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Abstract

We define the deformation quantization in the Fedosov sense for a limit model of Taubes in
white noise analysis.

1 Introduction

Let us recall the program of deformation quantization ([3],[4]).
Let A be a Frechet unital commutative complex algebra endowed with a Poisson structure. It

is a continuous antisymmetric bilinear map{,} from A×A into A satisfying the Jacobi equation
and which vanishes on 1 which is a derivation in each variable. Deformation quantization is the
following:

We consider the set of formal seriesA[[h]] in A. It is aC[[h]]-algebra, whereC[[h]] denotes the
set of formal series with values in the complex numbers . We want to define aC[[h]] linear product
∗ on A[[h]] such that:

i)A[[h]] endowed with∗ is a non commutative algebra.
ii)If F andG are inA

F ∗G = ∑hkPk[F,G] (1.1)

wherePk is continuous fromA×A into A andPk[1,F ] = 0 if k > 0.
iii) P0[F,G] = FG for F andG in A and

P1[F,G]−P1[G,F ] = −ih{F,G} (1.2)

If we consider the case where the algebraA is the space of smooth functions onRd endowed
with a non degenerated antisymmetric form, the algebraA inherits of a Poisson structure and we
can consider the Moyal product on it.

Let M be a compact symplectic manifold.A = C∞(M) inherits of a Poisson structure and
Fedosov ([9]) constructed a∗-product on it by glueing together all the Moyal product on its tangent
spaces through a suitable connection on the Weyl bundle ([24]) on M.

We are motivated by an extension of Fedosov construction in the infinite dimensional setting.
Dito ([6]) has defined the Moyal product on a Hilbert space. Ifwe consider as algebra the algebra
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of functionals of Malliavin type on a Wiener space, Dito-Léandre ([7]) has extended the construc-
tion of [6]. Léandre ([17]) has considered another constant symplectic form on the underlying
Hilbert space of the Wiener space, which leads to a non-bounded Poisson structure on the space of
test functionals in the Malliavin sense on the Wiener space.This leads Léandre ([17]) to consider
a Hida test Bosonic Fock space instead of the algebra of functionals smooth in the Malliavin sense
on the Wiener space.

We are motivated by an extension of the works [6], [7], [17] tothe free loop space of a man-
ifold. Analysis on the free loop space of a manifold is very important for mathematical physics:
see for instance the seminal work of Witten ([29]). Taubes ([27]) has considered a limit model
for the free loop space: it is constituted as the family of flatloop spaces in each tangent space of
the manifold. On each loop space on each tangent spaceTx(M) of M, Taubes considers a super-
symmetric Fock space, carries Gaussian analysis on it and studies how this analysis depends on
the finite dimensional parameterx. Taubes limit model has its counterpart in stochastic analysis
in the works of Jones-Léandre ([12]), Léandre-Roan ([18]) and Léandre ([13], [14], [15], [16])
motivated by the Index theory on the free loop space.

In this paper, we consider a Taubes limit model, but instead of considering a family of ordinary
Fock spaces as Taubes did, we consider a family of weighted Hida Fock spaces. We can repeat in
this infinite dimensional situation the considerations of Fedosov.

For people interested by deformation quantization, we refer to the survey of Dito-Sternheimer
([8]), Maeda ([20]) and Weinstein ([28]).

We thank G. Dito and I. Mitoma for helpfull discutions.

2 Construction of the model

Let M be a compact Riemannian manifold endowed with a symplectic form ω . Let T(M) be the
tangent bundle ofM endowed with the natural projectionp onM. We consider the setT∞ of finite
energy pathss→ γ(s) from [0,1] into T(M) such that fors,s′ p(γ(s)) = p(γ(s′)). We consider on
the set on paths starting from 0 in the tangent spaceTx(M) at x of M the Hilbert norm:

∫ 1

0
|d/dsγ(s)|2ds (2.1)

If ei(x) is a local orthonormal basis ofTx(M), we get an orthonormal basis of this Hilbert spaceHx

by putting

Xn(ei(x))(s) =
cos[2πns]−1

2πn
ei(x) (2.2)

if n > 0 and ifn < 0

Xn(ei(x))(s) =
sin[2πns]

2πn
ei(x) (2.3)

andX0(ei(x)) = ei(x) We consider this Hilbert spaceHx of paths of the type (3) such thatHx has
an orthonormal basis given by theXn(ei(x)) n 6= 0

Let A = (n1, i1), ..,(ni|A| , i i|A|)) with ni 6= 0. We consider the normalized symmetric tensor prod-
uct

XA(e)(x) = Xn1(ei1(x))⊗̂...⊗̂Xn|A|(ei|A|(x)) (2.4)
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We introduce the Hida weight

‖A‖ = ∏
(nl ,il )∈A

(|nl |2 +1) (2.5)

LetC > 0 andp > 0. We consider the weighted Hida Fock spaceSC,p(x) of sums

∑λA(x)XA(e)(x) = ξ (x) (2.6)

such that

∑ |λA(x)|2C|A|‖A‖p = ‖ξ (x)‖2
C,p,x < ∞ (2.7)

SC,p realizes a bundle onM in complex Hilbert spaces because the componentsλA(x) are chosen
complex. The Levi-Civita connection lifts on it into a Hermitian connection.

Definition 1. W.N∞− is the space of sectionsξ belonging to allSC,p such that for allC, p,k, r

∑
k′≤k

∫

M
‖∇k′ξ (x)‖r

C,p,xdx= ‖ξ‖r
C,p,k,r < ∞ (2.8)

for all C > 0, p > 0,k∈ N.

If we consider two normalized elementary tensor products, we take as product the normalized
tensor product got by concatenation of the indices of each. We get therefore a product which can
be extended toW.N∞−.

Theorem 1. W.N∞− is a topological algebra.

Proof. Let be

ξ 1(x) = ∑λ 1
A(x)XA(e)(x) (2.9)

ξ 2(x) = ∑λ 2
A(x)XA(e)(x) (2.10)

be two elements ofW.N∞−. We have clearly

(ξ 1.ξ 2)(x) = ∑µA(x)XA(e)(x) (2.11)

where

µA(x) = ∑λ 1
B1(x)λ 2

B2(x) (2.12)

where we take the sum on multiindicesB1 andB2 whose concatenation isA. By Jensen inequality
and chain rules for derivatives, we get that

∑
k′≤k

‖∇k′µA(x)‖2 ≤ KC|A|∑( ∑
k′≤k

‖∇k′λ 1
B1(x)‖2)( ∑

k′≤k

‖∇k′λ 1
B1(x)‖2) (2.13)

where we take the sum onB1 andB2 whose concatenation is equal toA. But in such a case

‖A‖ = ‖B1‖‖B2‖ (2.14)

By Hoelder inequality we deduce that:

‖(ξ 1.ξ 2)‖C,p,k,r ≤ K‖ξ 1‖C′,p,k,2r‖ξ 2‖C′,p,k,2r (2.15)

for someC′ > C. �
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We can introduce the following symplectic form on the limit modelT∞:

Ω(γ1,γ2) =

∫ 1

0
ω(d/dsγ1(s),d/dsγ2(s))ds+ ω(γ1(0),γ2(0)) (2.16)

Let I = (n, i) andJ = (m, j).We put

ΩI ,J(x) = δn,mω i, j(x) (2.17)

whereω i, j(x) are the elements of the inverse matrix of the matrix ofω in a normal local coordi-
nates system centered inx. δn,m is the Kronecker symbol.

We put

∇I = an,i (2.18)

which is the normalized annihilation operator on the Bosonic Fock space ifn 6= 0 ([17]). We put
∇I = ∂

∂xi
if I = (0, i).

We define ifξ 1 andξ 2 belong toW.N∞−:

{ξ 1,ξ 2}(x) = ∑ΩI ,J(x)∇I ξ 1(x)∇Jξ 2(x) (2.19)

Theorem 2. {,} defines a continuous Poisson Bracket on W.N∞−.

Proof. The fact that{,} satisfies the same algebraic properties than a standard Poisson bracket
holds by the same way than in finite dimension.

Let us show the continuity of{,}. Only in the series the sum where inI = (n, j) n 6= 0 put some
difficulties.

We have, modulo this restriction,

{ξ 1,ξ 2}(x) = ∑µA(x)XA(e)(x) (2.20)

where

µA(x) = ∑λ 1
B1∪I (x)λ

2
B2∪J(x)Ω

I ,J(x) (2.21)

where we sum onB1, I ,B2,J whose concatenation is equal toA. There are at mostC|A| terms in
the previous sum. By Jensen inequality

|µA(x)|2 ≤C|A|∑ |λ 1
B1∪I |2|λ 2

B2∪J|2|ΩI ,J(x)|2 (2.22)

where we sum on the same set.
On the other hand for anyp there exists an enough bigp1 such that:

‖A‖p|µA(x)|2 ≤ KC|A|∑ |λ 1
B1∪I (x)|2‖B1∪ I‖p1|λ 2

B2∪J(x)|2‖B2∪J‖p1 (2.23)

where we take the sum on the same set. We can patch together this last inequality and the inequal-
ities of the type (2.14) where we take the derivatives ofµA(x) in x in order to show that;

‖{ξ 1,ξ 2}‖C,p,k,r ≤ K‖ξ 1‖C1,p1,k,2r‖ξ 2‖C1,p1,k,2r (2.24)

for enough bigC1 andp1. �

The goal of this paper is then to define a∗-product onW.N∞− endowed with this Poisson
bracket by using the apparatus of Fedosov.

We can define following the lines of [17] a Moyal-Weyl producton the Hida Fock space asso-
ciated toTx(M)⊕Hx. The algebra is the same as in [17], the only difference whichleads here to a
simplification is thatΩI ,J is bounded.
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3 The Weyl bundle in Hida sense

We considerH0 = Tx(M) and the real Hilbert spaceHx of finite energy paths inTx(M) starting
from 0. We put

Ht
x = H0⊕Hx (3.1)

The previous sum is orthogonal. IfAs = (I1, ..., I|As|) we consider the normalized symmetric tensor
product

Xt
As(e) = XI1(e)⊗̂...⊗̂XI|As|(e) (3.2)

and ifAa = (I1, .., I|Aa|) we consider the normalized exterior product:

Xt
Aa(e) = XI1(e)∧ ...∧XI|Aa|(e) (3.3)

We order all the multiindices in lexicographic order in order to avoid some redundances.
If As

1 andAs
2 are two multindices, we denote byAs

1∪As
2 the concatenation of each multiindices

after reordering them. IfAa
1 andAa

2 are two indices we do the same operations denoted by the same
symbol if their intersection is empty and we get the empty setif their intersection is non empty.

We consider the Hida weights‖As‖ and‖Aa‖ of the first part. We consider the Hida supersym-
metric test Fock space(St ⊗Λt)∞− of element of the supersymmetric Fock space

Ξt = ∑λAs,AaXt
As(e)⊗Xt

Aa(e) (3.4)

such that for allp > 0 and allC > 0

‖Ξt‖2
C,p = ∑ |λAs,Aa|2‖Aa‖p‖As‖pC|Aa|+|As| < ∞ (3.5)

These system of norms are invariant under an orthonormal transformation depending only onx on
the basisei(x).

The Weyl bundle in the Hida sense is the bundlep∗∞(St ⊗Λt)∞−) on the limit modelT∞ where
p∞ is the natural projection from the limit model onM.

We consider the moyal product on(St ⊗Λt)∞−. If

Ξi,t = ∑λ i
As,AaXt

As(e)⊗Xt
Aa(e) (3.6)

we have:

Ξ1,t ◦Ξ2,t = ∑λ 1
As

1,A
a
1
λ 2

As
2,A

a
2
ε(Xt

As
1
(e)◦Xt

As
2
(e))⊗Xt

Aa
1∪Aa

2
(e) (3.7)

ε denotes a sign. We define the Moyal productXt
As

1
(e)◦Xt

As
2
(e) as in the first part or in [17]: The

only difference is that ifI = (0, i) we consider a standard annihilation operator on the Fock space.

Theorem 3. The Moyal product◦ is continuous from(St ⊗Λt)∞−×(St ⊗Λt)∞− into (St ⊗Λt)∞−[[h]].

Proof. We write

Ξi,t = ∑ξ i,t
Aa ⊗Xt

Aa(e) (3.8)
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such that

Ξ1,t ◦Ξ2,t = ∑
Aa

1∪Aa
2=Aa

ε(ξ 1,t
Aa

1
◦ξ 2,t

Aa
2
)Xt

Aa(e) (3.9)

We consider the component of degreen in the formal series inh. We get that

(Ξ1,t ◦Ξ2,t)n = ∑
Aa

1∪Aa
2=Aa

ε(ξ 1,t
Aa

1
◦ξ 2,t

Aa
2
)nXt

Aa(e) (3.10)

We get that

‖(Ξ1,t ◦Ξ2,t)n‖2
C,p = ∑

Aa

‖ ∑
Aa

1∪Aa
2=Aa

(ξ 1,t
Aa

1
◦ξ 2,t

Aa
2
)n‖2

C,pC
|Aa|‖Aa‖p (3.11)

By Jensen inequality,

‖ ∑
Aa

1∪Aa
2=Aa

(ξ 1,t
Aa

1
◦ξ 2,t

Aa
2
)n‖2

C,p ≤C|Aa| ∑
Aa

1∪Aa
2=Aa

‖(ξ 1,t
Aa

1
◦ξ 2,t

Aa
2
)n‖2

C,p (3.12)

By using the same considerations as in [17], but in a simpler way, becauseΩI ,J is bounded,

‖(ξ 1,t
Aa

1
◦ξ 2,t

Aa
2
)n‖2

C,p ≤Cn‖ξ 1,t
Aa

1
‖2

C1,p1
‖ξ 2,t

Aa
2
‖2

C1,p1
(3.13)

We remark thatC|Aa| = C|Aa
1|C|Aa

2| and that‖Aa‖ = ‖Aa
1‖‖Aa

2‖ if Aa
1∪Aa

2 = Aa. We deduce that

‖(Ξ1,t ◦Ξ2,t)‖2
C,p ≤ Kn‖Ξ1,t‖2

C1,p1
‖Ξ2,t‖2

C1,p1
(3.14)

Therefore the result. �

Let be the ordinary Fock space. We consider the Shigekawa complex

δ = ∑as
I a

a∗
I (3.15)

whereas
I is the family of annihilation operators on the Bosonic Fock space,as∗

I the family of cre-
ation operators on the Bosonic Fock space,aa

I the family of annihilation operators on the Fermionic
Fock space andaa∗

I the family of creation operators on the Fermionic Fock space. We have:

δ ∗ = ∑aa
I as∗

I (3.16)

Let us recall ([25])

δδ ∗ + δ ∗δ = NB +NF (3.17)

whereNB denotes the Bosonic number operator on the Bosonic Fock space andNF denotes the
Fermionic number operator on the Fermionic Fock space.

Theorem 4. δ andδ ∗ are continuous on(St ⊗Λt)∞−.
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Proof. Let be

Ξt = ∑λAs,AaXt
As(e)⊗Xt

Aa(e) (3.18)

We have

δΞt = ∑µAs,AaXt
As(e)⊗Xt

Aa(e) (3.19)

where

|µAs,Aa|2 ≤ ( ∑
I∈Aa

|λAs∪I ,Aa−I |)2 ≤C|Aa| ∑
I∈Aa

|λAs∪I ,Aa−I |2 (3.20)

such that

‖δΞt‖2
C,p ≤ ∑

As,Aa
∑

I∈Aa

|λAs∪I ,Aa−I |2‖As∪ I‖p1‖Aa− I‖p1C|As∪I |+|Aa−I |
1 (3.21)

There are at most|As| way to writeλAs,Aa = λAs
1∪I ,As

1−I Therefore

‖δΞt‖2
C,p ≤ K‖Ξt‖2

C1,p1
(3.22)

for K,C1, p1 independent ofx in M.
Let us considerδ ∗:

δ ∗Ξt = ∑µAs,AaXt
As(e)⊗Xt

Aa(e) (3.23)

where

|µAs,Aa| ≤ ∑
I∈As

|λAs−I ,Aa∪I | (3.24)

We do as before by interchanging the role ofAs andAa in order to show that:

‖δ ∗Ξt‖2
C,p ≤ K‖Ξt‖2

C1,p1
(3.25)

for K,C1, p1 independent fromx in the compact manifoldM. �

Remark: We refer to the works of Arai-Mitoma ([1], [2]) for this statement.
Let us recall classically ([24]) that

δ 2 = 0; δ ∗2 = 0; δδ ∗ + δ ∗δ = NB+NF (3.26)

We can speak of sections in Hida sense of the Weyl bundle on theTaubes limit model of
p∗∞(St ⊗Λt)∞−. Let us recall for that the definition ofSC,p(x) in the first part. We consider the
Levi-Civita connection onM. This Levi-Civita connection lifts to the bundle onM in Hilbert
spaceSC,p⊗ (St ⊗Λt)C1,p1.

Definition 2. The space of sections in the Taubes-Hida sense of the bundle on the limit model
p∗∞(St ⊗ Λt)∞− is the space of sectionsψ of the bundleSC,p ⊗ (St ⊗ Λt)C1,p1 such that for all
C, p,C1, p1,k, r positive numbers (k is an integer)

∑
k′≤k

∫

M
‖∇kψ(x)‖r

C,p,C1,p1
dx= ‖ψ‖r

C,p,C1,p1
< ∞ (3.27)

We call this spaceW.N∞−(p∗∞(St ⊗Λt)∞−).



258 R Léandre

Remark: This space does not depend on the choice of the unitary connection onT(M), because
we consider Hida test functional spaces.

We have the following properties:

1) δ andδ ∗ are continuous onW.N∞−(p∗∞(St ⊗Λt)∞−).

2) ◦ is continuous fromW.N∞−(p∗∞(St ⊗Λt)∞−)×W.N∞−(p∗∞(St ⊗Λt)∞−) into the Hida space
W.N∞−(p∗∞(St ⊗Λt)∞−).

3) If ψi belong toW.N∞−(p∗∞(St ⊗Λt)∞−),

δ (ψ1 ◦ψ2) = (δψ1)◦ψ2 + εψ1◦δψ2 (3.28)

whereε = (−1)r1 if NFψ1 = r1ψ1.

We consider a symplectic connectionΓs on T(M): it is a connection without torsion which pre-
serves the symplectic formω . The tangent bundle of the Taubes limit model isp∗∞Ht. The sym-
plectic connection lifts to a symplectic connectionΓs,∞ for the symplectic structure given byΩ on
the limit model. This lifts to a symplectic connection denoted by∂Γs,∞ on p∗∞(St ⊗Λt)∞−.

We have the main theorem of this part:

Theorem 5. ∂Γs,∞ is a continuous application on W.N∞−(p∗∞(St ⊗Λt)∞−).

Proof. We can work in local coordinates inx. Let Γs be the connection 1-form of the symplectic
connection form onM. The connection 1-form on(p∗∞(St ⊗Λt)∞−) acts as a second quantized
operator ofΓs and is therefore continuous. This means thatXt

As(e) is transformed into

∑
i

Xt
I1(e)⊗̂..⊗̂Xt

Ii−1
(e)⊗̂Γs(Xt

Ii (e))⊗̂Xt
Ii+1

(e)⊗̂..⊗̂Xt
Ii|A|

(e) = Γs,∞Xt
As(e) (3.29)

So we have only to show thatd∞ is in local coordinates inx∈M continuous onW.N∞−(p∗∞(St ⊗
Λt)∞−). Let ψ an element of this space:

ψ = ∑
A,At,s,At,a

λA,At,s,At,aXA(e)⊗Xt
At,s(e)⊗Xa

At,a(e) (3.30)

XA(e) is considered as an element ofSC,p(x). Only the series which appears when we take deriva-
tives in the direction ofHx put any problem. We consider the Bosonic annihilationas

I on SC,p(x)
and associated to it the creation Fermionic operatora∗,a,t

I on this time onΛt(x). The possible
divergent series is

d1
∞ψ = ∑

A,At,s,At,a

λA,At,s,At,a ∑
I∈A

as
I XA(e)⊗Xt

At,s(e)⊗a∗,a,t
I Xa

At,a(e) (3.31)

such that

d1
∞ψ = ∑

A,At,s,At,a

µA,At,s,At,aXA(e)⊗Xt
At,s(e)⊗Xa

At,a(e) (3.32)

where

µA,At,s,At,a = ∑
I∈At,a

λA∪I ,At,s,At,a−I (3.33)
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By Jensen inequality, we have that:

|µA,At,s,At,a|2 ≤C|At,a| ∑
I∈At,a

|λA∪I ,At,s,At,a−I |2 (3.34)

We remark that in the previous sum

‖A∪ I‖p‖At,s‖p1‖At,a− I‖p1 ≤ (‖A‖‖At,s‖‖Aa,s‖)p2 (3.35)

We conclude as in the in the proof of Theorem 5. �

As in [9], we have that:

∂Γs,∞δ + δ∂Γs,∞ = 0 (3.36)

and if ψi are elements ofW.N∞−(p∗∞(St ⊗Λt)∞−) with NFψ1 = r1ψ1 we have that:

∂Γs,∞(ψ1 ◦ψ2) = (∂Γs,∞(ψ1))◦ψ2 +(−1)r1ψ1◦∂Γs,∞(ψ2) (3.37)

4 Abelian connection and quantization

We consider the formal series in(St ⊗Λt)∞− called (St ⊗Λt)∞−[[h]]. On this space, we have a
grading by counting twice the power ofh and 1 the length of the Boson. We get a space(St ⊗
Λt)l

∞− and we consider formal series∑l≥0(S
t ⊗Λt)l

∞−. The Moyal product applies continuously
(St ⊗Λt)l1

∞−× (St ⊗Λt)l2
∞− into (St ⊗Λt)l1+l2

∞− .
We consider a continuous operatorRl from (St)l

∞− into ∏L′≥l (S
t)l ′

∞− ⊗Λ1(Tx(M)) such that
R= ∑Rl is a continuous operator from∏l≥0(S

t)l
∞− into ∏l≥0(S

t)l
∞−⊗Λ1(Tx(M)).

This definition arises from the work of Fedosov ([9]):

Definition 3. We consider the operator∂ = ∂Γs,∞ − δ + R. It is called an Abelian Hida-Taubes
connection if:

-)∂ maps continuouslyW.N∞−(p∗∞ ∏(St ⊗Λt)∞−).
-)∂ (ψ1 ◦ψ2) = ∂ψ1◦ψ2 + ψ1◦∂ψ2 for any elementsψi of W.N∞−(p∗∞ ∏(St)l

∞−).
-)∂ 2 = 0.

We consider(Sf ,t)l the set of finite combinations ofXt
A(e) of total gradingl .

The fiberwise Moyal product can be defined on(Sf ,t)l1 × (Sf ,t)l2 and we can consider formal
series in(Sf ,t)l : this space is denoted by∏(Sf ,t)l . We can defineRf ,l in this situation as before
andRf = ∑Rf ,l and the notion of combinatorial connection∂ f in this context. In order to do
that, we replace in the Hida Fock spaceSC,p(x) the series by finite combinations and we get a
combinatorial Fock spaceSf . So we get a combinatorial limit modelW f (p∗∞ ∏l (S

f ,t)l ) and a
combinatorial Abelian connection

∂ f = ∂Γs,∞ −δ +Rf (4.1)

We remark that∂ f acts onW f (p∗∞(∏l≥0(S
f ,t)l ) such that(∂ f )2 = 0.

Lemma 1. There exists a combinatorial Abelian connection.
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Proof. We consider the spaceT(M). Ω restricts toT(M), a subspace ofT∞(M), due to (2.17). We
consider the Weyl bundle onT(M), the connection∂Γs,∞ restricts naturally to it as well asδ and◦.
By using the considerations of Fedosov ([9]), we can a suitable Abelian connection:

∂ 1 = ∂ 1
Γs,∞ −δ 1 +h−1[r1, .] (4.2)

wherer1 ∈ ∏l≥3 Sl [Tx(M)⊕ (Tx(M)]⊗Λ1(Tx(M)) and which depends only fromp(x) in T(M).
The firstTx(M) holds for thex part in the Weyl algebra and the second holds for the Fourier mode
considered (here the first one).

We recall thatH f
x = ⊗n6=0Tn

x (M) each part corresponding to the associated Fourier mode. We
consider the n part in the Fourier modes given by (2.2) and (2.3). We get Bosons given byXn,i(e).
Each bundlep∗∞Tx(M)n ∼ p∗∞Tx(M) is parallel for the connection∂Γs∞ and this decomposition is
orthogonal forΩ. Let us considerXt

As(e) where:

Xt
As(e) = (Xn1,l1n1

⊗̂...⊗̂Xn1,lrn1
)⊗̂..⊗̂(Xnm,l1nm

⊗̂...⊗̂Xnm,lrnm
) (4.3)

for n1, ..,nm.
We have that:

Rf ,l Xt
As(e) = ∑(Xn1,l1n1

◦ ...◦Rf ,l Xn1,r ln1−1
◦Xn1,r ln1

)◦ ..◦ (Xnm,l1nm
◦ ...◦Xnm,lrnm

) (4.4)

such that∂ f Xt
As(e) is determined by (4.4). Namely on the symmetric Fock space determined by

x and fixed Fourier modes, the combinatorial Abelian connection is determined by the previous
considerations. �

Therefore we have determined the existence of a combinatorial Abelian connection∂ f . We
will show that∂ f can be extended in an Abelian Hida-Taubes connection.

Theorem 6. ∂ f can be extended in a Hida-Taubes Abelian connection.

Proof. ∂ f
Γs,∞ − δ f can be extended continuously on the Taubes-Hida test functional space: it is

the object of the previous part. It is enough to show thatRf can be extended continuously on the
Hida-Taubes test sections in the sense of the beginning of this part.

For that, we put in (4.3) that

Xt
As = Xt

As
1
◦ ...◦Xt

As
m

(4.5)

We consider an element of the Hida space(St
∞−)l . It is written

Ξl = ∑
m,|As

1|+..+|As
m|+2r=l ;|As

i |6=0

hrλAs
1,...,A

s
m
Xt

As
1
◦ ...◦Xt

As
m

(4.6)

such that

Rl Ξl = ∑
m,|As

1|+..+|As
m|+2r=l ;|As

i |6=0

hrλAs
1,...,A

s
m ∑Xt

As
1
◦ ...◦Rl Xt

As
i
◦Xt

As
m

(4.7)

where

‖Ξl‖2
C,p = ∑ |λAs

1,..,A
s
m
|2C|As

1|+...|As
m|∏‖Ai‖p < ∞ (4.8)



Fedosov Quantization 261

By the considerations of [9], [24] and the previous considerations:

Ri,l Xt
As

i
= h−1[∑ r j ,Xt

As
i
] (4.9)

wherer i belongs to∏l≥3 Sl [Tx(M)⊕Tx(M)]⊗Λ1(Tx(M)) and corresponds to the Fedosov coun-
terterm for theith Fourier mode. It is the same formal expression for alli, which depends smoothly
of x. The sum in (4.9) is reduced to one element.

If we consider the partRl ,l ′ of Rl which goes from(St)l
∞− to (St)l+l ′

∞− ⊗Λ1(Tx(M)) and if we
compute the various Hida weights which appear inRl ,l ′Xt

As
i
, they are bounded by‖As

i ‖p+k(l ,l ′) where
k(l , l ′) is bounded. So the Hida weights which appear in

∑Xt
As

1
◦ ...◦Rl ,l ′Xt

As
i
◦Xt

As
m

(4.10)

have a bound in∏‖As
i ‖p+k(l ,l ′). Moreover, in

Rl ,l ′Xt
As

i
= 1/h[∑ r j,l ,l ′ ,Xt

As
i
] (4.11)

where the previous sum is reduced only to one element, there are at mostC|As
i | terms.

So we can write

‖Rl ,l ′Ξl‖C,p ≤ ∑ |λAs
1,...,A

s
m
|‖∑Xt

As
1
◦ ...◦Rl Xt

As
i
◦Xt

As
m
‖C,p

≤ ∑ |λAs
1,..,A

s
m
|C|As

1|+..|As
m|

1 ∏‖As
i ‖p+k(l ,l ′) (4.12)

Let us recall that ifC2 is small enough andp2 is big enough

K = ∑C|A|
2 ‖A‖−p2 < ∞ (4.13)

because it is equal to

∏
n

(∑C2

√

n2 +1
−p2l

+1) = ∏(1− C2√
n2 +1

p2
)−1 < ∞ (4.14)

We use Cauchy-Schwartz inequality and the previous inequality in order to show that

∑ |λA1,..,Am|C
|A1|+..|Am|
1 ∏‖Ai‖p+k(l ,l ′) ≤ K‖Ξl‖C3,p3 (4.15)

So Rl ,l ′ is continuous from(St)l
∞−(x) into (St)l+l ′

∞− (x). We can prove in an exact similar way
thatRl ,l ′ is continuous fromW.N∞−(p∗∞(St)l

∞−) into W.N∞−(p∗∞(St)l+l ′
∞− ). �

Theorem 7. Let F,G belonging to W.N∞− and let∂ be the Abelian Hida-Taubes connection of the
previous part. There exists a uniqueψ ∈W.N∞−(∏l≥0(S

t)l
∞−) such that∂ψ = 0 and such that the

component in(St)0
∞− of ψ equals F. We call thatψ = QF. The map F→ QF is continuous.

Proof. On the combinatorial modelR= ∑ i/h[r i , .]. and there exists a flat section of the combina-
torial domain such its component on(Sf ,t)0 is F f . ψ f satisfies to

δψ f = ∂ f
Γs,∞ψ f + i/h[∑ r i ,ψ l ] (4.16)
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and this equation can be solved step by step as in theorem (3.3) of [9] by applyingδ−1 iteratively
as in [9]. But since the combinatorial model is densely continuously imbedded in the Hida-Taubes
model, and sinceR is continuous on the Hida-Taubes model, we can solve by continuity the
equation

δψ = ∂Γs,∞ψ +Rψ (4.17)

becauseδ andδ−1 are continuous (see [9] for the definition ofδ−1). �

Theorem 8. There exists a∗ product on W.N∞−.

Proof. As in [9], we put

ψ1 ∗ψ2 = Q−1[Q(ψ1)◦Q(ψ2)] (4.18)

whereQ is the isomorphism betweenW.N∞− and the space of flat sections in the Hida-Taubes
sense of∏l≥0(S

t)l
∞−. �
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[13] L ÉANDRE R, Brownian motion on a Kaehler manifold and elliptic generaof Level N. In Stochastic
analysis and applications in physics. A. Cardoso and al eds. NATO series449, Kluwer (1994), 193–
217.
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