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Abstract

We study a class of piecewise linear solutions to the indi®tirgers equation driven by a
linear forcing term. Inspired by the analogy with peakons, think of these solutions as
being made up of solitons situated at the breakpoints. Wgeland solve ODESs governing
the soliton dynamics, first for continuous solutions, anehtifior more general shock wave
solutions with discontinuities. We show that triple cabiss of solitons cannot take place for
continuous solutions, but give an example of a triple clfisn the presence of a shock.

1 Introduction
The subject of this paper is piecewise linear solutions eRDE
(U + Ul)xx =0, (1.1)

which we earlier [10] have called ttaerivative Burgers equationT his name refers of course to
the well-known Burgers equatian+ uu, = Vuyy and its special case the inviscid Burgers equation
U + uuk = 0, which is the prototype equation for studying shock wavetsms of hyperbolic
conservation laws. In some applications one considersfatsed Burgers equations with terms
of the formF (x,t) on the right-hand side, often written Bs= —dV /dx with a potentiaV. Since
equation (1.1) is equivalent tg + uu, = A(t)x+ B(t), it is perhaps more appropriate to talk about
it as aforced inviscid Burgers equation with linear for¢er quadratic potential). Moreover, the
latter equation can be rewritten as

Ut+}(u2)X:A(t)X+ B(t), 1.2)

2
which makes sense for a much larger class of functions thstrujg C'(R). For example, if
u e L2 (R) we can interpret (1.2) to hold in the sense of distributio@ne could work with
distributions acting on test functiong(x,t) € 2(R?), but the following simpler interpretation is
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sufficient for our purposes here: we viayx,t) as a mapping that takes a real numbeo a
functionu(-,t) € L2 (R) which we can identify with a distribution itv’(R). The derivative with
respect tox is then the distributional derivative defined by its actionatest functiony(x)
2(R) in the usual way{uy, ) = —(u, g)), while the derivative with respect tas the limit of a
difference quotient. If equation (1.2) is satisfiedZ(R) for eacht, then we then say that it holds
in a weak sense and thais its weak solution.

We were led to the Burgers equation by our previous worgeaikorandshockpeakosolution
of the Degasperis—Procesi (DP) equation

Ut — Ugxx + AUy = SUyUyx + Ulkxx, (1.3)

an integrable wave equation discovered a few years ago.[@dded, the problems treated in this
paper are to some extent “toy problems”, but we hope thatrthigit provide some guidance and
intuition for the future study of the DP equation.

Equation (1.1) can be obtained formally from the DP equabipsubstitutingx — €X, t — &t,
and then lettinge — 0. This “high-frequency limit” is a natural thing to try ondtDP equation,
since it is the same procedure that takes the celebrategraiie Camassa—Holm (CH) shallow
water equation [4],

Ur — Ugyx + 3UUy = 2UxUyy + Ullxy, (1.4)

to the Hunter—Saxton (HS) equation for nematic liquid algsi8, 9],

(Ut + qu)xx = UyUxx. (1-5)

The CH and DP equations both adipéakonsolutions, which are multisoliton solutions of the
form

ka exp(— [x— x«(t)]), (1.6)

where the functionsy(t) andm(t) (positions and momenta of the individual peak-shaped soli-
tons) are required to satisfy a certain system mfODEs in order foru(x,t) to satisfy the PDE
in a weak sense. In shorthand notation these ODEsareu(xy), Mg = —(b— 1)ux(X), where
b = 2 for the CH equation anld = 3 for the DP equation. One can think of this as an integrable
mechanical system af particles on the real line, simililar to, for example, theesoproda lattice.
If follows from the rapid decay of X thatx, = u(x() ~ my when all distance{;q — Xj| are large,
so it agrees with intuition to regardg as the momentum of thh particle. Asympotically (when
t — 4o0) the particles will spread apart, each moving with its oweg(ty) constant velocity which
is nonzero and distinct from the other particles’ velositi€he latter is a highly nontrivial fact for
the DP equation [13, Theorem 2.4].

There is an analogous class of solutions of the HS equatidrttenforced Burgers equation
(1.2), namely the piecewise linear solutions

ka ) IX—=Xk(t)]. (1.7)

In the shorthand notation used above, the governing ODEss éaklictly the same form again:
Xk = U(X), Mg = —(b—1)ux(xx), whereb = 2 for the HS equation antd = 3 for the forced
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Burgers equation. However, for peakons the tenge % usually dominates the other terms
in the equation = u(x), while here we instead have the term|xx — xx| which is zero while

all otherterms are large. Thus, in contrast to peakons where theaiien is strongly localized,
these piecewise linear solitons influence each other mooagy the more separated they are.
Although it is a bit hard to develop a useful intuition abdutde ODES as a “mechanical” system
(perhaps one can think of some kind of expanding gas with-tange correlations), the analogy
with peakons still makes it natural to think of the piecewinear solutions as being composed of
some kind of solitons situated at the breakpoits(But we have not been able to make sense of
the idea that the piecewise linear solutions are somehowfhégiuency limits of peakons).

In all four cases mentioned above, the ODEs governing thimesalynamics can be explicitly
solved using inverse spectral methods [1, 12, 13, 2, 10,i3{héd forced Burgers case the ODEs
are also easily solved directly by elementary methods, asilveee.

In the Degasperis—Procesi equation (but not in the Camisda-equation) there also appears
a more complicated phenomenon, namely discontinuousicadubf the form

n

uxt) = 3 (w(t) _— sgr(x—xk<t>)) exp(— [x—c(t)]). (18)

k=1

Such shockpeakon$ll1] are governed by rBODEs for positionsx,, momentamy, and shock
strengthss,. Even if one starts with the usual peakon ansatz (1.6), sholtkions of the form
(1.8) can form after finite time when a peakon witl > O collides with anantipeakonwith
M. 1 < 0 moving in the opposite direction. (In the CH equation, scallisions give rise to “zero-
strength shocks” wheng, momentarily blows up but remains continuous, still being of the form
(1.6) after the collision [1], and a similar thing occurs fbe HS equation [9].) The shockpeakon
ODEs have so far only been solved in the trivial case 1 and in a very particular subcase when
n= 2. The problem is that the Lax pair for the DP equation, whies wrucial for deriving the
peakon solution formulas, does not make sense for the weaiufation of the DP equation that
is used when working with discontinuous solutions.

The forced Burgers equation (1.2) admits an analogous ofagsutions, given by the discon-
tinuous piecewise linear ansatz

n

) = 3 (mdOlx- (0]~ st sax-x(0) ). (L.9)

k=1

Such solutions with shocks can form after finite time, evethd initial profile is continuous.
Unlike the Degasperis—Procesi case, it turns out here tibatttra generality of having jumps in
u can be handled without problems.

The outline of the paper is simple: we derive and solve the ®Bfd&vering piecewise linear
solutions of the forced Burgers equation (1.2), firstin thgoder case (1.7) of continuous solutions
(using elementary methods and, for comparison, inversetrgphenethods), then in the general
case (1.9) of discontinuous solutions (by reduction to ttesipus case). We conclude with a few
examples.
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2 Continuous piecewise linear solutions

Theorem 1. The continuous piecewise linear ans@lz7), u= S my|x— X/, is a weak solution to
the linearly forced inviscid Burgers equati¢h.2) if and only if

n n
Xk:Zmi|Xk—Xi|a r'n<=2mkzlmsgr(><a—xk), (2.1)
i= =
fork=1,...,n. For this class of solutions, equatig¢h.2) takes the form
1
ut+5(u2)X:M2x—MM+, (2.2)

where M= S}, mgand M, = S_; mex are constants of motion.

Proof. This is a special case (@l = 0) of Theorem 7 which is proved later. |

One can assume that afl # 0, since it follows from (2.1) that any vanishingc remains
identically zero. If we think of, andmy as positions and masses of particles on a line, then the
total masdV and the center of madd, /M (if M # 0) are conserved. Note that whi¥h= 0 we
have the unforced Burgers equation. There are some additt@mmstants of motioMy, ..., M,
that come together witM; = M from the Lax pair presented in the next section, but we witl no
need them here [10].

The presence of absolute values and the sign function i (&turally divides the posi-
tion spaceR" into sectors. More precisely, to any permutatior= 010> ... g, of the numbers
{1,2,...,n} one can assign the secty = {(x1,X2,..., %) € R"|Xg < Xg, < -+ < Xg, }. We will
concentrate on the sect¥g corresponding to the identity permutatier=12...n, since there is
no loss of generality in assuming that the initial positigg®) are sorted in increasing order:

Xe={(X1,%2,..,Xn) €ER"[X1 <X < -+ < X} (2.3)
For positions inXe the ODEs (2.1) take the form

xk:imi(xk—xi)sgr(k—i), hk:an_imsgr(i—k)' (2.4)

The following theorem solves this system completely.

Theorem 2. Given any initial data{xc(0),m(0)}r_, (with the x(0)’s ordered or not), the so-
lution of the ODEg2.4) is given by the formulas below, where-My my and M, = 5 myx¢ as
before, and where the empty sugﬁsand Sne1in Fo and F, are to be interpreted as zero (so that
Fo(t) = e Mt and Ry(t) = eM).

e When M+ 0 the solution of(2.4)is

t
Xk(t):%+%<

(Zk(xk(o) —X;(0))m; (O)> : (2.5)
1>
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fork=1,...,n, where

eMt k efMt n
R(t) = m <;mj(0)> t <j—Z+1mj(0)> - (2.6)

e When M= 0 the solution of(2.4)is

X(t) = %(0) +t (Z(Xk(o) =xj(0))m;(0) — Zk(xk(o) —X;(0))m; (0)> ,

- I< 1= 2.7)
L
™ R OR@
fork=1,...,n, where
k n

Fe(t) =1+t (Z m;(0) — mj(0)> . (2.8)

=1 j=k+1

e Letting k =xc 1 —X fork=1,...,n—1, we have in both cases
I(t) = Ik (O)F(t). (2.9)

The proof is presented at the end of this section. As an imatediorollary we obtain infor-
mation about the original ODEs (2.1).

Theorem 3. Given initial data{x(0),m(0)};_, to the ODES(2.1) such that x(0) < x(0) <
.-+ < Xn(0) (that is, with the positions in the sectog &f R"), the solution is given locally (around
t = 0) by the formulas of Theorem 2, and this solution is valid aglas the positionst) remain

in Xe.

A local solution that starts iX hits the boundary oKe wheneverx, = x, 1 for at least one,
an event which we refer to ascallision. It is clear from (2.9) that a collision occurs when some
F« becomes zero, at which tinm, andmy 1 blow up. The local solution is valid up until the time
of the first collision. In general a shock will then form, ar tcontinuous ansatz (1.7) will not
be able to describe the solution beyond the point of coliisie will return to this in the section
about discontinuous solutions.

If all m(0)’s have the same sign, then (2.6) shows that there are nsiooBi, so the solution
is global. In the case when all are positive, the asymptatitaliiour of this global solution as
t — +oo is thatx; — M, /M andm; — M, while xx — +c andmg — O for all k > 1. When
the m(0)’'s have mixed signs, collisions may or may not occurtfor 0. For example, in the
casen = 2 a collision takes place whédf (t) = (m;(0)eM + mp(0)e~M!) /M becomes zero, which
happens whemy(0)/my(0) < 0 andt = (2M)~1In|mp(0) /my (0)|. Consideration of cases shows
that this value of is positive iff m; (0) < 0 < mp(0).

The event whety_; = Iy = 0 is called a triple collision, since three particles congetber at
one point. The absence of triple collisions in the CH equmaisoa nontrivial result [1, 7], but for
the linearly forced Burgers equation it is much simpler. @ dowever, that triple collisionare
possible for discontinuous piecewise linear solution;theeexamples at the end of the paper.)
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Theorem 4. Collisions occuring in continuous piecewise linear salns of the linearly forced
Burgers equatior{1.2) cannot be triple collisions.

Proof. A triple collision would occur iflg_1(tg) = 0 = Ik(tp) for somety, which amounts to
Fe-1(to) = 0= FK(to) by (2.9). From the definition df, it is obvious that this is impossible in the
caseM = 0, since we are assumimg, # 0. In the casé/l #£ 0, it is also impossible, although less
obvious;F(tp) = 0 iff to = ﬁ Iogﬁ% and the quotient inside the logarithm is positive.
SoF = 1= 0iff ™M = =B <0, whereA = 3;_,m;j(0) andB = 3 ;.,:m;(0), which
requires thatmy + A)(mg + B) = AB, and hencen (A+ my+ B) = 0. But this is ruled out byng
andA-+ mg+ B = M both being nonzero. |

We finish this section with the postponed proof of the maimtam.

Proof of Theorem 2. Assume to begin with that (0) < --- < X,(0). Then (2.4) is equivalent to
(2.1), and we can attack the problem by trying to fiat) andm(t) such that the corresponding
piecewise lineau(x,t) given by (1.7) satisfies the PDE (2.2). Thgs divide the real line into
n+ 1 intervals which we number by=0,...,n. In each such interval takes the fornu(xt) =
a(t)x+ by(t). Inserting this into (2.2) yieldsy + a2 = M2 andby + bxax = —MM.,, from which
(in the caseM £ 0)

ax(0) cosi(Mt) + M sinh(Mt)
ax(0) sinh(Mt) + M cosh|Mt)

a(t) = (2.10)

is found immediately, and by making an ansatzbpmith the same denominator ag one also
obtains

a(0)M;. (1 — coshiMt)) + M (by(0) — M., sinh(Mt))

b(t) = ax(0) sinh(Mt) + M cosh(Mt)

(2.11)

Now Xk (t) andm(t) are recovered from the relationg = %(ak— ax—1) andxx = — (b —by_1)/(ak—
ax-1). Because of the algebraic nature of the formulas thus aidaiihey satisfy the ODEs (2.4)
identically, which shows that the assumptian< ... < x, is immaterial and can be removed. (This
will be important later; see the comments after Theorem 8¢ Jimpler casé = 0 (unforced
Burgers) is entirely similar, except that

a(0)

_ b0
" ta(0)+ 1 k(1)

— m. (2.12)

a(t)

(The solution fotM = 0 can also be obtained by expandaig" = 1+ Mt 4 O(M?) in the solution
for M # 0 and lettingM — 0.) |

3 Inverse spectral construction of solutions

The Lax pair

—00 =zmp, (3.1)
@ = [2107+Cc+u—udy @, (3.2)
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with ¢ an arbitrary constant, is compatible iffi + myu+ 3mu, = 0 andmy = Uk, under the
assumption of sufficient smoothness needed to justify tbgsedifferentiation. In particular, it is
compatible ifu evolves according to the derivative Burgers equation (vhjch can be written
asm + myu+ 3my = 0 with m= uyy. To obtain the linearly forced Burgers equation (1.2) from
equation (1.1) the ruléu?), = 2uu, is used. It is not obvious if all these formal calculations
have any relevance to weak solutions, where the smoothsessnations may be violated. To
investigate this, let us say that (3.1) and (3.2) constifiteak Lax paiiif they are satisfied in the
weak sense discussed in the introduction (#pubke u, is a2’(R)-valued function ot, and the
equations hold in the space of distributiag#§R)). Solutionsu of the form (1.7)u= S mg|x— x|,

do admit a weak Lax pair with= uy =23y _; mdy,, and@ s in this case a continuous function
(in fact, it is piecewise a quadratic polynomiabimvith t-dependent coefficients). The produoap

in (3.1) is well-defined since the distribution can be multiplied by the continuous functign
We hope to treat weak Lax pairs in more depth in future papkElere we just state a theorem
which can be verified by careful use of the calculus of digtidns.

Theorem 5. The following are equivalent conditions on a function u o form (1.7), u =
3 Mk X — Xl:

1. uis aweak solution to the linearly forced Burgers equafib.2), and {xx, my} satisfy equa-
tions(2.1).

2. uhas a weak Lax paii3.1), (3.2).

Whenu = S m¢|x— X/, a solution to equation (3.1) with the asymptotic conditjg®,t;z) =1
for x < x3(t) will be consistent with the time evolution given by (3.2) pided that we choose the
constant = —M. Such a solution evaluatedat> xn(t) will take the formg(x,t;z) = A(t; z)%(x—
Xn)?+B(t;2) (x—xn) +C(t; 2), where all three coefficients are polynomialgimvhich, by equation
(3.2), satisfyA =0, B= MB, andC = 2 + 2MC (see [10]). Thus it is consistent with equations
(3.1) and (3.2) to impose the conditidit; z) = 0, which together withp = 1 for x < x; amounts
to the boundary conditiong(—) = @x(—») = @x() = 0. With these boundary conditions in
place, the problem of solving the ODESs (2.1) becomes an éssp deformation problem which
can be solved if one knows how to solve the inverse problenedomation (3.1). This is exactly
the inverse problem that was studied in [10] under the auiditiassumption that afh(0) > 0.
We now give a brief summary of results from that paper.

Theorem 6. The “Neumann-like discrete cubic string” boundary valuelplem

—03p=2mp,  P(—) = Pu(—) = Px(e0) =0,

where m= 2y, md, with all mg > 0, has a spectrum of the forf0 =z <z1 <z < -+ <
z,-1}. There is a one-to-one (up to translations of m along the ®)aand onto spectral map
m— {M, u}, where M=y m > 0 and u is a measure of the form = Z?;::Il:bj O, With by > 0
for j=1,...,n— 1 (see details in [10]). The inverse problem of recovering diserete measure
m from{M, u} has the explicit solution

Gk 2.9

_— kel —Xnk =k = ——. 3.3
2dk+lr52{k’ Xn k+1 Xn—k n—k @Ii ( )

Mp_k =

in terms of determinants of bimoment matrices constructédithe measurg and the constant
M (see below).



Piecewise Linear Solutions of the Linearly Forced Burgeyadtion

271

We recall the following definitions from [10]. Given a measyr, let

. Awl
= [ Zdu(z I--:I--://—d 2)du(w). 3.4
Bi=[Zau@.  1y=1i = [[ Zdu@du(w) (3.4)
Let oty = Bo = 6o = Po=1, % = loo+ 57, Z; = Po, and for other values df let
loo+ 55 | |
00+ 317 01 0k—1
l10 l11 l1k—1
= l20 |21 l2k-1 |,
lk-10 lk-11 lk—1k-1
loo lo1 lok-1 l11 |12 1k
l10 l11 l1x-1 l21 22 P
k= : : ': ! = : : o (3.5)
lk-10 lk-11 lk—1k-1 ke e - Ik
lio l11 l1k-1 Bo liwo l1k—2
l2o 121 lok—1 , Br 20 lok—2
o la lek—1 B-1 ko lick—2

In all these cases, the indéxagrees with the siz& x k of the determinant. Note thati =
P+ ﬁcgk,]_ fork > 1.

Let us analyze the formula (3.3) farin order to compare it with (2.9) obtained earlier. First,
(3.2) implies that the linearly forced Burgers equationuices a very simple evolution of the
measures, namelyu(zt) = e u(z0). Because of this it is easy to factor out the time dependence
from all the determinants involved in (3.3). This elemeptexercise leads ti(t) = I« (0)F(t),
where

B k(M + 5Ch 1(0) e ™
Pn(0) + 5:Cnk-1(0)

This is in full agreement with (2.6) and (2.9). The formula g can be checked in a similar way.

F(t) (3.6)

4 Discontinuous piecewise linear solutions

Theorem 7. The discontinuous piecewise linear ans@t®), u= S (M X — X| — SSINX— X)),
is a weak solution of the linearly forced inviscid Burgersiation (1.2) if and only if

Xk:_i(m X —Xi| + 5 5gnX — X)),

n n (41)
r?k:erkzlmsgr(Xa—xk), &:s(zlmsgr(xi—xk),
i= i=
fork=1,...,n. For this class of solutions, equati¢h.2) takes the form
1
U+ 5 (P)x = MPX~M (M, +5), (4.2)
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with M =y mg and M, = § mxc as before, and with S § s¢. The quantities M and M+ S are
constants of motion, and so i§/s for k= 1,...,n (provided that ra+ 0).

Proof. We will repeatedly use the following distributional forrautalid for an arbitrary piecewise
differentiable functionf with points of discontinuity aki,xo,...,%n: fx = {fx} + Yr_1[flk.
where{fs} means the ordinary derivative taken away from disconfiesiiand|f], = f(x}) —

f (X, ) denotes the jump ak. Moreover,u; = ¥y (X — X| — (MK + Sc) SINX — Xi) + 25X B ) -
Now the left-hand side of (1.2} + %(uz)x, must be a function since the right-hand side is a
function; hence all Dirac deltas must cancel out. Similatthgere must be no Dirac deltas in the
first or secondk derivatives ofu + %(uz)x, These conditions give, in turn,

0=250+3[Wk,  O0=—2(MX+8)+ 3[{(P)x} ]k,
0 = 2y + 3[{(U)ux} k-
An elementary computation of jumps for the case of pieceadsginuous functions now produces

(4.1). The coefficients of the forcing term in the PDE are tdexd from the smooth part of the
term 2 (u?)y, while the constants of motion follow from (4.1). [

(4.3)

Weak solutions to an initial value problem are usually nagua unless the PDE is supple-
mented with a so-called entropy condition that picks out“fiteysical” solution. In the case of
the Burgers equation this condition requite$o jump down, not up, at discontinuities. This is
satisfied by the ansatz (1.9) if all shock strengldre nonnegative, so we will assuige> 0 from
now on.

When considering the initial value problem for the ODEs J4v& can assume without loss of
generality thak; (0) < x2(0) < ... < Xy(0). Thus on a sufficiently small time interval we will still
havex; (t) < xa(t) < ... < X(t); in other words, the positions stay in the sectpi(see (2.3)). In
Xe the equations (4.1) can be written as

n
%= 3 (msgnk—i)(c—x) — s sgrtk—1),
=, . (4.4)
M =2mc Y misgri—k),  S=s) msgni—k),
2 2
fork=1,...,n. These equations can be solved explicitly, since the sicid@ge of variables in
the following theorem reduces them to the ODEs already dalv& heorem 2.

Theorem 8. If {x, m,sc}i_; satisfy(4.4), if all m(0) # O, and if

Yk = X+ S/, (4.5)
then{yi, mc}i._, satisfy(2.4) (with y taking the place of xeverywhere).
Proof. Straightforward calculation. |

Note that the initital valuegy(0) will not necessarily be distinct or sorted in increasingesrd
even though the(0)’s are, but this does not matter since the solution formufasheorem 2
are valid for any initial conditions. So Theorem 2 givesyu&) andmg(t) (note thaty myyy =
Y (MXc +sq) = M. + SreplacedV, in the solution formula (2.5)), and we can then recaxgr)
from the fact thasZ /my is constant for eack; this givess(t) = 5(0)/+/F_1(t)F(t), and allows
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us to also recovexi(t) = yk(t) — s(t) /m(t). This solution{xy, M, s} to (4.4) is also the solution
to (4.1), at least locally in some time interval aroung O (so that theq’s remain in the sector
Xe)-

For illustration, here is the general solution with shockthe case = 2, whenM # 0, my (0) #
0, mp(0) # O

RO o Chy =1

w®=5%g@’ == ;ﬁim’

nm—”h+s_ﬂmmmﬁﬁ‘iﬁg RURO. *.9)
a%:M++S+§mﬂ®@M_§§3 ROR),

et g MO :A m(0)e™ g,
K = %2(0) — x1(0) + %%)) - r?]ll(((()))) '

In the continuous case (2.1) we assumedralk£ 0, but for (4.1) it does make sense to have
my = O provided that the correspondirgg is nonzero. Ifmg(0) = 0, then clearlym(t) = O for
all t, and the above solution procedure does not work. But thiasayefixed: just write down the
general solution obtained for a nonzero initial valng0) = a, and leta — 0 there.

We will finish with a few examples that show how to deal with 8gdution when it hits the
boundary of the sectoX..

Example. A particular antisymmetric solution of (4.1) with= 3 is given by—x; = x3 =& > 0,
X2=0,—mMp=mg=u>0m=0,5=5=0,5=0>0, where(t) = £(0)F(t) — a(O)t,
u(t)=u(0)/F(t), o(t)=0(0)/F(t), with F(t) = 1—2u(0)t. (These formulas are obtained either
by reducing (4.1) to ODEs faof, u, o and solving them directly; or by assuming(0) = a # 0,
changing variables tg; = X1, Y2 = X2 + S /My, Y3 = X3, writing down the general solution using
Theorems 8 and 2, and lettilag— O; or simply by noting thal = 0 so that we are dealing with the
unforced Burgers equation whose solution can be found itetiitbook way using characteristics.)
SinceM, + S=2ué + o is constant in time, the wave profile (see Figure 1) is

ux,t) = —p(t) [x+ ()| + p(t) [x = &) — o (t) sgnx)

21(0)€(0)+ 0 (0), X< —&(t),

=2u(t)x+o(t), —&(t) <x<0, @4.7)
=10, x=0,

—2u(t)x—o(t), 0<x<E&(t),

—(2(0)E(0) +0(0), E(t) <x.

If o(0) =0 then this is a shockless solution (with= 2 really, since there is neither mass nor
shock at the sit& = 0). Itis defined unti€ (t) = £ (0)F (t) becomes zero at tintgy = (2u(0)) -
Thenx; andxz collide atx = 0 while my andnmg blow up to—c and+oo, respectively. However,
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Figure 1: Left/middle: Wave profile(x,t) as given by (4.7) at two different timés< teo, with
£ (t) decreasing towards zero at a constant rate. Right: Stayigmafile after collision { > teoy).

Figure 2: Solid: Continuous initial wave profilgx,0). Dashed/dottedu(x,t) at timest = In‘§1
andt = In3, respectively.

u remains bounded, and tends to a shock profile;t) — —2u(0)&(0)sgnx) ast " teon. This
illustrates that shocks can form naturally even if they asepresent in the initial wave profile.
The profile will be stationary after the collision, becautsecontinued evolution is given by the
n=1 case of (4.1)X4 = my, My = $; = 0) withx; =0, my =0, 53 = 2u(0)&(0). Consequently,
u(x,t) = —2u(0)&(0) sgn(x) for all t > teoy.

If (0) > 0 there is a shock waiting at the origin between the two amiog particles (as
in Figure 1). The solution hits the boundary of the se¢fprwhen & (t) becomes zero at time
teoll = (2;1(0) + 0(0)/5(0)) -1 Thenx; = xo = X3 = 0, which illustrates that triple collisions may
occur when shocks are present. Since the collision occulierehan in the shockless cade(t)
has not yet reached zero at the time of collision; heam¢eandmz do not blow up in this case.
Again, u tends to a stationary shock profile(x,t) = —(2u(0)€ (0) + 0(0)) sgn(x) for all t > tey.

Example. Consider now the shockless ODEs (2.1) with 3 and initial datam (0) = % mp(0) =

—1 andmg(0) = 4, so thatM = 1. We assuma(0) < X2(0) < x3(0) but leave them otherwise

unspecified. Sinca = +(Mx— M.) asx — +oo, and since the slopg, jumps by 2ny at eachx,

the initial profileu(x,0) consists of line segments with slopd.,, % —g and 1, joined at the points

(X, u(x,0)). Figure 2 illustrates this for the particular valugg0) = —2, x(0) = 0, x3(0) = 1.

Note that if the linesi = +£(Mx— M..) to the left and to the right are continued, they intersect on

the x axis at the center of mags= M, /M (= 0 in the figure), which is a constant of motion.
Recall thatl; = x — x; andl, = x3 — xo. From (2.6) we obtairfy(t) = 7!, Fy(t) = 2€ +
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X1 (teon) = —1 . X2(teoll) = Xa(teon) = 2 X

Figure 3: Solid: Discontinuous wave profiléx,t) formed at the instant of collision= teo = In2.
Dashedu(x,t) at timet = tey) + 3. Dotted: No more collisions occur, angx,t) — |x| ast — +co.

I Fz( ) = —1& + 2e7!, andF5(t) = €. Equations (2.5) and (2.9) giva(t) = x(0) + (1 —

e ) (311(0) + 4I2(O)) xz(t) =x1(t) +11(0)Fy(t), andxs(t) = xo(t) + 12(0)F(t). There is a col-
lision betweerx; andxs whenF,(t) becomes zero, which happens at titne t.o) = In2 when
¢ = 2. Atthat time we havé& = 3, F, = 3, F, = 0, F3 = 2, hence by (2.5)m = m(0) /FoFy = §,

Mp = —oo, Mg = +o0. As for the wave profilal, we have

u(xe(t),t) = mply +mg(l1 +12) = (M —my)l1 4+ mgly
= (FL—m(0)/Fo)11(0) +mg(0)I2(0) /F3 (4.8)
— 211(0)+215(0),  ast /' tea,
and
(maly +mglz) — (My(l1+12) +mgl2)
(Mg —my —mp)l2
= (mg(0) /Fz — my(0)F2/FoFL — mz(0) /F1) 12(0)
— %IZ(O)v ast " teoll.
Thus the limiting wave profile at= t.o consists of a line segment with slopd,, joined to a line
segment with slope-1+2- % = Z atx = xq(tcon) = X1(0) + 3 (312(0) + 312(0)) and heightu =
211(0) + £1,(0); the profile jumps down byl>(0) atx = X(teon) = Xa(teol) = Xa(teon) + 311(0),
and continues from there with slope 1. See Figure 3.
The continued evolution of the profile for> t.q is illustrated in Figure 3; it is given by the
shock ODEs (4.1) witm = 2, using a new set of variables whose initial values att., are

%1 = Xq(teon), X2 = Xo(tean), My = 5, Mp = &, § = 0, ands; = ZI,(0). In terms of the new time
variablet =t —t > 0 one finds from the general solution (4.6) that, for example,

u(xz(t),t) —u(xa(t),t) =

(4.9)

)?2('[) — )?1('[) = <)?2(0) — )~(1(0) + :j(?)) ﬁl('[) — ;22(((2))) ﬁl(T)lfz(T), (4.10)

whereFy(1) = 8¢" + fe" andFy(1) = €7. Writing this expression ax, ~ % = (A+ B)F; —
B\/F1F., we see that it is zero i1(1) = 0, which can never happen, or(iA+ B)2F; = B?F,,
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which is the same as 2" = 9((A+B)/B)? — 8 that can't happen either since the right-hand side is
> 1 and the left-hand side is 1 for > 0. The conclusion is that, in this example(7) — X, (1)
remains positive for alf > 0, so there are no more collisions. Insteadrdgrt) — +o, we
havex] — 0,% — +oo, Iy — M, M, — 0, ands; — 0. Thus,u(x,t) approaches the limiting wave
profile u(x,+o) = |x|.
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