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Abstract

We define the deformation quantization in the Fedosov searse lfmit model of Taubes in
white noise analysis.

1 Introduction

Let us recall the program of deformation quantization ([3]).

Let A be a Frechet unital commutative complex algebra endowed aMRoisson structure. It
is a continuous antisymmetric bilinear még from A x A into A satisfying the Jacobi equation
and which vanishes on 1 which is a derivation in each variabkeformation quantization is the
following:

We consider the set of formal serid§h]] in A. It is aCf[[h]]-algebra, wher€[[h]] denotes the
set of formal series with values in the complex numbers . Wet veadefine &C[[h]] linear product
« on A[h]] such that:

i)A[[h]] endowed with« is a non commutative algebra.

ilf F andG are inA

F+G= Y hRA(F,G| (1.2)

whereR is continuous fromA x Ainto AandR[1,F] =0 if k > 0.
i) Po[F,G] = FG for F andG in Aand

Pi[F,G] — P1[G,F] = —ih{F,G} 1.2)

If we consider the case where the algeBris the space of smooth functions B endowed
with a non degenerated antisymmetric form, the algébigherits of a Poisson structure and we
can consider the Moyal product on it.

Let M be a compact symplectic manifoldA = C*(M) inherits of a Poisson structure and
Fedosov ([9]) constructedsaproduct on it by glueing together all the Moyal product aténgent
spaces through a suitable connection on the Weyl bund|§) @24V1.

We are motivated by an extension of Fedosov constructiohenrtfinite dimensional setting.
Dito ([6]) has defined the Moyal product on a Hilbert spacavéfconsider as algebra the algebra
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of functionals of Malliavin type on a Wiener space, Ditodnglre ([7]) has extended the construc-
tion of [6]. Léandre ([17]) has considered another cortstsgmplectic form on the underlying
Hilbert space of the Wiener space, which leads to a non-tEmiR®isson structure on the space of
test functionals in the Malliavin sense on the Wiener spabés leads Léandre ([17]) to consider
a Hida test Bosonic Fock space instead of the algebra ofiturads smooth in the Malliavin sense
on the Wiener space.

We are motivated by an extension of the works [6], [7], [L7}He free loop space of a man-
ifold. Analysis on the free loop space of a manifold is verypaortant for mathematical physics:
see for instance the seminal work of Witten ([29]). Taub@3]([ has considered a limit model
for the free loop space: it is constituted as the family oflftap spaces in each tangent space of
the manifold. On each loop space on each tangent spab®) of M, Taubes considers a super-
symmetric Fock space, carries Gaussian analysis on it adgesthow this analysis depends on
the finite dimensional parameter Taubes limit model has its counterpart in stochastic amaly
in the works of Jones-Léandre ([12]), Léandre-Roan {[B8id Léandre ([13], [14], [15], [16])
motivated by the Index theory on the free loop space.

In this paper, we consider a Taubes limit model, but instéadsidering a family of ordinary
Fock spaces as Taubes did, we consider a family of weightdd Fack spaces. We can repeat in
this infinite dimensional situation the considerations efiésov.

For people interested by deformation quantization, wer ieféhe survey of Dito-Sternheimer
([8]), Maeda ([20]) and Weinstein ([28]).

We thank G. Dito and I. Mitoma for helpfull discutions.

2 Construction of the model

Let M be a compact Riemannian manifold endowed with a symplectio to. Let T(M) be the
tangent bundle o1 endowed with the natural projectignon M. We consider the sét, of finite
energy paths — y(s) from [0, 1] into T(M) such that fors,s' p(y(s)) = p(y(s')). We consider on
the set on paths starting from 0 in the tangent sgagd) atx of M the Hilbert norm:

[ 10/asys)as (2.1)

If &(x) is a local orthonormal basis @%(M), we get an orthonormal basis of this Hilbert spate
by putting

Xa(@(0)(5) = I T ) 22)
if n>0andifn<0
Xo(@(0)(5) = T2 ) 23)

andXo(&e(x)) = e(x) We consider this Hilbert spaddy of paths of the type (3) such thef has
an orthonormal basis given by thg(e (x)) n# 0

Let A= (ny,i1), .., (Ni,.ii, ) with n 7 0. We consider the normalized symmetric tensor prod-
uct

Xa(€)(X) = Xy (1, (X)) ... X,y (& (X)) (2.4)
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We introduce the Hida weight

A= 17 (nf>+1) (2.5)
(n|,i|)eA

LetC > 0 andp > 0. We consider the weighted Hida Fock sp&gg(x) of sums

3 Aa()Xa(€)(¥) = £(x) (2.6)
such that
S A PCA AP = 1€ (X)[I3 px < e (2.7)

&,p realizes a bundle ol in complex Hilbert spaces because the compon&gts) are chosen
complex. The Levi-Civita connection lifts on it into a Hettiran connection.

Definition 1. W.N,,_ is the space of sectiorfsbelonging to allS: , such that for alC, p,k,r
S [ IEKE00IE patx= 1€ s < 28)
k’<k

forallC>0,p>0,ke N.

If we consider two normalized elementary tensor productstake as product the normalized
tensor product got by concatenation of the indices of eaahg#®V therefore a product which can
be extended t@V.N,,_.

Theorem 1. W.N,_ is a topological algebra.
Proof. Let be

= AA(X)Xa(€)(x) (2.9)
2() =3 AR00Xa(€)(¥) (2.10)
be two elements diV.N,_. We have clearly
= 3 uA)Xa(€)(X) (211)
where
X) =Y Agi (A% (x) (2.12)

where we take the sum on multiindicBS andB? whose concatenation & By Jensen inequality
and chain rules for derivatives, we get that

3 1B KA TS IBARMIR Y T4 213)

K<k
where we take the sum @l andB? whose concatenation is equalAoBut in such a case

1Al = [1BY/]1B?| (2.14)
By Hoelder inequality we deduce that:

H (5152) ||C,p,k,r <K ||51HC’,p,k,2r ||EZHC’,p,k,2r (2.15)
for someC’ > C. [ |
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We can introduce the following symplectic form on the limibdel T.:

Q. y7) = [ (/a5 (9).d/ds(9)ds+ @(y(0).(0) (2.16)
Letl = (n,i) andJ = (m, j).We put
Q'Y (x) = Gymw™ () (2.17)

wherew"!(x) are the elements of the inverse matrix of the matrixuih a normal local coordi-
nates system centeredxndnn is the Kronecker symbol.
We put

Oi = an; (2.18)
which is the normalized annihilation operator on the Bosdtock space ifi =~ 0 ([17]). We put
D|_‘9)q if 1 =(0,i).

We define if1 and&2 belong tow. N,

{64,620 = ¥ Q7 ()01 X 05E2(X) (2.19)

Theorem 2. {, } defines a continuous Poisson Bracket o/ .

Proof. The fact that{, } satisfies the same algebraic properties than a standarsoRdisacket
holds by the same way than in finite dimension.

Let us show the continuity df, }. Only in the series the sum wherelie= (n, j) n# 0 put some
difficulties.

We have, modulo this restriction,

{E1E3 (%) = T ma()Xa(e)(¥ (2.20)

where

=3 g (A%, (02" () (2.21)

where we sum o8, 1,B2,J whose concatenation is equalAo There are at mog2/" terms in
the previous sum. By Jensen inequality

HA() 2 < CATS [Ag PIAG L P1Q (012 (2.22)

where we sum on the same set.
On the other hand for any there exists an enough by such that:

IAIPIAGII? < KCAS | Ags, (0 PIIBH U TP AZ (0 (1B U ) P! (2.23)

where we take the sum on the same set. We can patch togethsthinequality and the inequal-
ities of the type (2.14) where we take the derivativegigfx) in x in order to show that;

I{EY, €% le.prr < KIIEYleypukar l1€%llcy prkar (2.24)
for enough bigC; andp;. |

The goal of this paper is then to definexgoroduct onW.N,_ endowed with this Poisson
bracket by using the apparatus of Fedosov.

We can define following the lines of [17] a Moyal-Weyl prodact the Hida Fock space asso-
ciated toTy(M) @ Hy. The algebra is the same as in [17], the only difference wigials here to a
simplification is thaQ'~ is bounded.
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3 The Weyl bundle in Hida sense

We consideHy = Ty(M) and the real Hilbert spaddy of finite energy paths iffy(M) starting
from 0. We put

HY = Ho® Hy (3.1)

The previous sum is orthogonal. Af = (I, ..., 1,as5) we consider the normalized symmetric tensor
product

Xke(€) = Xy (§5...EX 0 (€) (32)
and if A2 = (Iy, .., l|a2)) we consider the normalized exterior product:
Xpa(€) = Xy (€) Ao A Xy (€) (3.3)

We order all the multiindices in lexicographic order in artteavoid some redundances.

If AS andAj are two multindices, we denote By UAS the concatenation of each multiindices
after reordering them. W§ andA3 are two indices we do the same operations denoted by the same
symbol if their intersection is empty and we get the emptyfdleir intersection is non empty.

We consider the Hida weights\®|| and||A?|| of the first part. We consider the Hida supersym-
metric test Fock space @ A).,_ of element of the supersymmetric Fock space

== z AAsﬁAaX'&s(e) X X,&a(e) (34)
such that for allp > 0 and allC > 0
=185 =3 A e P14 P A PO < oo 35)

These system of norms are invariant under an orthonornradftyamation depending only oton
the basisg (x).

The Weyl bundle in the Hida sense is the bunpigS ® A'),_) on the limit modelT., where
P« is the natural projection from the limit model da.

We consider the moyal product ¢8 @ Al)e_. If

=M =S MhsaaXhs(€) @ XGa(€) oo
we have:
o= =S A nsAis ns€(Xhs (€) 0 Xis(€)) © Xia g (€) &0

¢ denotes a sign. We define the Moyall prodxfg,%(e) oXtAg(e) as in the first part or in [17]: The
only difference is that if = (0,i) we consider a standard annihilation operator on the Foakespa

Theorem 3. The Moyal product is continuous froniS @ A, x (S®AY)e_ into (S @ AYw_[[h]].

Proof. We write

= & ©Xha(e) (3.8)
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such that

sto=2t = ; s(E EAa)an() (3.9)
A2UAT=A2

We consider the component of degreim the formal series i. We get that

(_l O:Zt) = ; 8( iatO Aa)nXAa( ) (310)
A AR
We get that
H(El’toiz’t)nHéf;H ; (Eaz © &ma nll& CAT 1A% P (3.11)
AUNT=AR

By Jensen inequality,

| (Eat 0 &g nll2 , < C¥ [(End 0 €212 (3.12)
AguAZé:Aa S M Aaué:Aa AL ER

By using the same considerations as in [17], but in a simpéey, Wecaus®'~ is bounded,
H(EAa 0§ ) [ < Col & ||cl,p1||f ||Cl,p1 (3.13)
We remark tha€C/Al = CIAIICIA] and that]| A2|| = || A3|||A3]| if A2UA3 = A2 We deduce that
IEH 0 =22, < Kl ZE, 12212, p, (3.14)
Therefore the result. [
Let be the ordinary Fock space. We consider the Shigekawaleam
o= Z apal (3.15)
whereg} is the family of annihilation operators on the Bosonic Foplce a7 the family of cre-

ation operators on the Bosonic Fock spagehe family of annihilation operators on the Fermionic
Fock space and® the family of creation operators on the Fermionic Fock sps¢e have:

6" =3 afa (3.16)
Let us recall ([25])
00" +0"0=Ng+Ng (3.17)

whereNg denotes the Bosonic number operator on the Bosonic Focle spadN- denotes the
Fermionic number operator on the Fermionic Fock space.

Theorem 4. 5 and &* are continuous ofiS @ A)e_
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Proof. Let be

= =5 AaepeXis(€) @ Xja(€) (3.18)
We have
== HacaeXas(€) ® Xa(€) (3.19)
where
Hps pe2 < (S [Aasuiaeat )2 <CHTS Aasiipai 2 (3.20)
leA2 leA2
such that
10=1Ep < 3 5 et s FIAUIP AT ey A (3.21)
ASAR | EAR

There are at mosA®| way to writeAas pa = Ansui Az -1 Therefore
162418 p < KIIZ'E, (3.22)

for K,Cq, p1 independent ok in M.
Let us consided*:

%=t = z uAs,AaX,Ks(e) & X};a(e) (3.23)
where
| Uas pa| < Z |Ans_1.p201 | (3.24)
I€As
We do as before by interchanging the roledéfandA? in order to show that:
1° =118 p < KI=',.p, (3.25)
for K,C1, p1 independent fronx in the compact manifold. |

Remark: We refer to the works of Arai-Mitoma ([1], [2]) for this statesnt.
Let us recall classically ([24]) that

5°=0:02=0;00"+0"0=Ng+N¢ (3.26)

We can speak of sections in Hida sense of the Weyl bundle ofdhbes limit model of
P5(S ®AY)e_. Let us recall for that the definition & p(x) in the first part. We consider the
Levi-Civita connection orM. This Levi-Civita connection lifts to the bundle dvi in Hilbert
spacex p @ (S @ AY)e, p,-

Definition 2. The space of sections in the Taubes-Hida sense of the bundigedimit model
P (S @ A is the space of sectiong of the bundleS p ® (S @ Al)c, p, such that for all
C, p,C1, p1,k, r positive numbersi(is an integer)

S | IEWO 1 o 0x= 916 o < (327)
kK'<k

We call this spac®#V.No,_ (p5 (S @ Ao, ).
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Remark: This space does not depend on the choice of the unitary cbonenT (M), because
we consider Hida test functional spaces.
We have the following properties:

1) 4 andd* are continuous oW.No,_ (pi, (S @ Al)e,_).

2) o is continuous fromV.No,_ (p5(S ® ADew_ ) x W.New_ (p5 (S @ Al)w_) into the Hida space
W.Noo— (p5 (S @ Al)e ).

3) If ¢ belong toW.Ne_ (pi (S @ AYe_),

S(Yroyr) = (0yn) o +edrodyn (3.28)
wheree = (—1)"t if Negs = righ.

We consider a symplectic connectibfion T(M): it is a connection without torsion which pre-
serves the symplectic form. The tangent bundle of the Taubes limit modepjH!. The sym-
plectic connection lifts to a symplectic connectiot® for the symplectic structure given i§y on
the limit model. This lifts to a symplectic connection degubbydrs- on p, (S @ Al)e_.

We have the main theorem of this part:

Theorem 5. drs- is a continuous application on W, (p%, (S @ Al)w_).

Proof. We can work in local coordinates i Let 'S be the connection 1-form of the symplectic
connection form orM. The connection 1-form ofp; (S ® Al)._) acts as a second quantized
operator of® and is therefore continuous. This means jate) is transformed into

Y X, (9&..&X_, (&rs(X; (e))®x|ﬁ+1(e)®..®x|ﬁw (e) =3*Xks(e) (3.29)

So we have only to show thdly, is in local coordinates iR € M continuous 0W.No,_ (p, (S ®
AYe_). Let  an element of this space:

Y= )\A’At.s’At.aXA(e) X X,&t‘s(e) & Xg't‘a(e) (3.30)
aaAfEata

Xa(e) is considered as an element®f,(x). Only the series which appears when we take deriva-
tives in the direction oHy put any problem. We consider the Bosonic annihilatmon S p(x)

and associated to it the creation Fermionic operaféirI on this time onA'(x). The possible
divergent series is

diy = Aapis g ;@Sm(e) ® Xies(€) @ & X2 4 (e) (3.31)
AAfEALa I'e
such that
diy = Ha s aaXa(€) @ Xhes(€) @ X3 a(€) (3.32)
AAfTALa
where
I.,lA7At,s’At‘a = Z AAUI’At‘S7At’a7I (333)

1Al
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By Jensen inequality, we have that:

t,a
“,lA’At‘sAt,a‘z < C‘A | Z ’AAUI,AtvS,At‘afI ‘2 (334)
leAh2

We remark that in the previous sum
AU PGS Pr AR — 1][Pr < (||A] A8 [|A%])) P (3.35)
We conclude as in the in the proof of Theorem 5. |
As in [9], we have that:
Ors=0+ 00rs= =0 (3.36)
and if s are elements OV.No_ (i (S @ Ao ) With Ne gy = 145 we have that:

Ors= (Y10 Y2) = (Orse(Yn)) o Yo + (—1)" Y10 Ors=(Y2) (3.37)

4 Abelian connection and quantization

We consider the formal series {§ ® A'),_ called (S @ A').,_[[h]]. On this space, we have a
grading by counting twice the power bfand 1 the length of the Boson. We get a spé8e
AY!,_ and we consider formal serigg-o(S @ A).,_. The Moyal product applies continuously
(S®AY x (S®A)2 into (S @A)t

We consider a continuous operaf@r from (S)!,  into |‘|L/Z|(S‘)';,, ® A1(Tx(M)) such that
R= YR is a continuous operator froff)~o(S),_ into [1j=0(S)t_ @ A1(Tx(M)).

This definition arises from the work of Fedosov ([9]):

Definition 3. We consider the operat@ = drs~ — d + R. It is called an Abelian Hida-Taubes
connection if:

-)@ maps continuousiW.Ne_ (p% (S @ AV w-).

'ngl/l o) = Oy o Y+ Y10 Ay, for any elements of W.Ne_ (P [1(S)k_)-

-)o<=0.

We conside(S™)! the set of finite combinations o, (e) of total gradingl.

The fiberwise Moyal product can be defined @4!)"* x (S'1)"2 and we can consider formal
series in(S™)!: this space is denoted [y(S™)!. We can defin&R"! in this situation as before
andR" = 3 R"! and the notion of combinatorial connectid in this context. In order to do
that, we replace in the Hida Fock spaBep(x) the series by finite combinations and we get a
combinatorial Fock spac8’. So we get a combinatorial limit mod&/’(p;, ],(S™)") and a
combinatorial Abelian connection

0" = Orse — 6+ R (4.1)
We remark thap " acts orW' (pi, (]i=0(S™)') such thata")? = 0.

Lemma 1. There exists a combinatorial Abelian connection.
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Proof. We consider the spadegM). Q restricts toT (M), a subspace df.,(M), due to (2.17). We
consider the Weyl bundle oh(M), the connectiors- restricts naturally to it as well asando.
By using the considerations of Fedosov ([9]), we can a slgitAbelian connection:

0t =0k — 3 +h 1t ] (4.2)

wherer! € >33 [Tx(M) @ (Tx(M)] @ AY(T(M)) and which depends only from(x) in T(M).
The firstTx(M) holds for thex part in the Weyl algebra and the second holds for the Fouraetem
considered (here the first one).

We recall thatH, = ®nz0Ty' (M) each part corresponding to the associated Fourier mode. We
consider the n part in the Fourier modes given by (2.2) arg).(2Ve get Bosons given by i(e).
Each bundlep;, Ty(M)" ~ pi,T(M) is parallel for the connectiodrs- and this decomposition is
orthogonal forQ. Let us consideK}s(e) where:

Xas(€) = (Xny lyy, @@ Xy )0+ Xyl @ X ) (4.3)

for ng,..,Nm.
We have that:

R Xis(e) = Z(anJlnl o...oR" an’rlnli OX”lJlnl) 0..0 (Xnm-,llnm o... OXnernm) (4.4)

1

such thatdfx,&s(e) is determined by (4.4). Namely on the symmetric Fock spateraned by
x and fixed Fourier modes, the combinatorial Abelian conoecis determined by the previous
considerations. |

Therefore we have determined the existence of a combinhtakelian connectiordf. We
will show thatd® can be extended in an Abelian Hida-Taubes connection.

Theorem 6. 8 can be extended in a Hida-Taubes Abelian connection.

Proof. drf&w — &' can be extended continuously on the Taubes-Hida test amattspace: it is
the object of the previous part. It is enough to show Rfatan be extended continuously on the
Hida-Taubes test sections in the sense of the beginningsob#nt.

For that, we put in (4.3) that

Xhe = X 0.0 Xse (4.5)

We consider an element of the Hida sp&8g )'. It is written

EI = z hrAAiﬁ___,Aankio...OXAsn (46)
M |AZ[+..+|AR[+2r=1;|A7|£0
such that
R=! = ; hAns..as, S X o0 R XG0 Xhe (4.7)
M |AS [+ 4| A+ 2r =1 AP0
where

2185 =3 1Asg..a TG A5 T A P < oo @9
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By the considerations of [9], [24] and the previous consitlens:
R =4S 1) X] (4.9)

wherer' belongs to[],=3S[Tx(M) @ Tx(M)] @ A1(Tx(M)) and corresponds to the Fedosov coun-
terterm for theé'" Fourier mode. It is the same formal expression for,allhich depends smoothly
of x. The sum in (4.9) is reduced to one element.

If we consider the parR" of R which goes from(S).,_ to ($)" @ A1(T(M)) and if we
compute the various Hida weights which appeaRihX_s, they are bounded byas||P+(1") where
k(1,1) is bounded. So the Hida weights which appear in

Zx,gio...oR“"x,E\_sox,g?n (4.10)
have a bound if] ||A%||P+<(1"). Moreover, in
RYXe = 1/h[3 1 X] (4.11)

where the previous sum is reduced only to one element, therat anosC/A' terms.
So we can write

IR'Zep <5 ag Il S Xhgo - oRXhs 0 Xk llc p
AS +.. S /
<3 g O Y AS P (4.12)
Let us recall that ifZ; is small enough ang, is big enough
K=Y CA| P < (4.13)

because it is equal to

U(Zczx/nz—kl_pﬂ—kl) _ ﬂ(l—ﬁ)l<m (4.14)

We use Cauchy-Schwartz inequality and the previous inggualorder to show that
A C|A1|+~|Am| X p-‘rk(”l) < K =l 4 15
> Ans.anlC [l < K= lca.pe (4.15)

SoR"" is continuous fromS)!,_(x) into (S)5"(x). We can prove in an exact similar way
thatR"" is continuous fronW.Ne,_ (p5, (S)!,_) into W.Nw_ (p5 (S)L). |

Theorem 7. Let F, G belonging to WN.,_ and letd be the Abelian Hida-Taubes connection of the
previous part. There exists a uniqyec W.No_ ([]j=0(S)k_) such thady = 0 and such that the
component ifS)%_ of ¢ equals F. We call thaiy = QF. The map F— QF is continuous.

Proof. On the combinatorial mod& = yi/h[r',.]. and there exists a flat section of the combina-
torial domain such its component ¢8'1)%is F'. ¢ satisfies to

Sy’ =l " +i/hY ¢ (4.16)
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and this equation can be solved step by step as in theorerof3g by applyingd 1 iteratively
as in [9]. But since the combinatorial model is densely cardusly imbedded in the Hida-Taubes
model, and sinceR is continuous on the Hida-Taubes model, we can solve by rugibyti the
equation

Y = Ors- Y+ RY (4.17)
because andd~! are continuous (see [9] for the definition &f1). [ |
Theorem 8. There exists & product on WN,,_.

Proof. Asin [9], we put

Y1+ = QHQ(Y1) 0 Q(ye)] (4.18)
whereQ is the isomorphism betwedWN.N.,_ and the space of flat sections in the Hida-Taubes
sense of]j>0(S)k_. ]
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