions (1.2) are written &s, J, andJs, respectively, by comput-
ing the Poisson bracket (1.1) among them we recover the bisséh commutation rules of
sl(2,R):

{‘]3"]+} = 2‘]+a {‘]3"]7} =-2), {J,’\Lr} = 4. (15)

In other words, the functions (1.2) define a partict&@ symplectic realization of[(2,R).
Hence any Hamiltoniakl(N) can be thought of as a smooth function definedig®, R)

HN = 23,3, 3) = #(%.p%.q- ), (1.6)

and all the results here presented can be interpreted inaheeWwork ofs((2, R)-Poisson
dynamics. Properly speakingiN) is defined on a three-dimensions(2, R)-subalgebra

of thesl(2,R) ®---®N) s[(2,R) Poisson algebra. We stress that integrable systems on the
Euclidean space and endowed with Nigarticlesl(2,R)-symmetry given by the represen-
tation (1.2), were already studied in [3].

e Remark 2. The “universal” integrals of motion (1.4) are derived fréime Casimir function
of the aforementionesl(2,R) Poisson algebra (see [1]), and are given as sums of the square
of certain angular momentum components. In particulagesthe functiondjj = o pj —
gjpi withi < jandi,j=1,...,N span arso(N) Lie—Poisson algebra with Poisson brackets

{Lij,Lik} = Ljk, {Lij,Lix} = —Lik, {Li,Lix}=VLij, i<j<Kk, (1.7)
the integrals (1.4) can be rewritten as

m N
2 2
c= 3 Li  Cwm e (1.8)

1<i<]

This, in turn, means that the(2,R) @ --- @) s[(2,R) symmetry gives us the right pre-
scription to get the appropriate subset of quadratic fonetiof the generators ab(N)
that Poisson-commute with the Hamiltonian (1a8)d are in involution. In this respect,
note that the algebral(2,R) @ --- ®V) s[(2,R) has only 3 generators and many of them
do Poisson-commute, whilsb(N) hasN(N — 1)/2 generators with many non-vanishing
Poisson brackets among them.



Superintegrable Anharmonic Oscillators on Curved Spaces 45

e Remark 3. It is well-known that the maximum number of functionallydependent (and
different from the Hamiltonian itself) integrals of the rast for an ND Hamiltonian is
(2N —2). In the case that all these integrals do exist, the sytemllisdomaximally super-
integrable(MS). SinceHN) (1.3) has, by constructiori2N — 3) functionally independent
integrals, we shall say that this isgaiasi-maximally superintegrabi@MS) Hamiltonian.
Nevertheless, for some specific choices of the functi6hit will be possible to find the
remaining integral (which is not provided by the above syrmmpe In that casesZ will
define a MS system.

e Remark 4. The canonical variable®), p) havea priori neither a given geometrical (physi-
cal) meaning, nor restricted (real/complex) values.

Therefore, we can conclude thdfN) (1.6) comprises a large family of QMS Hamiltonians;
each particular system arises for a specific choice of thetium.7#” together with an “appropriate”
geometrical interpretation of the canonical variables.

1.1 Oscillators on theND Euclidean space

In order to illustrate these ideas and also as the startiig far further developments, let us
consider theND isotropic harmonic oscillator with angular frequenoy Such a system can easily
be identified within the family (1.6) by simply setting

_ 1 1,0 15 155
%_§J++Ew\l_—5p +§wq, (2.9)
for whichq are Cartesian coordinates in tN® Euclidean spacEN. This Hamiltonian is not only
QMS, but the standard prototype of MS systems. In fact, theaining” constant of the motion
can be taken as any of tiNeintegrals

lﬂl:p?—i_wquz? i:17"'7N7 (1.10)

since each; is functionally independent with respect to both the set)(and.sZ. The results
above summarized allows for a straightforward superiatelgreven-order anharmonic oscillator
perturbation given by [1]:

1 15 - ki1 1o 1 o5 ¢ 2(k+1)
— B == . + 5 & 1.11
H 2J++ 2w J +k§:15kJ_ 2p + 2w q k§:1 q , ( )

which is QMS for any choice of thg parameters, since the Hamiltonian (1.11) is indeed a func-
tion of (1.2). We remark that once a single anharmonic coution with parametedy is added
to the first harmonic term the maximal superintegrabilitjost, but the resulting system (for any
number of arbitraryd’s) always keeps thé2N — 3) integrals of motion (1.4). In particular, the
latter are just the integrals of the motion for the radial fié&r system [4, 5], which is recovered
by taking w and &, as the only non-vanishing parameters. We also recall tieaintiegrability
properties of some quartic oscillators can be generaliagtiet Calogero—Moser systems defined
with such nonlinear oscillators as external potentials (6¢and references therein).

In the following sections we present the superintegrablenifanians defining anharmonic
oscillators on theND sphere and hyperbolic spaces [7], as well as ohNBnRiemannian space
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of variable curvature. The latter space isNID generalization of the 2D Darboux surface of type
11 [8, 9], one of the four 2D spaces with non-constant cunvatwhose geodesic flows are MS.
We stress that in the constant curvature cases the zeratatg\(flat) limit leads to the Euclidean

nonlinear oscillator (1.11).

2 Anharmonic oscillators on spaces of constant curvature

In this section we consider th¢D classical Riemannian spaces with constant sectionahtune
k: the spher&N (k > 0) and the hyperbolic spad&" (k < 0). We recall that both of them can be
embedded in a linear spaB&' with ambient or Weierstrass coordinates, x) = (Xo, X1, .., Xn)
subjected to the “sphere” constraint

Y x4+kxi=1 (2.1)

The metric on the propeMD spaces reads [10]:

ds’ = % (dxg + Kkax?)| | (2.2)
>

where o2 = 5N, dx?.

In order to be able to apply the results described in secttorttie geodesic flows and oscillator
potentials orSN andHN (with the construction of the constant curvature countérpithe QMS
Hamiltonian onEN (1.11) in mind), we shall proceed as follows:

e We interpret in a proper way the “abstract” canonical cawatés and momentgay,p) as
intrinsic quantities on each space; this step can be aahigweugh different projections
from the ambient spad@N+1. The resulting metric in terms ofleads to the kinetic energy
term of the Hamiltonian.

e We deduce the form of the corresponding intrinsic harmorscillator potential on the
spaces with constant curvature as a functioq;afs flat limit (or contractionk — 0 has to
give (1.9). Moreover, in our framework the well-known maxinsuperintegrability of this
potential on these spaces has to be explicitly proven byrfintdie additional integral of the
motion through direct computation.

¢ Finally, QMS anharmonic oscillator potentials can be ai®dias a symmetry—preserving
perturbation of the intrinsic oscillator on these spacesparticular, we can consider the
sum of all the powers of the above intrinsic oscillator ptisdnn such a way that their flat
limit kK — O reduces to (1.11). In this way, the constant curvatureognals of the radial
Garnier system will be obtained by considering the anharcitgrgiven by the square of
the intrinsic oscillator.

In the following we apply the above steps by considering tyyes of phase spacég,p) in
SN andHN coming from different projections froN+1. Obviously, the two Hamiltonians so
obtained are canonically equivalent through a change atioates despite its apparent disequiv-
alence as objects defined on #i€2,R) Poisson algebra.
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2.1 Stereographic projection: Poincagé coordinates

Let us consider the stereographic projection [7] from théiamt coordinate$xg,x) € = ¢ RN*1
to the Poincaré coordinatgsc RN with pole (—1,0) € RN+

(=1,0)0+A (1,q) € = (2.3)

Hence we obtain that

2 _ _ 1-kq? .,
=Tk Xo=A 1_1+Kq2’ x_Aq_l+Kq2. (2.4)
Therefore, the metric (2.2) in Poincaré coordinates reads
dg?
ds® = 4(1+T2)2' (2.5)

And the associated geodesic flow has (up to a positive cdrfsiztor) the free Lagrangian

qz

The canonical momengaare obtained through the usual Legendre transformationeauti

q
=— . 2.7
P= 17 kq?2 (2.7)
Thus theND kinetic energy orSN andHN is given in Hamiltonian form as a particular case of
(1.6); namely

1 1 2
T =51+ KJ_)%J, = 3 (1+kg?)“p?. (2.8)
As a consequence, this geodesic flow is (at least) QMS, widh) fiking the explicit (and invariant)
form of the integrals of the motion. However, we stress thdhe context of Poincaré coordinates
the geometric interpretation of such integrals in termsngfidar momentum components is lack-
ing.

The next point is to deduce the curved harmonic oscillatéenq@l in terms of these Poincaré
coordinategy. We recall that the radial (geodesic polar) distanéem an arbitrary point to the
origin in SN (k > 0) andHN (k < 0) along the geodesic joining both points is written (in a@mibi
coordinates) as [10, 11]

2
%tar?(\/?r) = % (2.9)

Consequently, the well-known intrinsic oscillator on ciams curvature spaces (the so-called Higgs
oscillator [12, 13]) is written in Poincaré coordinates as

_} 2 g2
U = zw 7(1—Kq2)2' (2.10)
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In this way the full Higgs oscillator Hamiltonian reads

1 2 1 2 J_ 1 N2 2
= (14K VL 4w —— =T (1
A =5 (1+KI )+ S0 A ki 5 (1+Ka°) P+

2 q°

E m. (2.11)

This system is known to be MS [12]. Therefore, the remainimcfionally independent constant
of the motion does exist and, therefore, it has to be foundifectdmethods. Such an additional
integral can be shown to be any of the followiNgunctions [1]:

2 2 w?q? :
7 = (p(1—ka?) +2k(q-p)a) T Ak i=1,...,N. (2.12)

Now, a natural perturbation of this Hamiltonian includingharmonic terms that preserve the
QMS properties of the system would be

A =5 (UK + 56 1—kJ 2 KJ 2. (1 KJ)>
1 ,  9* 2 0 q 2(k+1)

Ms

(2.13)

I\JIH

Notice that when any # 0 this curved anharmonic oscillator is QMS (it always comesuwith

the integrals (1.4) due to its{(2,R)-coalgebra symmetry) but not MS (at least with integrals
depending quadratically on the momenta). In fact,Mhe 2 restriction of this perturbed system
does not appear in the classifications of MS system§%andH? given in [14, 15, 16]. Note
also that the first perturbative term given dy+ 0 can be considered as the constant curvature
generalization of the (radial) Garnier system.

2.2 Central projection: Beltrami coordinates

Now we consider the central projection from the ambient dimates(xg,x) € = ¢ RN*! to the
Beltrami onegy € RN with pole (0,0) € RN+

(0,00+u (L) €z, (2.14)

so that we find

1 _ q

_ ’ =u, X=UQ=—10 . 2.15
u Tre Xo=H pq T xe (2.15)
Then the metric (2.2) turns out to be
_ (1+kg*)dq® — k(q-dq)?
ds’ = Tk : (2.16)
The corresponding free Lagrangian is given by
2\42 _ )2
g = A+K)G—K(Q- )7 (2.17)

2(1+Kg?)?
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which leads to the definition of the conjugate momentss:

1+ k%) —K(q-G)q
p=" K(lquf)(z ), (2.18)

Hence the kinetic energy Hamiltonian describing geodesitian reads

T =Z(1+kd) (I +kI) = %(1+ k9?) (p?+K(q-p)?). (2.19)

NI

By taking into account (2.9) we find that the expression ofdbeved oscillator or§N and HN
adopts in these Beltrami coordinates the following “Euedid” form:

U = %wzqz, (2.20)

which yields the following expression for the complete @adhoscillator Hamiltonian (again as a
particular case of (1.6)):

1 1 1 1
H = 5 (14+&JI) (I4 +KkIE) + sz‘)_ = 5(1+ K?) (p?+K(q-p)?) + szqz. (2.21)

The remaining constant of the motion for this MS Hamiltonéam be taken from any of th¢
functions [1]

S =(p+k(Q-p)g)’+ P,  i=1...,N (2.22)

And the explicit QMS anharmonic generalization of (2.21)lisposed to be

H = % (1+KJ) (3, +k3) + %wZJ_ + 3 3kt
k=1
1 1 <
= 5 (1+k0?) (P*+K(q-P)?) + 500"+ Y SG? . (2.23)
k=1

Note that in this coordinates the curved Garnier term isrgjust by theg® perturbation.

3 Oscillators on anND space of non-constant curvature

In arbitrary manifolds with non-constant curvature, kiagnergy Hamiltonians can exhibit ex-
tremely complicated dynamics and are, in general, no loiigegrable [17]. From a physical
viewpoint, the caracterization of (super)integrable gmsitlflows on curved (pseudo)-Riemannian
manifolds in arbitrary dimensions is relevant for superiyaand superstring theories, and con-
stitutes an active research field (see [18] and refereneesiit). Let us consider the (spherically
symmetric and conformally flailD Riemannian manifold whose metric and geodesic Hamilto-
nian flow are given by

2
d€° = (a+9%)dg®, 7= aiqz, (3.1)
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where the parametex > 0. This is a space with non-constant curvature. Moreoversdalar
curvature is negative and given by

3(N—-2)g?+2aN

R=—(N-1)== ="

(3.2)

In the N = 2 case, this space is just one of the so-called 2D Darbouxespdhe 2-manifolds
with non-constant curvature admitting two quadratic finsegrals, so that its geodesic motion is
guadratically MS. There are only four types of such spacgswBich are (from the integrabil-
ity viewpoint) the closest ones to constant curvature osiesge theirND generalizations are the
only spaces other thadN, HN andSN whose geodesic motion could be expected to be (quadrati-
cally) MS for any dimension. In fact, adD spherically symmetric generalization of the four 2D
Darboux spaces has been recently introduced in [19] andrstmive QMS.

The integrability properties of the space (3.1) have beerotighly studied in [20], where it
has been shown that the Hamiltonian

)+ Wt p? 5 2

_ 3.3
a+J- a+q2+w a+qg?’ 33

is a MS system witli2N — 2) functionally independent quadratic first integrals givgaia by (1.4)
and one of the following functions

Ji=p— (A -, i=1.. N (3.4)

Note that this integratannotbe written as a function of the(2,R) symmetry; moreover, the set
{# :1<i<N}isalso ininvolution. To the best of our knowledge, this Hiomian provides the
first example of a Hamiltonian system on a Riemannian spaoem{onstant curvature which is
MS in any dimension.

Furthermore, a geometric analysis shows [20] that the fiaten

> - 5 9
= —,
a+J_ a+g?

(3.5)

can be interpreted as the intrinsic harmonic oscillatorhos ¢urved space, that turns out to be
MS, despite of the introduction of a non-constant curvatié¢e remark that, as expected, for
N = 2 this model is listed in the classification of MS potentials the Darboux space of type llI
given in [9]. At this point, two different proposals for thefihition of anND QMS anharmonic
oscillator perturbation on this space arise in a natural W first one consists in the same type
of generalization proposed in the constant curvature adsssibed in section 2:

o= a+J- o a+J- +k;5k <a+J>

2 2 o 2\ K+l
P~ w2 +Z<Sk( 9 ) . (3.6)
k=1

Tatq? ' atq? a+q?

A second (and perhaps more natural) possibility arises ifreadize that in (3.3) the intrinsic
oscillator on this curved space is just the “Euclidean” testir divided by the conformal factor of
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the metric, which carries all the information concerning tton-constant curvature of the space
(see [19]). From this perspective, the curved anharmortila®mr would be defined as

_ A @) 450,00 pPr e’ 45, 4

o a+J_ a+g?

(3.7)

In any case, both Hamiltonians (3.6) and (3.7) are QMS akel tfie rest of the systems presented
in this paper, they do have the same set of universal inge@tadt) coming from theis((2,R)
symmetry.
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