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Abstract

We study a class of piecewise linear solutions to the inviscid Burgers equation driven by a
linear forcing term. Inspired by the analogy with peakons, we think of these solutions as
being made up of solitons situated at the breakpoints. We derive and solve ODEs governing
the soliton dynamics, first for continuous solutions, and then for more general shock wave
solutions with discontinuities. We show that triple collisions of solitons cannot take place for
continuous solutions, but give an example of a triple collision in the presence of a shock.

1 Introduction

The subject of this paper is piecewise linear solutions of the PDE

(ut +uux)xx = 0, (1.1)

which we earlier [10] have called thederivative Burgers equation. This name refers of course to
the well-known Burgers equationut +uux = νuxx and its special case the inviscid Burgers equation
ut + uux = 0, which is the prototype equation for studying shock wave solutions of hyperbolic
conservation laws. In some applications one considers alsoforcedBurgers equations with terms
of the formF(x, t) on the right-hand side, often written asF = −∂V/∂x with a potentialV. Since
equation (1.1) is equivalent tout +uux = A(t)x+B(t), it is perhaps more appropriate to talk about
it as aforced inviscid Burgers equation with linear force(or quadratic potential). Moreover, the
latter equation can be rewritten as

ut +
1
2
(u2)x = A(t)x+B(t), (1.2)

which makes sense for a much larger class of functions than just u ∈ C1(R). For example, if
u ∈ L2

loc(R) we can interpret (1.2) to hold in the sense of distributions.One could work with
distributions acting on test functionsψ(x, t) ∈ D(R2), but the following simpler interpretation is
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sufficient for our purposes here: we viewu(x, t) as a mapping that takes a real numbert to a
functionu(·, t) ∈ L2

loc(R) which we can identify with a distribution inD ′(R). The derivative with
respect tox is then the distributional derivative defined by its action on a test functionψ(x) ∈
D(R) in the usual way,〈ux,ψ〉 = −〈u,ψx〉, while the derivative with respect tot is the limit of a
difference quotient. If equation (1.2) is satisfied inD ′(R) for eacht, then we then say that it holds
in a weak sense and thatu is its weak solution.

We were led to the Burgers equation by our previous work onpeakonandshockpeakonsolution
of the Degasperis–Procesi (DP) equation

ut −utxx+4uux = 3uxuxx+uuxxx, (1.3)

an integrable wave equation discovered a few years ago [6, 5]. Indeed, the problems treated in this
paper are to some extent “toy problems”, but we hope that theymight provide some guidance and
intuition for the future study of the DP equation.

Equation (1.1) can be obtained formally from the DP equationby substitutingx 7→ εx, t 7→ εt,
and then lettingε → 0. This “high-frequency limit” is a natural thing to try on the DP equation,
since it is the same procedure that takes the celebrated integrable Camassa–Holm (CH) shallow
water equation [4],

ut −utxx+3uux = 2uxuxx+uuxxx, (1.4)

to the Hunter–Saxton (HS) equation for nematic liquid crystals [8, 9],

(ut +uux)xx = uxuxx. (1.5)

The CH and DP equations both admitpeakonsolutions, which are multisoliton solutions of the
form

u(x, t) =
n

∑
k=1

mk(t) exp
(

−|x−xk(t)|
)

, (1.6)

where the functionsxk(t) andmk(t) (positions and momenta of the individual peak-shaped soli-
tons) are required to satisfy a certain system of 2n ODEs in order foru(x, t) to satisfy the PDE
in a weak sense. In shorthand notation these ODEs are ˙xk = u(xk), ṁk = −(b−1)ux(xk), where
b = 2 for the CH equation andb = 3 for the DP equation. One can think of this as an integrable
mechanical system ofn particles on the real line, simililar to, for example, the open Toda lattice.
If follows from the rapid decay ofe−|x| that ẋk = u(xk) ≈ mk when all distances

∣

∣xi −x j
∣

∣ are large,
so it agrees with intuition to regardmk as the momentum of thekth particle. Asympotically (when
t →±∞) the particles will spread apart, each moving with its own (nearly) constant velocity which
is nonzero and distinct from the other particles’ velocities. The latter is a highly nontrivial fact for
the DP equation [13, Theorem 2.4].

There is an analogous class of solutions of the HS equation and the forced Burgers equation
(1.2), namely the piecewise linear solutions

u(x, t) =
n

∑
k=1

mk(t) |x−xk(t)| . (1.7)

In the shorthand notation used above, the governing ODEs take exactly the same form again:
ẋk = u(xk), ṁk = −(b− 1)ux(xk), whereb = 2 for the HS equation andb = 3 for the forced
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Burgers equation. However, for peakons the termmke−|xk−xk| usually dominates the other terms
in the equation ˙xk = u(xk), while here we instead have the termmk |xk−xk| which is zero while
all other terms are large. Thus, in contrast to peakons where the interaction is strongly localized,
these piecewise linear solitons influence each other more strongly the more separated they are.
Although it is a bit hard to develop a useful intuition about these ODEs as a “mechanical” system
(perhaps one can think of some kind of expanding gas with long-range correlations), the analogy
with peakons still makes it natural to think of the piecewiselinear solutions as being composed of
some kind of solitons situated at the breakpointsxk. (But we have not been able to make sense of
the idea that the piecewise linear solutions are somehow high-frequency limits of peakons).

In all four cases mentioned above, the ODEs governing the soliton dynamics can be explicitly
solved using inverse spectral methods [1, 12, 13, 2, 10, 3]. In the forced Burgers case the ODEs
are also easily solved directly by elementary methods, as wewill see.

In the Degasperis–Procesi equation (but not in the Camassa–Holm equation) there also appears
a more complicated phenomenon, namely discontinuous solutions of the form

u(x, t) =
n

∑
k=1

(

mk(t)−sk(t) sgn
(

x−xk(t)
)

)

exp
(

−|x−xk(t)|
)

. (1.8)

Suchshockpeakons[11] are governed by 3n ODEs for positionsxk, momentamk, and shock
strengthssk. Even if one starts with the usual peakon ansatz (1.6), shocksolutions of the form
(1.8) can form after finite time when a peakon withmk > 0 collides with anantipeakonwith
mk+1 < 0 moving in the opposite direction. (In the CH equation, suchcollisions give rise to “zero-
strength shocks” whereux momentarily blows up butu remains continuous, still being of the form
(1.6) after the collision [1], and a similar thing occurs forthe HS equation [9].) The shockpeakon
ODEs have so far only been solved in the trivial casen = 1 and in a very particular subcase when
n = 2. The problem is that the Lax pair for the DP equation, which was crucial for deriving the
peakon solution formulas, does not make sense for the weak formulation of the DP equation that
is used when working with discontinuous solutions.

The forced Burgers equation (1.2) admits an analogous classof solutions, given by the discon-
tinuous piecewise linear ansatz

u(x, t) =
n

∑
k=1

(

mk(t) |x−xk(t)|−sk(t)sgn
(

x−xk(t)
)

)

. (1.9)

Such solutions with shocks can form after finite time, even ifthe initial profile is continuous.
Unlike the Degasperis–Procesi case, it turns out here that the extra generality of having jumps in
u can be handled without problems.

The outline of the paper is simple: we derive and solve the ODEs govering piecewise linear
solutions of the forced Burgers equation (1.2), first in the simpler case (1.7) of continuous solutions
(using elementary methods and, for comparison, inverse spectral methods), then in the general
case (1.9) of discontinuous solutions (by reduction to the previous case). We conclude with a few
examples.
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2 Continuous piecewise linear solutions

Theorem 1. The continuous piecewise linear ansatz(1.7), u= ∑mk |x−xk|, is a weak solution to
the linearly forced inviscid Burgers equation(1.2) if and only if

ẋk =
n

∑
i=1

mi |xk−xi| , ṁk = 2mk

n

∑
i=1

mi sgn(xi −xk), (2.1)

for k = 1, . . . ,n. For this class of solutions, equation(1.2) takes the form

ut +
1
2
(u2)x = M2x−MM+, (2.2)

where M= ∑n
k=1mk and M+ = ∑n

k=1mkxk are constants of motion.

Proof. This is a special case (allsk = 0) of Theorem 7 which is proved later. �

One can assume that allmk 6= 0, since it follows from (2.1) that any vanishingmk remains
identically zero. If we think ofxk andmk as positions and masses of particles on a line, then the
total massM and the center of massM+/M (if M 6= 0) are conserved. Note that whenM = 0 we
have the unforced Burgers equation. There are some additional constants of motionM2, . . . ,Mn

that come together withM1 = M from the Lax pair presented in the next section, but we will not
need them here [10].

The presence of absolute values and the sign function in (2.1) naturally divides the posi-
tion spaceRn into sectors. More precisely, to any permutationσ = σ1σ2 . . .σn of the numbers
{1,2, . . . ,n} one can assign the sectorXσ = {(x1,x2, . . . ,xn) ∈ Rn |xσ1 < xσ2 < · · · < xσn}. We will
concentrate on the sectorXe corresponding to the identity permutatione=12. . .n, since there is
no loss of generality in assuming that the initial positionsxk(0) are sorted in increasing order:

Xe = {(x1,x2, . . . ,xn) ∈ Rn |x1 < x2 < · · · < xn}. (2.3)

For positions inXe the ODEs (2.1) take the form

ẋk =
n

∑
i=1

mi(xk−xi)sgn(k− i), ṁk = 2mk

n

∑
i=1

mi sgn(i −k). (2.4)

The following theorem solves this system completely.

Theorem 2. Given any initial data{xk(0),mk(0)}n
k=1 (with the xk(0)’s ordered or not), the so-

lution of the ODEs(2.4) is given by the formulas below, where M= ∑mk and M+ = ∑mkxk as
before, and where the empty sums∑0

1 and∑n
n+1 in F0 and Fn are to be interpreted as zero (so that

F0(t) = e−Mt and Fn(t) = eMt ).

• When M6= 0 the solution of(2.4) is

xk(t) =
M+

M
+

eMt

M

(

∑
j<k

(

xk(0)−x j(0)
)

mj(0)

)

+
e−Mt

M

(

∑
j>k

(

xk(0)−x j(0)
)

mj(0)

)

,

mk(t) =
mk(0)

Fk−1(t)Fk(t)
,

(2.5)
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for k = 1, . . . ,n, where

Fk(t) =
eMt

M

(

k

∑
j=1

mj(0)

)

+
e−Mt

M

(

n

∑
j=k+1

mj(0)

)

. (2.6)

• When M= 0 the solution of(2.4) is

xk(t) = xk(0)+ t

(

∑
j<k

(

xk(0)−x j(0)
)

mj(0)− ∑
j>k

(

xk(0)−x j(0)
)

mj(0)

)

,

mk(t) =
mk(0)

Fk−1(t)Fk(t)
,

(2.7)

for k = 1, . . . ,n, where

Fk(t) = 1+ t

(

k

∑
j=1

mj(0)−
n

∑
j=k+1

mj(0)

)

. (2.8)

• Letting lk = xk+1−xk for k = 1, . . . ,n−1, we have in both cases

lk(t) = lk(0)Fk(t). (2.9)

The proof is presented at the end of this section. As an immediate corollary we obtain infor-
mation about the original ODEs (2.1).

Theorem 3. Given initial data{xk(0),mk(0)}n
k=1 to the ODEs(2.1) such that x1(0) < x2(0) <

· · · < xn(0) (that is, with the positions in the sector Xe of Rn), the solution is given locally (around
t = 0) by the formulas of Theorem 2, and this solution is valid as long as the positions xk(t) remain
in Xe.

A local solution that starts inXe hits the boundary ofXe wheneverxk = xk+1 for at least onek,
an event which we refer to as acollision. It is clear from (2.9) that a collision occurs when some
Fk becomes zero, at which timemk andmk+1 blow up. The local solution is valid up until the time
of the first collision. In general a shock will then form, and the continuous ansatz (1.7) will not
be able to describe the solution beyond the point of collision. We will return to this in the section
about discontinuous solutions.

If all mk(0)’s have the same sign, then (2.6) shows that there are no collisions, so the solution
is global. In the case when all are positive, the asymptotic behaviour of this global solution as
t → +∞ is that x1 → M+/M and m1 → M, while xk → +∞ and mk → 0 for all k > 1. When
the mk(0)’s have mixed signs, collisions may or may not occur fort > 0. For example, in the
casen = 2 a collision takes place whenF1(t) = (m1(0)eMt +m2(0)e−Mt)/M becomes zero, which
happens whenm2(0)/m1(0) < 0 andt = (2M)−1 ln |m2(0)/m1(0)|. Consideration of cases shows
that this value oft is positive iff m1(0) < 0 < m2(0).

The event whenlk−1 = lk = 0 is called a triple collision, since three particles come together at
one point. The absence of triple collisions in the CH equation is a nontrivial result [1, 7], but for
the linearly forced Burgers equation it is much simpler. (Note, however, that triple collisionsare
possible for discontinuous piecewise linear solution; seethe examples at the end of the paper.)
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Theorem 4. Collisions occuring in continuous piecewise linear solutions of the linearly forced
Burgers equation(1.2)cannot be triple collisions.

Proof. A triple collision would occur if lk−1(t0) = 0 = lk(t0) for somet0, which amounts to
Fk−1(t0) = 0= Fk(t0) by (2.9). From the definition ofFk, it is obvious that this is impossible in the
caseM = 0, since we are assumingmk 6= 0. In the caseM 6= 0, it is also impossible, although less

obvious;Fk(t0) = 0 iff t0 = 1
2M log

−∑ j>k mj (0)

mk(0)+∑ j<k mj (0) and the quotient inside the logarithm is positive.

SoFk = Fk−1 = 0 iff mk(0)+B
A = B

mk(0)+A < 0, whereA = ∑ j<kmj(0) andB = ∑ j>k mj(0), which
requires that(mk +A)(mk +B) = AB, and hencemk(A+mk +B) = 0. But this is ruled out bymk

andA+mk+B = M both being nonzero. �

We finish this section with the postponed proof of the main theorem.

Proof of Theorem 2. Assume to begin with thatx1(0) < · · · < xn(0). Then (2.4) is equivalent to
(2.1), and we can attack the problem by trying to findxk(t) andmk(t) such that the corresponding
piecewise linearu(x, t) given by (1.7) satisfies the PDE (2.2). Thexk’s divide the real line into
n+1 intervals which we number byk = 0, . . . ,n. In each such intervalu takes the formu(x, t) =
ak(t)x+bk(t). Inserting this into (2.2) yields ˙ak +a2

k = M2 andḃk +bkak = −MM+, from which
(in the caseM 6= 0)

ak(t) = M
ak(0)cosh(Mt)+Msinh(Mt)
ak(0)sinh(Mt)+M cosh(Mt)

(2.10)

is found immediately, and by making an ansatz forbk with the same denominator asak one also
obtains

bk(t) =
ak(0)M+

(

1−cosh(Mt)
)

+M
(

bk(0)−M+ sinh(Mt)
)

ak(0)sinh(Mt)+M cosh(Mt)
. (2.11)

Nowxk(t) andmk(t) are recovered from the relationsmk = 1
2(ak−ak−1) andxk =−(bk−bk−1)/(ak−

ak−1). Because of the algebraic nature of the formulas thus obtained, they satisfy the ODEs (2.4)
identically, which shows that the assumptionx1 < .. . < xn is immaterial and can be removed. (This
will be important later; see the comments after Theorem 8.) The simpler caseM = 0 (unforced
Burgers) is entirely similar, except that

ak(t) =
ak(0)

tak(0)+1
, bk(t) =

bk(0)

tak(0)+1
. (2.12)

(The solution forM = 0 can also be obtained by expandinge±Mt = 1±Mt +O(M2) in the solution
for M 6= 0 and lettingM → 0.) �

3 Inverse spectral construction of solutions

The Lax pair

−∂ 3
x φ = zmφ , (3.1)

φt =
[

z−1∂ 2
x +c+ux−u∂x

]

φ , (3.2)
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with c an arbitrary constant, is compatible iffmt + mxu+ 3mux = 0 andmx = uxxx, under the
assumption of sufficient smoothness needed to justify the cross-differentiation. In particular, it is
compatible ifu evolves according to the derivative Burgers equation (1.1), which can be written
asmt + mxu+ 3mux = 0 with m= uxx. To obtain the linearly forced Burgers equation (1.2) from
equation (1.1) the rule(u2)x = 2uux is used. It is not obvious if all these formal calculations
have any relevance to weak solutions, where the smoothness assumptions may be violated. To
investigate this, let us say that (3.1) and (3.2) constituteaweak Lax pairif they are satisfied in the
weak sense discussed in the introduction (thusφ , like u, is aD ′(R)-valued function oft, and the
equations hold in the space of distributionsD ′(R)). Solutionsuof the form (1.7),u= ∑mk |x−xk|,
do admit a weak Lax pair withm= uxx = 2∑n

k=1 mkδxk, andφ is in this case a continuous function
(in fact, it is piecewise a quadratic polynomial inx with t-dependent coefficients). The productmφ
in (3.1) is well-defined since the distributionm can be multiplied by the continuous functionφ .
We hope to treat weak Lax pairs in more depth in future papers.Here we just state a theorem
which can be verified by careful use of the calculus of distributions.

Theorem 5. The following are equivalent conditions on a function u of the form (1.7), u =

∑mk |x−xk|:

1. u is a weak solution to the linearly forced Burgers equation (1.2), and{xk,mk} satisfy equa-
tions (2.1).

2. u has a weak Lax pair(3.1), (3.2).

Whenu= ∑mk |x−xk|, a solution to equation (3.1) with the asymptotic conditionφ(x, t;z) = 1
for x < x1(t) will be consistent with the time evolution given by (3.2) provided that we choose the
constantc=−M. Such a solution evaluated atx> xn(t) will take the formφ(x, t;z) = A(t;z)1

2(x−
xn)

2+B(t;z)(x−xn)+C(t;z), where all three coefficients are polynomials inz, which, by equation
(3.2), satisfyȦ = 0, Ḃ = MB, andĊ = A

z + 2MC (see [10]). Thus it is consistent with equations
(3.1) and (3.2) to impose the conditionA(t;z) = 0, which together withφ = 1 for x < x1 amounts
to the boundary conditionsφx(−∞) = φxx(−∞) = φxx(∞) = 0. With these boundary conditions in
place, the problem of solving the ODEs (2.1) becomes an isospectral deformation problem which
can be solved if one knows how to solve the inverse problem forequation (3.1). This is exactly
the inverse problem that was studied in [10] under the additional assumption that allmk(0) > 0.
We now give a brief summary of results from that paper.

Theorem 6. The “Neumann-like discrete cubic string” boundary value problem

−∂ 3
x φ = zmφ , φx(−∞) = φxx(−∞) = φxx(∞) = 0,

where m= 2∑n
k=1 mkδxk with all mk > 0, has a spectrum of the form{0 = z0 < z1 < z2 < · · · <

zn−1}. There is a one-to-one (up to translations of m along the x axis) and onto spectral map
m 7→ {M,µ}, where M= ∑mk > 0 and µ is a measure of the formµ = ∑n−1

j=1 b jδzj , with bj > 0
for j = 1, . . . ,n−1 (see details in [10]). The inverse problem of recovering thediscrete measure
m from{M,µ} has the explicit solution

mn−k =
CkDk

2Ak+1Ak
, xn−k+1−xn−k ≡ ln−k = −

2Ak

D ′
k

. (3.3)

in terms of determinants of bimoment matrices constructed out of the measureµ and the constant
M (see below).
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We recall the following definitions from [10]. Given a measure µ , let

β j =
∫

zj dµ(z), Ii j = I ji =
∫∫

zi w j

z+w
dµ(z)dµ(w). (3.4)

Let A0 = B0 = C0 = D0 = 1, A1 = I00+ 1
2M , D ′

1 = β0, and for other values ofk let

Ak =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I00+ 1
2M I01 · · · I0,k−1

I10 I11 · · · I1,k−1

I20 I21 · · · I2,k−1
...

...
...

Ik−1,0 Ik−1,1 · · · Ik−1,k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

Bk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

I00 I01 · · · I0,k−1

I10 I11 · · · I1,k−1
...

...
...

Ik−1,0 Ik−1,1 · · · Ik−1,k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

, Ck =

∣

∣

∣

∣

∣

∣

∣

∣

∣

I11 I12 · · · I1k

I21 I22 · · · I2k
...

...
...

Ik1 Ik2 · · · Ikk

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3.5)

Dk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

I10 I11 · · · I1,k−1

I20 I21 · · · I2,k−1
...

...
...

Ik0 Ik1 · · · Ik,k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

, D
′
k =

∣

∣

∣

∣

∣

∣

∣

∣

∣

β0 I10 · · · I1,k−2

β1 I20 · · · I2,k−2
...

...
...

βk−1 Ik0 · · · Ik,k−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In all these cases, the indexk agrees with the sizek× k of the determinant. Note thatAk =
Bk + 1

2M Ck−1 for k≥ 1.
Let us analyze the formula (3.3) forlk in order to compare it with (2.9) obtained earlier. First,

(3.2) implies that the linearly forced Burgers equation induces a very simple evolution of the
measureµ , namelyµ(z; t) = eMt µ(z;0). Because of this it is easy to factor out the time dependence
from all the determinants involved in (3.3). This elementary exercise leads tolk(t) = lk(0)Fk(t),
where

Fk(t) =
Bn−k(0)eMt + 1

2MCn−k−1(0)e−Mt

Bn−k(0)+ 1
2MCn−k−1(0)

. (3.6)

This is in full agreement with (2.6) and (2.9). The formula for mk can be checked in a similar way.

4 Discontinuous piecewise linear solutions

Theorem 7. The discontinuous piecewise linear ansatz(1.9), u= ∑(mk |x−xk|−sk sgn(x−xk)),
is a weak solution of the linearly forced inviscid Burgers equation (1.2) if and only if

ẋk =
n

∑
i=1

(

mi |xk−xi|+si sgn(xi −xk)
)

,

ṁk = 2mk

n

∑
i=1

mi sgn(xi −xk), ṡk = sk

n

∑
i=1

mi sgn(xi −xk),

(4.1)

for k = 1, . . . ,n. For this class of solutions, equation(1.2) takes the form

ut +
1
2
(u2)x = M2x−M(M+ +S), (4.2)
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with M = ∑mk and M+ = ∑mkxk as before, and with S= ∑sk. The quantities M and M+ +S are
constants of motion, and so is s2

k/mk for k = 1, . . . ,n (provided that mk 6= 0).

Proof. We will repeatedly use the following distributional formula valid for an arbitrary piecewise
differentiable functionf with points of discontinuity atx1,x2, . . . ,xn: fx = { fx}+ ∑n

k=1[ f ]kδxk,
where{ fx} means the ordinary derivative taken away from discontinuities and[ f ]k = f (x+

k )−
f (x−k ) denotes the jump atxk. Moreover,ut = ∑k

(

ṁk|x−xk|− (mkẋk + ṡk)sgn(x−xk)+2skẋkδxk

)

.
Now the left-hand side of (1.2),ut + 1

2(u2)x, must be a function since the right-hand side is a
function; hence all Dirac deltas must cancel out. Similarly, there must be no Dirac deltas in the
first or secondx derivatives ofut +

1
2(u2)x, These conditions give, in turn,

0 = 2skẋk + 1
2[u2]k, 0 = −2(mkẋk + ṡk)+ 1

2[{(u2)x}]k,

0 = 2ṁk + 1
2[{(u2)xx}]k.

(4.3)

An elementary computation of jumps for the case of piecewisecontinuous functions now produces
(4.1). The coefficients of the forcing term in the PDE are identified from the smooth part of the
term 1

2(u2)x, while the constants of motion follow from (4.1). �

Weak solutions to an initial value problem are usually not unique unless the PDE is supple-
mented with a so-called entropy condition that picks out the“physical” solution. In the case of
the Burgers equation this condition requiresu to jump down, not up, at discontinuities. This is
satisfied by the ansatz (1.9) if all shock strenghtsk are nonnegative, so we will assumesk ≥ 0 from
now on.

When considering the initial value problem for the ODEs (4.1) we can assume without loss of
generality thatx1(0) < x2(0) < .. . < xn(0). Thus on a sufficiently small time interval we will still
havex1(t) < x2(t) < .. . < xn(t); in other words, the positions stay in the sectorXe (see (2.3)). In
Xe the equations (4.1) can be written as

ẋk =
n

∑
i=1

(

mi sgn(k− i)(xk−xi)−si sgn(k− i)
)

,

ṁk = 2mk

n

∑
i=1

mi sgn(i −k), ṡk = sk

n

∑
i=1

mi sgn(i −k),

(4.4)

for k = 1, . . . ,n. These equations can be solved explicitly, since the simplechange of variables in
the following theorem reduces them to the ODEs already solved in Theorem 2.

Theorem 8. If {xk,mk,sk}
n
k=1 satisfy(4.4), if all mk(0) 6= 0, and if

yk = xk +sk/mk, (4.5)

then{yk,mk}
n
k=1 satisfy(2.4) (with yk taking the place of xk everywhere).

Proof. Straightforward calculation. �

Note that the initital valuesyk(0) will not necessarily be distinct or sorted in increasing order
even though thexk(0)’s are, but this does not matter since the solution formulas of Theorem 2
are valid for any initial conditions. So Theorem 2 gives usyk(t) andmk(t) (note that∑mkyk =

∑(mkxk +sk) = M+ +S replacesM+ in the solution formula (2.5)), and we can then recoversk(t)
from the fact thats2

k/mk is constant for eachk; this givessk(t) = sk(0)/
√

Fk−1(t)Fk(t), and allows
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us to also recoverxk(t) = yk(t)−sk(t)/mk(t). This solution{xk,mk,sk} to (4.4) is also the solution
to (4.1), at least locally in some time interval aroundt = 0 (so that thexk’s remain in the sector
Xe).

For illustration, here is the general solution with shocks in the casen= 2, whenM 6= 0, m1(0) 6=
0, m2(0) 6= 0:

m1(t) =
m1(0)

F0(t)F1(t)
, s1(t) =

s1(0)
√

F0(t)F1(t)
,

m2(t) =
m2(0)

F1(t)F2(t)
, s2(t) =

s2(0)
√

F1(t)F2(t)
,

x1(t) =
M+ +S−Km2(0)e−Mt

M
−

s1(0)

m1(0)

√

F0(t)F1(t),

x2(t) =
M+ +S+Km1(0)eMt

M
−

s2(0)

m2(0)

√

F1(t)F2(t),

F0(t) = e−Mt , F1(t) =
m1(0)eMt +m2(0)e−Mt

M
, F2(t) = eMt ,

K = x2(0)−x1(0)+
s2(0)

m2(0)
−

s1(0)

m1(0)
.

(4.6)

In the continuous case (2.1) we assumed allmk 6= 0, but for (4.1) it does make sense to have
mk = 0 provided that the correspondingsk is nonzero. Ifmk(0) = 0, then clearlymk(t) = 0 for
all t, and the above solution procedure does not work. But this is easily fixed: just write down the
general solution obtained for a nonzero initial valuemk(0) = a, and leta→ 0 there.

We will finish with a few examples that show how to deal with thesolution when it hits the
boundary of the sectorXe.

Example. A particular antisymmetric solution of (4.1) withn = 3 is given by−x1 = x3 ≡ ξ > 0,
x2 = 0, −m1 = m3 ≡ µ > 0, m2 = 0, s1 = s3 = 0, s2 ≡ σ ≥ 0, whereξ (t) = ξ (0)F(t)−σ(0)t,
µ(t) = µ(0)/F(t), σ(t) = σ(0)/F(t), with F(t) = 1−2µ(0)t. (These formulas are obtained either
by reducing (4.1) to ODEs forξ , µ , σ and solving them directly; or by assumingm2(0) = a 6= 0,
changing variables toy1 = x1, y2 = x2 + s2/m2, y3 = x3, writing down the general solution using
Theorems 8 and 2, and lettinga→ 0; or simply by noting thatM = 0 so that we are dealing with the
unforced Burgers equation whose solution can be found in thetextbook way using characteristics.)
SinceM+ +S= 2µξ + σ is constant in time, the wave profile (see Figure 1) is

u(x, t) = −µ(t) |x+ ξ (t)|+ µ(t) |x−ξ (t)|−σ(t)sgn(x)

=































2µ(0)ξ (0)+ σ(0), x < −ξ (t),

−2µ(t)x+ σ(t), −ξ (t) ≤ x < 0,

0, x = 0,

−2µ(t)x−σ(t), 0 < x≤ ξ (t),

−
(

2µ(0)ξ (0)+ σ(0)
)

, ξ (t) < x.

(4.7)

If σ(0) = 0 then this is a shockless solution (withn = 2 really, since there is neither mass nor

shock at the sitex2 = 0). It is defined untilξ (t) = ξ (0)F(t) becomes zero at timetcoll =
(

2µ(0)
)−1

.
Thenx1 andx3 collide atx = 0 while m1 andm3 blow up to−∞ and+∞, respectively. However,
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x−ξ (t) ξ (t)0

σ(t)

2µ(t)ξ (t)

x x0

Figure 1: Left/middle: Wave profileu(x, t) as given by (4.7) at two different timest < tcoll, with
ξ (t) decreasing towards zero at a constant rate. Right: Stationary profile after collision (t ≥ tcoll).

xx1(0) = −2 x2(0) = 0 x3(0) = 1

Figure 2: Solid: Continuous initial wave profileu(x,0). Dashed/dotted:u(x, t) at timest = ln 4
3

andt = ln 5
3, respectively.

u remains bounded, and tends to a shock profile:u(x, t) →−2µ(0)ξ (0)sgn(x) ast ր tcoll. This
illustrates that shocks can form naturally even if they are not present in the initial wave profile.
The profile will be stationary after the collision, because its continued evolution is given by the
n = 1 case of (4.1) ( ˙x1 = m1, ṁ1 = ṡ1 = 0) with x1 = 0, m1 = 0, s1 = 2µ(0)ξ (0). Consequently,
u(x, t) = −2µ(0)ξ (0)sgn(x) for all t ≥ tcoll.

If σ(0) > 0 there is a shock waiting at the origin between the two approaching particles (as
in Figure 1). The solution hits the boundary of the sectorXe when ξ (t) becomes zero at time

tcoll =
(

2µ(0)+σ(0)/ξ (0)
)−1

. Thenx1 = x2 = x3 = 0, which illustrates that triple collisions may
occur when shocks are present. Since the collision occurs earlier than in the shockless case,F(t)
has not yet reached zero at the time of collision; hencem1 andm3 do not blow up in this case.
Again,u tends to a stationary shock profile:u(x, t) =−

(

2µ(0)ξ (0)+σ(0)
)

sgn(x) for all t ≥ tcoll.

Example. Consider now the shockless ODEs (2.1) withn= 3 and initial datam1(0) = 2
3, m2(0) =

−1 andm3(0) = 4
3, so thatM = 1. We assumex1(0) < x2(0) < x3(0) but leave them otherwise

unspecified. Sinceu = ±(Mx−M+) asx→±∞, and since the slopeux jumps by 2mk at eachxk,
the initial profileu(x,0) consists of line segments with slope−1, 1

3, −5
3 and 1, joined at the points

(xk,u(xk,0)). Figure 2 illustrates this for the particular valuesx1(0) = −2, x2(0) = 0, x3(0) = 1.
Note that if the linesu = ±(Mx−M+) to the left and to the right are continued, they intersect on
thex axis at the center of massx = M+/M (= 0 in the figure), which is a constant of motion.

Recall thatl1 = x2 − x1 and l2 = x3 − x2. From (2.6) we obtainF0(t) = e−t , F1(t) = 2
3et +
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xx1(tcoll) = −1 x2(tcoll) = x3(tcoll) = 2

Figure 3: Solid: Discontinuous wave profileu(x, t) formed at the instant of collisiont = tcoll = ln2.
Dashed:u(x, t) at timet = tcoll +

1
2. Dotted: No more collisions occur, andu(x, t) →|x| ast →+∞.

1
3e−t , F2(t) = −1

3et + 4
3e−t , andF3(t) = et . Equations (2.5) and (2.9) givex1(t) = x1(0) + (1−

e−t)
(

1
3 l1(0)+ 4

3 l2(0)
)

, x2(t) = x1(t)+ l1(0)F1(t), andx3(t) = x2(t)+ l2(0)F2(t). There is a col-
lision betweenx2 andx3 whenF2(t) becomes zero, which happens at timet = tcoll = ln2 when
et = 2. At that time we haveF0 = 1

2, F1 = 3
2, F2 = 0, F3 = 2, hence by (2.5)m1 = m1(0)/F0F1 = 8

9,
m2 = −∞, m3 = +∞. As for the wave profileu, we have

u(x1(t), t) = m2l1 +m3(l1 + l2) = (M−m1) l1 +m3l2
= (F1−m1(0)/F0) l1(0)+m3(0)l2(0)/F3

→ 1
6 l1(0)+ 2

3 l2(0), ast ր tcoll,

(4.8)

and

u(x2(t), t)−u(x3(t), t) = (m1l1 +m3l2)− (m1(l1 + l2)+m2l2)

= (m3−m1−m2) l2
=
(

m3(0)/F3−m1(0)F2/F0F1−m2(0)/F1
)

l2(0)

→ 4
3 l2(0), ast ր tcoll.

(4.9)

Thus the limiting wave profile att = tcoll consists of a line segment with slope−1, joined to a line
segment with slope−1+ 2 · 8

9 = 7
9 at x = x1(tcoll) = x1(0)+ 1

2

(

1
3 l1(0)+ 4

3 l2(0)
)

and heightu =
1
6 l1(0)+ 2

3 l2(0); the profile jumps down by43 l2(0) at x = x2(tcoll) = x3(tcoll) = x1(tcoll)+ 3
2 l1(0),

and continues from there with slope 1. See Figure 3.
The continued evolution of the profile fort ≥ tcoll is illustrated in Figure 3; it is given by the

shock ODEs (4.1) withn = 2, using a new set of variables whose initial values att = tcoll are
x̃1 = x1(tcoll), x̃2 = x2(tcoll), m̃1 = 8

9, m̃2 = 1
9, s̃1 = 0, and ˜s2 = 2

3 l2(0). In terms of the new time
variableτ = t − tcoll ≥ 0 one finds from the general solution (4.6) that, for example,

x̃2(τ)− x̃1(τ) =

(

x̃2(0)− x̃1(0)+
s̃2(0)

m̃2(0)

)

F̃1(τ)−
s̃2(0)

m̃2(0)

√

F̃1(τ)F̃2(τ), (4.10)

where F̃1(τ) = 8
9eτ + 1

9e−τ and F̃2(τ) = eτ . Writing this expression as ˜x2 − x̃1 = (A+ B)F̃1 −

B
√

F̃1F̃2, we see that it is zero ifF1(τ) = 0, which can never happen, or if(A+ B)2F1 = B2F2,
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which is the same ase−2τ = 9((A+B)/B)2−8 that can’t happen either since the right-hand side is
> 1 and the left-hand side is≤ 1 for τ ≥ 0. The conclusion is that, in this example, ˜x2(τ)− x̃1(τ)
remains positive for allτ > 0, so there are no more collisions. Instead, asτ (or t) → +∞, we
havex̃1 → 0, x̃2 → +∞, m̃1 → M, m̃2 → 0, and ˜s2 → 0. Thus,u(x, t) approaches the limiting wave
profile u(x,+∞) = |x|.
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