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Abstract

We study four different approximations for finding the prefif discrete solitons in the one-
dimensional Discrete Nonlinear Schrodinger (DNLS) Eerat Three of them are discrete
approximations (namely, a variational approach, an appration to homoclinic orbits and
a Green-function approach), and the other one is a quasircaim approximation. All the

results are compared with numerical computations.

1 Introduction

Since the 1960’s, a large number of works has focused on tiefies of solitons in the Non-
linear Schrodinger (NLS) Equation [1]. As it is well knowthie one-dimensional NLS equation
is integrable. Two of the most important discretizationghié equation admit discrete solitons.
One of these discretizations is known as the Ablowitz-Laajkation [2], which is also integrable.
On the contrary, the other important discretization, kn@srhe Discrete Nonlinear Schrodinger
(DNLS) equation, is not integrable, and discrete solitontimns must be calculated numerically.
The DNLS equation has many interesting mathematical ptieggeand physical applications [3].
The DNLS equation models, among others, an array of nomtiogiécal waveguides [4], that was
originally implemented in an experiment as a set of parailbsl made of a semiconductor material
(AlGaAs) and mounted on a common substrate [5]. It was predif5] that the DNLS equation
may also serve as a model for Bose-Einstein condensatess|BiEa@ped in a strong optical lattice,
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which was confirmed by experiments [7]. In addition to thesdirphysical realizations in terms
of nonlinear optics and BECs, the DNLS equation appears anaglope equation for a large
class of nonlinear lattices (for references, see [9], 8a@i4). Accordingly, the solitons known in
the DNLS equation represent intrinsic localized modesstigated in such chains experimentally
[10] and theoretically [11, 12]. In this context, previowsrhal derivations of the DNLS equation
have been mathematically justified for small amplitude tpaeiodic solutions in references [13].

In this paper we will consider fundamental solitons, whicé af two types: Sievers-Takeno
(ST) modes, which are site-centered [14], and Page (P) muadhésh are bond-centered [15] (see
also Fig. 1). They can also be seen, respectively, as dissoditons with a single excited site, or
two adjacent excited site with the same amplitude. The DNiug#on is given by

iUn+$(Un+1+Un_1—2Un)+Y‘UnIZUn - 0, (11)

whereu,(t) are the lattice dynamical variables, the overdot standshitime derivativeg > 0
is the lattice coupling constant ayca nonlinear parameter. We look for solutions of frequeficy
having the formu,(t) = éMy,. Their envelopes, satisfies

—NAVn+ & (V1 +Vn-1— 2Vn) + V|Vn|2Vn =0. (1.2)

Throughout this paper, we assurpe > 0 and choosey = € = 1 without loss of generality, as
Eq. (1.2) can be rescaled. We also look for unstaggerediaad tfor which,A > 0 (staggered
solutions withA < 0 can be mapped to the former upon a suitable staggeringfdraretion
Vn = (—1)"vy)). Furthermore, we restrict to real solutions of (1.2), vihjeeld (up to multiplication
by expif) all the homoclinic solutions of (1.2) [16]. Homoclinic swions of (1.2) can be found
numerically using methods based on the anti-continuouis [lirh] and have been studied in detail
(first of all, in one-dimensional models, but many resultgehbeen also obtained for two- and
three-dimensional DNLS lattices) [3].

The aim of this paper is to compare four different analytmabroximations of the profiles of
ST- and P-modes together with the exact numerical solutibhese analytical approximations are
of four types: one of variational kind, another one based palgnomial approximation of stable
and unstable manifolds for the DNLS map, another one based@men-function method, and,
finally, a quasi-continuum approach.

2 Discrete approximations

2.1 The variational approximation
Equation (1.2) can be derived as the Euler-Lagrange eaqufaticghe Lagrangian
+0 1
Leff = Z (Vg1 +Vn—1)Vn — (A + 2)\/2n + E\/;1 . (2.1)

Nn=—oo

The VA for fundamental discrete solutions, elaborated ih Re] (see also Ref. [18]) was based
on the simple exponential ansatz ,

Vil = Al V= Aye2nt1/2 (2.2)



126 J Cuevast al.

15 15

05f o0st

Figure 1: Discrete soliton profiles with = € = y = 1. The left panel corresponds to a ST-mode,
and the right panel to a P-mode.

Figure 2: Dependence, for ST-modesygfleft panel) ands; (right panel) with respect td. Full
lines correspond to the exact numerical solution and dalamesito the variational approximation.

Figure 3: Dependence, for P-modesyegfleft panel) ands; (right panel) with respect tb. Full
lines correspond to the exact numerical solution while dddmes correspond to the variational
approximation.
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wherevST denotes ST-modes, whilé is for P-modes, with variational parametéyg A, a; and
a, (which determine the amplitude and inverse size of themvlitThen, substituting the ansatz in
the Lagrangian, one can perform the summation explicithictvyields theeffective Lagrangian

L3T = .41(2secha; — A —2) +

AP2tantfa,  p 2(1— coshay) N?

=~ Lig= i —A —= tanha

2tanhzy ~ o sinhay + coshay Ty lanna
2.3)

The norm of the ansatz (2.2), which appears in Eq. (2.3)viadby./ =51, V2. In particular,
for the ST- and P-modes,

M = A2cothay, .5 = A3/sinhay. (2.4)

The Lagrangian (2.3) gives rise to the variational equationS]/d 41 = dLS] /da; = 0, and
OLEs /0.4, = dLE;/da, = 0, which constitute the basis of the VA [19]. These preditatiens
between the norm, frequency, and width of the discreteswitvithin the framework of the VA,
namely

_ 4coshey sintf 28, _ 8(1—cosha, + sinhay) costta, 25)
1™ Sinh4a; — sinh 2y’ 2= sinhay + coshay '
tant? a; 2(1—coshay) 1
N =2(secha; —1) + ‘/Vltanh 2 = Sinhag 1 coshay + Eyi/ztanhaz. (2.6)

These analytical predictions, implicitly relating” and/A through their parametric dependence on
the inverse width parameter will be compared with numerical findings below. In Figs. 2léh
we compare the approximate and exact values of the highgditade site and the second-highest
amplitude sites (i.evp andvy, which can be easily calculated from (2.5) on¢éanda are known)
with respect to\ for both ST- and P-modes.We can observe that the variatapmbach captures
the exact asymptotic behavior As— +. Indeed agy — + in approximation (2.2) one obtains
N~ M~ andAy ~ /1 ~ V. ThusvsT ~ /A asA — +oo which is indeed the asymptotic
behavior of the exact ST-mode. On the contrary, the vanatiapproximation errs by a small
multiplicative factor % ~ 1.1) as/\ — 0 (i.e., effectively approaching the continuum limit). hi

can be seen taking the lind§ — 0 in approximation (2.2). One hag; ~ 8a;, A ~ —a2 + LM~
3a2 andA; ~ 2v/2a; ~ %\/2/\, while the amplitude of the continuum hyperbolic secanitcol

of the integrable NLS i$\ = v/2A [see also below]. Notice that the P-mode also has the same
N\ — 0 limit (and therefore errs by the same factor).

2.2 The homoclinic orbit approximation

2.2.1 The DNLS map

The difference equation (1.2) can be recast as a two-dimmealsieal map by defining, = v, and
Xn = Vn_1[20, 21, 22, 18, 16]:

Xn+1 = Yn
2.7
{ Yor1 = —Ya+ (A+2)yn—Xn. 2.7)
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Figure 5: Homoclinic tangles fok = 1 andA = 3.

For A > 0, the originx, = y, = 0 is hyperbolic and a saddle point, which is checked upon lin-
earization of the map around this point. Consequentlygtlegists a 1-d stable and a 1-d unstable
manifolds emanating from the origin in two directions gingny = A X, with

- (2+/\)j:2 AA+4) (2.8)

The eigenvalues . satisfyA2 — (A+2)A +1=0andA, =A~! > 1. The stable and unstable
manifolds are invariant under inversion as it is the casedpr(2.7). Moreover, they are exchanged
by the symmetryx,y) — (y,X) (this is due to the fact that the map (2.7) is reversible; sge[£6]

for more details). Due to the non-integrability of the DNL@uation, these manifolds intersect in
general transversally, yielding the existence of an infiafthomoclinic orbits (see Figs. 4 and 5).
Each of their intersections corresponds to a localizedisoluwhich can be a fundamental soliton
or a multi-peaked one. Fundamental solitons, the solutieasre interested in, correspond to
the primary intersections points, i.e. those emanatinm ftioe first homoclinic windings. Each
intersection point defines an initial conditidry, Yo), that is, (v_1,Vp), and the rest of the points
composing the soliton are determined by application of thg.m
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Figure 6: Numerical exact unstable manifold (full line) arsdapproximation by Eqg. (2.9) (dashed
line) for A = 1 (left panel) and\ = 3 (right panel). The fit is so accurate in the latter that both
curves are superimposed.

2.2.2 The polynomial approximation to the unstable manifad

The first windings of the stable and unstable manifolds caapgpeoximated by third order poly-
nomials. Actually, only one of them is necessary to be detexdh as the other one is determined
taking into account the symmetgy— y. We proceed then to approximate the local unstable mani-
fold W (0). Taking into account its invariance under inversion, it barlocally written as a graph
y=f(x) = Ax—ax3+0O(|x|%) with A = A, given by (2.8). Fox ~ 0, the image ofx, f(x)) under

the map (2.7) also belongs WU.(0), thus —f(x)*>+ (A +2)f(x) —x = f(f(x)) Vx~ 0. This
yields A3 +a(A+2—-2 —A3)x3+0O(|x]°) =0, ¥x~ 0. Hencea = —A3/(A+2—A —A3%) =
A%4/(A%—1). The local unstable manifold is approximated at order 3 by

4

A
u.,,__ _
WY y=AX —)\4—1)(3’ (2.9)

and, by symmetry, the stable manifold is approximated by:
S )\ 4
MI.X:Ay—XTiIf. (2.10)

In Fig. 6, the numerical and approximated unstable marsfdd/A = 1 and/\ = 3 are compared.
It can be observed that the fit is better whienincreases. The approximation breaks down for
small/ because the origin is not a hyperbolic fixed pointfos 0.

2.2.3 Approximate solutions via approximate invariant manfolds

Once an analytical form of the unstable and stable manifofdund, discrete soliton profiles (or,
concretelyvp andv_;) can be determined as the intersection of both manifolde pidtynomial
form of (2.9) is not sufficient in practice to obtain good appmations of the whole soliton
profile, due to sensitivity under initial conditions. Hovesyit provides a good approximation near
the soliton center. Some intersectiondfandW" can be approximated by:

A A4 A
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Figure 7: (Left panel) Approximated stable and unstableifokals for A = 2 showing the main
intersections. (Right panel) Pitchfork bifurcation antgin the homoclinic approximation when
is varied. ST-modes (full lines) bifurcate with the P-modaghed line) af\ = 0.5.

3 T T T T 1

Figure 8: Same as Fig. 2 but with dashed lines correspondiagproximation (2.12).

This equation has nine solutions (see Fig. 7a). One of them(), corresponds to the origin.
Once this solution is eliminated, the reminder equation ls-quartic one. Thus, ik=¢ is a
solution of (2.11)x = —¢ is also a solution: this is due to the fact tha¥, is a solution of (1.2).
Solutionsx = &1, x= &, X = &g andx = &z in Fig. 7 correspond to the positive solutions of (2.11).
The pointx = & is in the bisectrix of the first quadrant and corresponds edttmode (i.evg =
o), and the poink = &3 lies in the bisectrix of the fourth quadrant and correspaods twisted
mode (i.e. a discrete soliton with two adjacent excitedssitih the same amplitude and opposite
sign). Settingy(&) = & andy(&) = —&; in (2.9), one obtaingy = A 2\/(A —1)(A4—-1),
&E=A2/A+1)(A4-1).

Upon elimination of the rootg = &y andx = &3 from (2.11),&1 and &, can be calculated as
solutions of a quadratic equation. Thus,

51:)\*2\/()\4—1)(/\— A2-4)/2, 52:)\*2\/()\4—1)(/\+ A2—4)/2.  (2.12)

These solutions are related with the ST-modesds= &, andv3T = &;. On the other hand, for the
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Figure 10: Same as Fig. 2 but with dashed lines correspondiagproximation (2.18).

P-modey§ = &, and,V} should be determined by application of the map (2.7). Tretdgi

W=A"2/A-1)A4-1), L =A2"°A3+A1-1),/(A -1)(A4-1). (2.13)

In Figs. 8 and 9, the values @f andv; obtained through the homoclinic approximation are
represented versu§ and compared with the exact numerical results. It can berebdehat,
for ST-modes, no approximate solutions existfox 0.5. ForA =1/2 (i.e. A = 2), the points
(é1,&2) and (&2, &1) disappear via a pitchfork bifurcation 8o, &o) (see Fig. 7b). This artifact is
a by-product of the decreasing accuracy of our approximatas\ — 0; as discussed before, the
ST-mode should exist for all values Af> 0.

2.3 The Sievers—Takeno approximation

A method to approximate solutions of (1.2) has been intredugy Sievers and Takeno, for a
recurrence relation similar to it but with slightly differenonlinear terms [14]. This approach
has been generalized to tdedimensional DNLS equation in reference [23]. In what falto
we briefly describe the method, incorporating some relesanplifications. Setting/, = Vonn,
equation (1.2) becomes

M1 — 2N+ Mn-1 = Ann — V3N3, (2.14)
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Figure 11: Same as Fig. 2 but with dashed lines corresporndiagproximation (3.1).

with n_, = nn, No = 1. Settingn =0 in (2.14) we obtain in particular
Vo =NA+2(1—n). (2.15)

Equation (2.14) can be rewritten as a suitable nonlocaltemuasing a lattice Green function in
conjunction with the reflectional symmetry gf and equation (2.15). This yields for al> 1

_ AT 37y —In—K , y-n—k

M = [A+2(l ’71)]}\ 21 +kzlnk (A +A )’ (216)
whereA = A, is given by (2.8). Problem (2.16) can be seen as a fixed poumtem {n} =
FA({n}) in £u(N¥). Noting Be the ball [[{n}||,,n+) < €, the mapF, is a contraction orB,
providede is sufficiently small and\ is greater than some constaqy(¢). In that case, the solution
of (2.16) is unique irB, by virtue of the contraction mapping theorem and it can be mdad
iteratively. Choosing n} = 0 as an initial condition, we obtain the approximate solutio

N+2

M~ (FA(0))n= 53—
Obviously the quality of the approximation would increasighviurther iterations ofx. Using
(2.17) and (2.15) in the limit whef\ is large, we obtain

Vn ~ (A+2)Y/2 -l (2.18)

AT n>1 (2.17)

sinceA ~ A\ asA — 4. The values ofj andv; in this approximation are compared with the
exact numerical results in Fig. 10. We observe that the aqipadion captures the asymptotic
behaviour ofvg andv; for A — oo,

3 The quasi-continuum approximation

As it can be concluded from previous sections, none of thebished approximations perform
well for A close to zero (although the VA is notably more accurate thanirvariant manifold
and Sievers—Takeno approximation). A quasi-continuunragimation could be used to fill this
gap. To this end, we follow Egs. (13) and (14) of Ref. [24]. filtlee ST- and P-modes can be
approximated by the continuum soliton based expressions:

VST = V2Asech(nVA), A = v2Asech((n+1/2| — 1/2)VA]. (3.1)

These expressions lead to the results shown in Figs. 11 andat@rally, this approach captures
the asymptotic limitg ~ v/ 2A whenA — 0, but fails increasingly a& grows.
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Figure 12: Same as Fig. 3 but with dashed lines correspondiagproximation (3.1).

4 Summary and conclusions

In Figs. 13 and 14 the results of the paper are summarizedhieihd, a variable, giving the
relative error at sit@, is defined as:

Rn = 10030 | (PP™"— Vg2 7. (4.2

We can generally conclude that the variational approxiomatiffers the most accurate representa-
tion of the amplitude amplitude of the Page mafjeat the two sitesi = 0 andn = 1 with some
small exceptions. These involve some particular intergéls where the homoclinic approxima-
tion may be better and also the interval sufficiently closéhocontinuum limit, where the best
approximation is given by the discretization of the contimusolution. Similar features are ob-
served for the approximation of the Sievers—Takeno mgdet siten = 0. However, a different
scenario occurs for this mode at gite- 1, since the homoclinic approximation gives the best result
for A > 1.5. AsA goes to 0, the Sievers-Takeno, variational and quasitoamth approximations
give successively the best results in small windows of tiramaterA. Notice that in the inter-
val A € (0,0.5] neither the variational, nor the homoclinic approximatée entirely satisfactory.
The latter suffers, among other things, the serious proloepnoducing a spurious bifurcation of
two ST modes with a P-mode. On the other hand, for larger satfié (i.e., for A > 0.5), the
guasi-continuum approach is the one that fails increagibgtoming rather unsatisfactory, while
the discrete approaches are considerably more accurptsgiady for A > 2, when their relative
error drops below 1% (with the exception of the Sievers-Tiakepproximation of5T, which only
reaches this precision fér > 10).

We hope that these results can be used as a guide for dexgkyifitiently accurate analytical
predictions in different parametric regimes for such syste It would naturally be of interest
to extend the present considerations to higher dimensidosvever, it should be acknowledged
that in the latter setting the variational approach woultked rather straightforwardly, while
the homoclinic approximation is restricted to one spaceedision and the other approximations
would become more technical.
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10

Figure 13: Representation of varialiedefined in (4.1) versud for ST-modes. Full lines corre-
spond to the variational approach; the dashed line correlspto the homoclinic approximation;
the dash-dotted lines to the continuum approximation; aedibtted line to the Sievers—Takeno

approximation.

Figure 14: Representation of variadRedefined in (4.1) versué for P-modes. Full lines cor-
responds to variational approach; dashed line, to the hiammeapproximation; and dash-dotted

lines, to the continuum approximation.



Approximated Profiles for Discrete Solitons in DNLS Latsce 135

References

[1] SuLEm C and SJLEM P L, The Nonlinear Sclirdinger EquationSpringer-Verlag, New York, 1999.
[2] ABLowiTz M J and LADIK J,J. Math. Phys16(1975) 598,J. Math. Phys17 (1976) 1011.

[3] KEVREKIDIS P G, RASMUSSENK @, and BsHOPA R, Int. J. Mod. Phys. B5(2001) 2833.
Dauxois T and FEYRARD M, Physics of Soliton<Cambridge University Press: Cambridge, 2005.

[4] CHRISTODOULIDESD N and HSEPHR I, Opt. Lett. 13(1988) 794.

[5] EISENBERGH S, SLBERBERG Y, MORANDOTTI R, BoYyD A R, and ATCHISON J S,Phys. Rev.
Lett. 81(1998) 3383.
CHRISTODOULIDESD N, LEDERERF, and $SLBERBERG Y, Nature424(2003) 817.

[6] TROMBETTONIA and SVERzI A, Phys. Rev. Lett86 (2001) 2353.
ALFIMOV G L, KEVREKIDIS P G, KONOTOPV V, and SALERNO M, Phys. Rev. 66 (2002) 046608.
CARRETERO-GONZALEZ R and RRomisLow K, Phys. Rev. /46 (2002) 033610.

[7] CATALIOTTI F S, BURGER S, FORT C, MADDALONI P, MINARDI F, TROMBETTONI A, SMERZI
A, and INGuscio M, Science93(2001) 843.

[8] BRAzZHNYI V A and KoNoToPV V, Modern Physics Letters,B8(2004) 627.
PORTER M A, CARRETERO-GONZALEZ R, KEVREKIDIS P G, and MiLOMED B A, Chaos15
(2005) 015115.
MORsSCcHO and BERTHALER M, Rev. Mode. Phys78(2006) 179.

[9] AuBRY S,Physica D216(2006) 1.

[10] SAaTO M, HUBBARD B E, SEVERS A J, ILIC B, CzAPLEWSKI D A, and QRAIGHEAD H G, Phys.
Rev. Lett.90(2003) 044102.
SAaTo M and SEVERS A J, Nature432(2004) 486.

[11] MAcKAY R S and AJBRY S, Nonlinearity7 (1994) 1623.

[12] AuBRrY S,Physica D103(1997) 201.
FLacH S and WLLIS C R,Phys. Rep.295(1998) 181.
TSIRONISG P,Chaos13(2003) 657.
CAMPBELL D K, FLACH S, and KVSHAR YU S, Phys. Todayp7 (2004) 43.

[13] JamMES G, C. R. Acad. Sci. Paris, Serie332(2001) 581.
JAMES G, J. Nonlinear Scil3(2003) 27.
JAMES G, SANCHEZ-REY B and QUEVAS J, Breathers in inhomogenous nonlinear lattices: an anal-
ysis via centre manifold reductipBubmitted (2007).

[14] SIEVERSA J and TRKENO S, Phys. Rev. Lett61 (1988) 973.

[15] PAaGE J B,Phys. Rev. B1(1990) 7835.

[16] QIN W X and Xia0 X, Nonlinearity20 (2007) 2305.

[17] MALOMED B A and WEINSTEIN M |, Phys. Lett. 2220(1996) 91.

[18] CARRETERO-GONZALEZ R, TALLEY J D, CHONG C, and MALOMED B A, Physica D216 (2006)
77.

[19] MALOMED B A, Progr. Opt. 43(2002) 71.



136 J Cuevast al.

[20] HENNIG D, RASMUSSENK @, GABRIEL H and BiLow A, Phys. Rev. 54 (1996) 5788.

[21] BOuUNTIST, CAPEL H W, KOLLMANN M, RossJ C, BERGAMIN J M andvAN DER WEELE J P,
Phys. Lett. 268(2000) 50.

[22] ALFIMOV G L, BRAZHNYI V A and KONOTOPYV V, Physica D194 (2004) 127.
[23] TAKENO S.J. Phys. Soc. Japab8(1989) 759.

[24] SANCHEZ-REY B, JAMES G, CUEVAS J and ARCHILLA JFR,Phys. Rev. B70(2004) 014301.



