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Abstract

The maximal superintegrability of the intrinsic harmonic oscillator potential onN-dimensional
spaces with constant curvature is revisited from the point of view of sl(2)-Poisson coalgebra
symmetry. It is shown how this algebraic approach leads to a straightforward definition of
a new large family of quasi-maximally superintegrable perturbations of the intrinsic oscilla-
tor on such spaces. Moreover, the generalization of this construction to thoseN-dimensional
spaces with non-constant curvature that are endowed withsl(2)-coalgebra symmetry is pre-
sented. As the first examples of the latter class of systems, both the oscillator potential on an
N-dimensional Darboux space as well as several families of its quasi-maximally superinte-
grable anharmonic perturbations are explicitly constructed.

1 Introduction

The Poisson-coalgebraic “dynamical” symmetry underlyingall the superintegrable Hamiltonian
systems that we shall present in the sequel can be summarizedas the following quite general
result [1, 2]: Let(q,p) =

(

(q1, . . . ,qN),(p1, . . . , pN)
)

beN pairs of canonical variables with respect
to the Poisson bracket

{ f ,g} =
N

∑
i=1

(

∂ f
∂qi

∂g
∂ pi

− ∂g
∂qi

∂ f
∂ pi

)

, (1.1)

and let us consider the three functions given by

q2 =
N

∑
i=1

q2
i , p2 =

N

∑
i=1

p2
i , q ·p =

N

∑
i=1

qi pi . (1.2)
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Then, givenanysmooth functionH , the Hamiltonian

H(N) = H (q2,p2,q ·p) (1.3)

defines anN-dimensional (ND) classical superintegrable HamiltonianH(N) with (2N− 3) func-
tionally independent integrals of the motion that are explicitly given by

C(m) =
m

∑
1≤i< j

(qi p j −q j pi)
2, C(m) =

N

∑
N−m+1≤i< j

(qi p j −q j pi)
2, (1.4)

wherem= 2, . . . ,N andC(N) =C(N). Furthermore, the sets of functions given by{H(N),C(m)} and

{H(N),C(m)} (m= 2, . . . ,N) define two sets ofN integrals in involution. Proofs, technical details
and further generalizations can be found in [1, 2] but, at this point, some remarks concerning the
symmetry and superintegrability properties ofH(N) are in order.

• Remark 1. If the three functions (1.2) are written asJ−, J+ andJ3, respectively, by comput-
ing the Poisson bracket (1.1) among them we recover the Lie–Poisson commutation rules of
sl(2,R):

{J3,J+} = 2J+, {J3,J−} = −2J−, {J−,J+} = 4J3. (1.5)

In other words, the functions (1.2) define a particularND symplectic realization ofsl(2,R).
Hence any HamiltonianH(N) can be thought of as a smooth function defined onsl(2,R)

H(N) = H (J−,J+,J3) = H (q2,p2,q ·p), (1.6)

and all the results here presented can be interpreted in the framework ofsl(2,R)-Poisson
dynamics. Properly speaking,H(N) is defined on a three-dimensionalsl(2,R)-subalgebra
of the sl(2,R)⊗·· ·⊗N)

sl(2,R) Poisson algebra. We stress that integrable systems on the
Euclidean space and endowed with theN-particlesl(2,R)-symmetry given by the represen-
tation (1.2), were already studied in [3].

• Remark 2. The “universal” integrals of motion (1.4) are derived fromthe Casimir function
of the aforementionedsl(2,R) Poisson algebra (see [1]), and are given as sums of the square
of certain angular momentum components. In particular, since the functionsLi j = qi p j −
q j pi with i < j andi, j = 1, . . . ,N span anso(N) Lie–Poisson algebra with Poisson brackets

{Li j ,Lik} = L jk, {Li j ,L jk} = −Lik, {Lik,L jk} = Li j , i < j < k, (1.7)

the integrals (1.4) can be rewritten as

C(m) =
m

∑
1≤i< j

L2
i j , C(m) =

N

∑
N−m+1≤i< j

L2
i j . (1.8)

This, in turn, means that thesl(2,R)⊗ ·· · ⊗N)
sl(2,R) symmetry gives us the right pre-

scription to get the appropriate subset of quadratic functions of the generators ofso(N)
that Poisson-commute with the Hamiltonian (1.3)and are in involution. In this respect,
note that the algebrasl(2,R)⊗ ·· ·⊗N)

sl(2,R) has only 3N generators and many of them
do Poisson-commute, whilstso(N) hasN(N− 1)/2 generators with many non-vanishing
Poisson brackets among them.
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• Remark 3. It is well-known that the maximum number of functionally independent (and
different from the Hamiltonian itself) integrals of the motion for an ND Hamiltonian is
(2N−2). In the case that all these integrals do exist, the sytem is called maximally super-
integrable(MS). SinceH(N) (1.3) has, by construction,(2N−3) functionally independent
integrals, we shall say that this is aquasi-maximally superintegrable(QMS) Hamiltonian.
Nevertheless, for some specific choices of the functionH it will be possible to find the
remaining integral (which is not provided by the above symmetry). In that caseH will
define a MS system.

• Remark 4. The canonical variables(q,p) havea priori neither a given geometrical (physi-
cal) meaning, nor restricted (real/complex) values.

Therefore, we can conclude thatH(N) (1.6) comprises a large family of QMS Hamiltonians;
each particular system arises for a specific choice of the functionH together with an “appropriate”
geometrical interpretation of the canonical variables.

1.1 Oscillators on theND Euclidean space

In order to illustrate these ideas and also as the starting point for further developments, let us
consider theND isotropic harmonic oscillator with angular frequencyω . Such a system can easily
be identified within the family (1.6) by simply setting

H =
1
2

J+ +
1
2

ω2J− =
1
2

p2 +
1
2

ω2q2, (1.9)

for whichq are Cartesian coordinates in theND Euclidean spaceEN. This Hamiltonian is not only
QMS, but the standard prototype of MS systems. In fact, the “remaining” constant of the motion
can be taken as any of theN integrals

Ii = p2
i + ω2q2

i , i = 1, . . . ,N, (1.10)

since eachIi is functionally independent with respect to both the set (1.4) andH . The results
above summarized allows for a straightforward superintegrable even-order anharmonic oscillator
perturbation given by [1]:

H =
1
2

J+ +
1
2

ω2J− +
∞

∑
k=1

δkJ
k+1
− =

1
2

p2+
1
2

ω2q2 +
∞

∑
k=1

δkq2(k+1), (1.11)

which is QMS for any choice of theδk parameters, since the Hamiltonian (1.11) is indeed a func-
tion of (1.2). We remark that once a single anharmonic contribution with parameterδk is added
to the first harmonic term the maximal superintegrability islost, but the resulting system (for any
number of arbitraryδk’s) always keeps the(2N− 3) integrals of motion (1.4). In particular, the
latter are just the integrals of the motion for the radial Garnier system [4, 5], which is recovered
by taking ω andδ1 as the only non-vanishing parameters. We also recall that the integrability
properties of some quartic oscillators can be generalized to the Calogero–Moser systems defined
with such nonlinear oscillators as external potentials (see [6] and references therein).

In the following sections we present the superintegrable Hamiltonians defining anharmonic
oscillators on theND sphere and hyperbolic spaces [7], as well as on anND Riemannian space
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of variable curvature. The latter space is anND generalization of the 2D Darboux surface of type
III [8, 9], one of the four 2D spaces with non-constant curvature whose geodesic flows are MS.
We stress that in the constant curvature cases the zero-curvature (flat) limit leads to the Euclidean
nonlinear oscillator (1.11).

2 Anharmonic oscillators on spaces of constant curvature

In this section we consider theND classical Riemannian spaces with constant sectional curvature
κ : the sphereSN (κ > 0) and the hyperbolic spaceHN (κ < 0). We recall that both of them can be
embedded in a linear spaceR

N+1 with ambient or Weierstrass coordinates(x0,x) = (x0,x1, . . . ,xN)
subjected to the “sphere” constraint

Σ : x2
0 + κx2 = 1. (2.1)

The metric on the properND spaces reads [10]:

ds2 =
1
κ

(

dx2
0 + κdx2)

∣

∣

∣

∣

Σ
, (2.2)

where dx2 = ∑N
i=1dx2

i .
In order to be able to apply the results described in section 1to the geodesic flows and oscillator

potentials onSN andH
N (with the construction of the constant curvature counterpart of the QMS

Hamiltonian onEN (1.11) in mind), we shall proceed as follows:

• We interpret in a proper way the “abstract” canonical coordinates and momenta(q,p) as
intrinsic quantities on each space; this step can be achieved through different projections
from the ambient spaceRN+1. The resulting metric in terms ofq leads to the kinetic energy
term of the Hamiltonian.

• We deduce the form of the corresponding intrinsic harmonic oscillator potential on the
spaces with constant curvature as a function ofq; its flat limit (or contraction)κ → 0 has to
give (1.9). Moreover, in our framework the well-known maximal superintegrability of this
potential on these spaces has to be explicitly proven by finding the additional integral of the
motion through direct computation.

• Finally, QMS anharmonic oscillator potentials can be obtained as a symmetry–preserving
perturbation of the intrinsic oscillator on these spaces: in particular, we can consider the
sum of all the powers of the above intrinsic oscillator potential in such a way that their flat
limit κ → 0 reduces to (1.11). In this way, the constant curvature analogues of the radial
Garnier system will be obtained by considering the anharmonicity given by the square of
the intrinsic oscillator.

In the following we apply the above steps by considering two types of phase spaces(q,p) in
S

N andH
N coming from different projections fromRN+1. Obviously, the two Hamiltonians so

obtained are canonically equivalent through a change of coordinates despite its apparent disequiv-
alence as objects defined on thesl(2,R) Poisson algebra.
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2.1 Stereographic projection: Poincaŕe coordinates

Let us consider the stereographic projection [7] from the ambient coordinates(x0,x) ∈ Σ ⊂ R
N+1

to the Poincaré coordinatesq ∈ R
N with pole(−1,0) ∈ R

N+1:

(−1,0)+ λ (1,q) ∈ Σ. (2.3)

Hence we obtain that

λ =
2

1+ κq2 , x0 = λ −1 =
1−κq2

1+ κq2 , x = λ q =
2q

1+ κq2 . (2.4)

Therefore, the metric (2.2) in Poincaré coordinates reads

ds2 = 4
dq2

(1+ κq2)2 . (2.5)

And the associated geodesic flow has (up to a positive constant factor) the free Lagrangian

T =
q̇2

2(1+ κq2)2 . (2.6)

The canonical momentap are obtained through the usual Legendre transformation andread:

p =
q̇

(1+ κq2)2 . (2.7)

Thus theND kinetic energy onSN andH
N is given in Hamiltonian form as a particular case of

(1.6); namely

T =
1
2

(1+ κJ−)2 J+ =
1
2

(

1+ κq2)2
p2. (2.8)

As a consequence, this geodesic flow is (at least) QMS, with (1.4) being the explicit (and invariant)
form of the integrals of the motion. However, we stress that in the context of Poincaré coordinates
the geometric interpretation of such integrals in terms of angular momentum components is lack-
ing.

The next point is to deduce the curved harmonic oscillator potential in terms of these Poincaré
coordinatesq. We recall that the radial (geodesic polar) distancer from an arbitrary point to the
origin in S

N (κ > 0) andH
N (κ < 0) along the geodesic joining both points is written (in ambient

coordinates) as [10, 11]

1
κ

tan2(
√

κ r) =
x2

x2
0

. (2.9)

Consequently, the well-known intrinsic oscillator on constant curvature spaces (the so-called Higgs
oscillator [12, 13]) is written in Poincaré coordinates as

U =
1
2

ω2 q2

(1−κq2)2 . (2.10)



48 A Ballesteroset al.

In this way the full Higgs oscillator Hamiltonian reads

H =
1
2

(1+ κJ−)2J+ +
1
2

ω2 J−
(1−κJ−)2 =

1
2

(

1+ κq2)2
p2 +

1
2

ω2 q2

(1−κq2)2 . (2.11)

This system is known to be MS [12]. Therefore, the remaining functionally independent constant
of the motion does exist and, therefore, it has to be found by direct methods. Such an additional
integral can be shown to be any of the followingN functions [1]:

Ii =
(

pi(1−κq2)+2κ(q ·p)qi
)2

+
ω2q2

i

(1−κq2)2 , i = 1, . . . ,N. (2.12)

Now, a natural perturbation of this Hamiltonian including anharmonic terms that preserve the
QMS properties of the system would be

H =
1
2

(1+ κJ−)2J+ +
1
2

ω2 J−
(1−κJ−)2 +

∞

∑
k=1

δk

(

J−
(1−κJ−)2

)k+1

=
1
2

(

1+ κq2)2
p2 +

1
2

ω2 q2

(1−κq2)2 +
∞

∑
k=1

δk
q2(k+1)

(1−κq2)2(k+1)
. (2.13)

Notice that when anyδk 6= 0 this curved anharmonic oscillator is QMS (it always commutes with
the integrals (1.4) due to itssl(2,R)-coalgebra symmetry) but not MS (at least with integrals
depending quadratically on the momenta). In fact, theN = 2 restriction of this perturbed system
does not appear in the classifications of MS systems onS

2 andH
2 given in [14, 15, 16]. Note

also that the first perturbative term given byδ1 6= 0 can be considered as the constant curvature
generalization of the (radial) Garnier system.

2.2 Central projection: Beltrami coordinates

Now we consider the central projection from the ambient coordinates(x0,x) ∈ Σ ⊂ R
N+1 to the

Beltrami onesq ∈ R
N with pole(0,0) ∈ R

N+1:

(0,0)+ µ (1,q) ∈ Σ, (2.14)

so that we find

µ =
1

√

1+ κq2
, x0 = µ , x = µ q =

q
√

1+ κq2
. (2.15)

Then the metric (2.2) turns out to be

ds2 =
(1+ κq2)dq2−κ(q ·dq)2

(1+ κq2)2 . (2.16)

The corresponding free Lagrangian is given by

T =
(1+ κq2)q̇2−κ(q · q̇)2

2(1+ κq2)2 , (2.17)
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which leads to the definition of the conjugate momentap as:

p =
(1+ κq2)q̇−κ(q · q̇)q

(1+ κq2)2 . (2.18)

Hence the kinetic energy Hamiltonian describing geodesic motion reads

T =
1
2

(1+ κJ−)
(

J+ + κJ2
3

)

=
1
2
(1+ κq2)

(

p2 + κ(q ·p)2) . (2.19)

By taking into account (2.9) we find that the expression of thecurved oscillator onSN andH
N

adopts in these Beltrami coordinates the following “Euclidean” form:

U =
1
2

ω2q2, (2.20)

which yields the following expression for the complete curved oscillator Hamiltonian (again as a
particular case of (1.6)):

H =
1
2

(1+ κJ−)
(

J+ + κJ2
3

)

+
1
2

ω2J− =
1
2
(1+ κq2)

(

p2 + κ(q ·p)2)+
1
2

ω2q2. (2.21)

The remaining constant of the motion for this MS Hamiltoniancan be taken from any of theN
functions [1]

Ii = (pi + κ(q ·p)qi)
2 + ω2q2

i , i = 1, . . . ,N. (2.22)

And the explicit QMS anharmonic generalization of (2.21) isproposed to be

H =
1
2

(1+ κJ−)
(

J+ + κJ2
3

)

+
1
2

ω2J− +
∞

∑
k=1

δkJ
k+1
−

=
1
2
(1+ κq2)

(

p2 + κ(q ·p)2)+
1
2

ω2q2 +
∞

∑
k=1

δkq2(k+1). (2.23)

Note that in this coordinates the curved Garnier term is given just by theq4 perturbation.

3 Oscillators on anND space of non-constant curvature

In arbitrary manifolds with non-constant curvature, kinetic-energy Hamiltonians can exhibit ex-
tremely complicated dynamics and are, in general, no longerintegrable [17]. From a physical
viewpoint, the caracterization of (super)integrable geodesic flows on curved (pseudo)-Riemannian
manifolds in arbitrary dimensions is relevant for supergravity and superstring theories, and con-
stitutes an active research field (see [18] and references therein). Let us consider the (spherically
symmetric and conformally flat)ND Riemannian manifold whose metric and geodesic Hamilto-
nian flow are given by

ds2 = (a+q2)dq2, T =
p2

a+q2 , (3.1)
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where the parametera > 0. This is a space with non-constant curvature. Moreover, its scalar
curvature is negative and given by

R= −(N−1)
3(N−2)q2+2aN

(a+ q2)3 . (3.2)

In the N = 2 case, this space is just one of the so-called 2D Darboux spaces: the 2-manifolds
with non-constant curvature admitting two quadratic first integrals, so that its geodesic motion is
quadratically MS. There are only four types of such spaces [8], which are (from the integrabil-
ity viewpoint) the closest ones to constant curvature ones,since theirND generalizations are the
only spaces other thanEN, H

N andS
N whose geodesic motion could be expected to be (quadrati-

cally) MS for any dimension. In fact, anND spherically symmetric generalization of the four 2D
Darboux spaces has been recently introduced in [19] and shown to be QMS.

The integrability properties of the space (3.1) have been thoroughly studied in [20], where it
has been shown that the Hamiltonian

H =
J+ + ω2J−

a+J−
=

p2

a+q2 + ω2 q2

a+q2 , (3.3)

is a MS system with(2N−2) functionally independent quadratic first integrals given again by (1.4)
and one of the following functions

Ii = p2
i − (H −ω2)q2

i , i = 1, . . . ,N. (3.4)

Note that this integralcannotbe written as a function of thesl(2,R) symmetry; moreover, the set
{Ii : 1≤ i ≤ N} is also in involution. To the best of our knowledge, this Hamiltonian provides the
first example of a Hamiltonian system on a Riemannian space ofnon-constant curvature which is
MS in any dimension.

Furthermore, a geometric analysis shows [20] that the potential

U = ω2 J−
a+J−

= ω2 q2

a+q2 , (3.5)

can be interpreted as the intrinsic harmonic oscillator on this curved space, that turns out to be
MS, despite of the introduction of a non-constant curvature. We remark that, as expected, for
N = 2 this model is listed in the classification of MS potentials for the Darboux space of type III
given in [9]. At this point, two different proposals for the definition of anND QMS anharmonic
oscillator perturbation on this space arise in a natural way. The first one consists in the same type
of generalization proposed in the constant curvature casesdescribed in section 2:

H =
J+

a+J−
+ ω2 J−

a+J−
+

∞

∑
k=1

δk

(

J−
a+J−

)k+1

=
p2

a+q2 + ω2 q2

a+q2 +
∞

∑
k=1

δk

(

q2

a+q2

)k+1

. (3.6)

A second (and perhaps more natural) possibility arises if werealize that in (3.3) the intrinsic
oscillator on this curved space is just the “Euclidean” oscillator divided by the conformal factor of
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the metric, which carries all the information concerning the non-constant curvature of the space
(see [19]). From this perspective, the curved anharmonic oscillator would be defined as

H =
J+ + ω2J− + ∑∞

k=1 δkJ−k+1

a+J−
=

p2+ ω2q2+ ∑∞
k=1 δkq2(k+1)

a+q2 . (3.7)

In any case, both Hamiltonians (3.6) and (3.7) are QMS and, like the rest of the systems presented
in this paper, they do have the same set of universal integrals (1.4) coming from theirsl(2,R)
symmetry.
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