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Evolution of Kink Network in Inhomogenous Systems
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Abstract

The purpose of this report is to show the influence of imperfections on creation and evolution
of a kink network. Our main finding is a mechanism for reduction of the kinetic energy
of kinks which works in both the overdamped and underdamped regimes. This mechanism
reduces mobility of kinks and therefore prevents the kink-antikink network from annihilation.

1 Context

In recent years, topological defects have attracted the attention of many researchers. The moti-
vation for these studies comes from the fact that they can be seen as macroscopic manifestations
of underlying physical processes. On the other hand they canhelp to study the nature of critical
dynamics.

The theory describing the dynamics of the second order phasetransition was proposed by
Kibble and Zurek [1]. The key point of the Kibble-Zurek mechanism is an observation that the
order parameter evolves adiabatically through a sequence of nearly equilibrium configurations up
to the time of freeze-in. At that instant the system loses thecapacity to respond to the change in
the external parameters. From that time to the time of freeze-out the field configuration remains
almost unchanged. The dynamical evolution restarts below the critical temperature at the time of
freeze-out. At that instant the system regains the ability to respond to the changes in the external
parameters but it is too late to undo non-trivial arrangements of the order parameter from above
the critical point. This paradigm works for overdamped systems and underdamped systems as
well. The main prediction of this scenario is the dependenceof the number density of produced
defects on correlation lengthn∼ ξ−d at the time of freeze-out or its dependence on a quench time
n∼ τ−d/4, whered denotes the number of space dimensions. This scenario was well verified in a
series of numerical experiments [2].

The density of a defect network obtained at the time of freeze-out is an initial condition for
dynamics which is determined by the defect-antidefect interactions. Due to annihilation of defects
and antidefects the initial density of the defect network isfirst quickly reduced in time and then
is stabilized at the level determined by the Boltzmann factor which describes the probability of
thermal nucleation of the kink-antikink pairs.
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In real life experiments researchers concentrate on study of creation and evolution of topolog-
ical defects in helium-3, liquid crystals and in superconducting films [3]. There are also attempts
to study the creation of vortices in optically cooled alkaliatom clouds during the formation of
Bose-Einsten condensates. There were also more controversial experiments made in superfluid
helium-4 where almost no vortices of topological origin were observed [4].

In this report we would like to concentrate on the influence ofimpurities on creation and evolu-
tion of topological defects. It is difficult to imagine a liquid crystal or even superconductor, that is
free of imperfections. The population of the superconductors and liquid crystals by the impurities
and admixtures seems to be an inevitable outcome of their preparation. Although the solubility
of foreign materials in liquid helium is small there are someartificial techniques, like the aerogel
technique [5], which allow one to introduce impurities eveninto a quantum liquid. Most of the
results obtained hitherto concern an homogeneous medium. On the other hand, the presence of
impurities can significantly change the properties of the system.

Analytical and numerical studies of the kink distribution show that kinks are created mainly
in the vicinity of knots of the force distribution which corresponds to extremes of the impurity
potential, and therefore the distribution of the kinks is determined not only by the quench time but
also by some length scale which characterizes the average distance between impurities [7]. Due to
the existence of impurities and admixtures the topologicaldefects are created mainly in the knots
of the impurity force distribution. This observation suggests that kinks produced in systems of
this kind are confined to impurity centers. To confirm this conjecture the exact solutions which
describe squeezed kinks trapped by the impurity were constructed [8].

The existence of squeezed kink solutions confirms the statistical prediction concerning the
distribution of kinks at the time of freeze-out. Moreover, stability of this solution against small
perturbations is crucial for the behavior of the kink-antikink network at later times. It seems
that, in contrary to pure systems, the disappearance of the kinks from the system via kink-antikink
annihilation is substantially reduced or even stopped by fixing the positions of kinks and antikinks.
This observation is additionally confirmed by the existenceof a static squeezed kink-squeezed
antikink solution which is also stable against small perturbations [8].

2 Interaction of the kink with the impurity

The stability against small perturbations allows one to draw conclusions concerning the behaviour
of the kink network, at least at low temperature when the thermal fluctuations of the fieldφ are
small. If the temperature is higher then we also need to analyze the behavior of the system for
larger changes of the field. This analysis can be made numerically.

We consider theφ4 model with dissipation,

1
c2 ∂ 2

t φ(t,x)+ Γ∂t φ(t,x) = ∂ 2
x φ(t,x)+aφ(t,x)−λφ3(t,x)+D(x), (2.1)

wherec is the sound speed (or the speed of light),Γ is the dissipation constant,a is a chemical
potential andλ describes the self-interaction of the scalar field. In the limit c → ∞ this model
reduces to the Landau-Ginzburg model, as extensively studied in condensed matter physics. On
the other hand in the dissipationless limit(Γ = 0) it is similar to the Higgs sector of the Standard
Model of particles.

The equation (1), in the absence of dissipation(Γ = 0) and in a system free of imperfections
(D(x) = 0), possesses a stationary kink solution.
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In the further investigations we choose the following form of the external force distribution

D(x) = A

( a
λ

)
3
2 sinhβA(x−ximp)

cosh3 βA(x−ximp)
, (2.2)

The force distribution of this kind is generic for the description of imperfections in this sense that
the normalized potential

V(x) =

√

a
2

γA

2
sech2 (

√

a
2

γA(x−ximp))

for this force, in theγA → ∞ limit, has properties of the delta function i.e.V(x = ximp) → ∞
andV(x 6= ximp) → 0. This kind of potential is typically assumed in the description of impurities
and defects. This form of the force distribution has an additional advantage, namely that the
static kink solution with this choice ofD(x) can be easily found by direct integration and is
given by a squeezed kink profile [8]. It suggests the possibleexistence of a solution continuously
interpolating between squeezed and free kinks,

φK ans(x, t) =

√

a
λ

tanh

(
√

a
2

γ(t)(x−xK(t))

)

. (2.3)

We adopt this function as an initial configuration of the field. At the initial instant of timetin we

assume thatγ(tin) = 1/
√

1− v2

c2 whereẋK(tin) = v. We also assume thatγ̇(tin) = 0 and initially

the kink is located atxK(tin) = x0. On the other hand we expect that if we wait a sufficiently

long time, then at some final instant of timeγ(t f in) =
√

1+ A

λ andxK(t f in) = ximp. It means that
at the beginning we have a stationary kink moving with speedv, and we expect that at least for
some range of initial speeds the final configuration is a squeezed kink resting at the position of the
impurity.

In numerical investigations we use equation (1) with rescaled variables and parameters(ct →

t,
√a

2x→ x,φ →
√ a

λ φ ,
√

λ
aD → D ,cΓ → Γ).

First we studied formation of the bound state. For a better visualization of the squeezing effect
we plot the first derivative of the field configuration in the spatial direction. The simulations show
that the initially slowly moving kink is attracted and squeezed by the impurity (fig.1). After this
period of movement the kink stops at the position of the impurity. The final state of our simulations
is a squeezed kink, described in the paper [8]. The squeezingfactor in the figure confirms the
analytical prediction. For small values of the damping constant we also observe some damped
oscillations of the kink about the position of the impurity.An example of half of the period of
such oscillations is presented in figures 1.b-d. The final state of this evolution is a configuration
which looks similar to the one presented in figure 1.c.

In the numerical experiments we also controlled the speed ofthe kink, this being identified
with the speed of the zero of the fieldφ(t,x). Typical time dependence of the kink velocity (see
fig.2) shows a dramatic increase in speed during the interaction of the kink with the imperfection
(see the time interval 20< t < 30 in the figure). After formation of the squeezed kink we observe
oscillations of this new state (t > 30).

In case of large damping all processes are much less violent.For example, forΓ = 5 we observe
a gradual decrease of the velocity in the case of the kink located initially far from the imperfection
(x0 = −25). This kink quickly stops, on the time scale of the experiment, and never reaches the
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impurity. On the other hand, if it is located enough close to the centre of the impurity (x0 = −3)
then after a period of slowing down, connected to large friction, we observe an increase in the
velocity, connected to formation of the squeezed kink.

We also studied the underdamped regime of theφ4 model. In this sector we have also found
that the creation of the bound state corresponds to a local increasing of the velocity ˙xK of the
zero of fieldφ(t,x) (see fig.3.a-b). Particularly if the initial velocity is sufficiently large, then
the speed of the zero of the scalar field may exceed the speed ofsound (see fig.3.b). We think
that this phenomenon is not an artefact of the numerics but has the same origin as exceeding the
speed of light, as described in the literature in a differentcontext. For example, in the papers [9]
the phenomenon of exceeding the speed of light by the zeros ofthe scalar field has been observed
numerically in the process of the interaction of two vortices. It seems that, in spite of the enormous
increasing of the speeds of zeros of the Higgs field, nothing unphysical happens in the system. It
has been found that at the same time the energy distribution is almost static. This observation
leads to the conclusion that during the interaction process, in relativistic models, the variable
xK(t) becomes unphysical. This observation explain why the collective coordinate methods fail
in the description of interaction process for relativisticspeeds. After interaction some oscillations
around the impurity position are also observed. We also havechecked that for a sufficiently large
initial speed, after some interaction of the kink with the impurity, the kink leaves the interaction
area without forming a bound state (see fig.3.c). The evolution of the fieldφ during this process is
presented in figures 4.a-c. Figure 4.d shows that this interaction, even in the dissipation-free model
(Γ = 0), is the reason for the reduction of the kink speed during its collision with the admixture.
There are two reasons for the reduction of the kinetic energyof the kink during this process. The
first is confinement of some part of the energy of the kink in theform of a gradient of the scalar
field trapped by the impurity, and the second is the radiation. Both are visible in figures 4.b-c.
The first corresponds, in the figures, to the stable structureformed at the position of the impurity
(ximp = 0) - see the area enclosed in the dashed circle. We also confirmedthe formation of this
structure at the position of the impurity in the system with small friction Γ = 0.03 (which reduces
radiation in the system).

We also studied the interaction of the kink with a larger number of centres of impurity. For
example, in figure 5 we present the effect of this interactionwith two admixtures. We showed that
the collision with the first imperfection reduces the speed of the kink to the level 0.3-0.4 which is
sufficient for the kink to be confined by the second impurity.

3 Remarks

In this report we considered the influence of inhomogeneities on the creation and further evolution
of a kink-antikink network.

We know that during the phase transition in an homogeneous system we obtain an homoge-
neous distribution of kinks determined by the K-Z exponentn∼ τ−1/4. The further evolution of
this network is dominated by kink-antikink attraction and then annihilation. This process causes
substantial reduction of the number density of kinks created at the time of freeze-out. On the other
hand, at nonzero temperature one can observe a competitive process of thermal nucleation of kink-
antikink pairs [10]. Usually thermal nucleation is substantially less efficient than annihilation and
therefore at the final stage of evolution the system almost does not contain any kinks.

On the other hand, in a system populated by imperfections thesituation is significantly differ-
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Figure 1: Formation of the bound state through a sequence of damped oscillations. a) Kink pushed
with the speedv = 0.25. b)-d) Half period of oscilations of the kink interactingwith the impurity
located atximp = 0.
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Figure 2: Time dependence of the kink speed during the formation of the bound state.
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Figure 3: Interaction of the kink with the impurity in underdamped system. a)-b) Formation of
the bound state. c) Reduction of the velocity during the interaction of the kink with the impurity
without formation of the bound state.
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Figure 5: Interaction of the kink with two impurities. Collision with the first impurity reduces
the kinetic energy of the kink but the kink still remains unbounded. As a result of interaction of
the kink with the second impurity the squeezed kink is formed. Interaction areas are denoted by
dashed boxes.
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ent. First, the number density of kinks created at the time offreeze-out is determined not only
by the quench time but also by the length scale which describes the distribution of impurities in
the system. If one considers the system with a single imperfection then it becomes clear that in-
terfaces are created mainly in the vicinity of the imperfection. In a system populated by strong
imperfections, the kinks are created mainly at the positions of the imperfections.

The next question raised in this report is the further evolution of the kink network created at
the time of freeze-out. We showed that the presence of impurities substantially reduces mobility
of kinks in the system and therefore reduces or even stops kink-antikink annihilation. According
to our studies, each interaction of the kink with the impurity reduces the kinetic energy of the
kink, or if this energy is sufficiently small causes confinement of the kink by the imperfection.
The reason for this reduction is independent on friction andis connected to confinement of some
part of the kink energy in the form of the gradient of the scalar field located in the vicinity of the
imperfection. What is important is that this mechanism of reduction of kink velocity works even
in an underdamped system. The other reason for reduction of the kinetic energy is radiation of
the energy during collision of the kink with the imperfection. We have shown that subsequent
collisions reduce the energy of the kink until its energy is so small that it can be confined by the
impurity. From our research it follows that, in a system thatis densely populated by imperfections,
most kinks created during the phase transition are confined by imperfections and therefore the
number density of kinks remains almost unchanged during theevolution. On the other hand, in
a system with friction, the kinetic energy is reduced due to dissipation (instead of radiation), but
the mechanism works in the same way as previously described.Additionally, depending on the
temperature of the system, we expect thermal nucleation of asmall number of kink-antikink pairs
[10].
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