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Abstract

We apply the discrete multiscale expansion to the Lax pairtarthe first few symmetries

of the lattice potential Korteweg-de Vries equation. Frdrase calculations we show that,
like the lowest order secularity conditions give a nonlin@ehrodinger equation, the Lax pair
gives at the same order the Zakharov and Shabat spectrdépramnd the symmetries the
hierarchy of point and generalized symmetries of the nealirSchrodinger equation.

1 Introduction

Reductive perturbation techniques [19, 20] have provecktriportant tools for finding approxi-
mate solutions of many physical problems, by reducing agnanlinear partial differential equa-
tion to a simpler equation, often integrable [3], and foryimg integrability [3-5,10,21]. Recently,
after various attempts to carry over this approach to galifierence equations [1,11,13] we have
presented a procedure for carrying out a multiscale expamsi the lattice [7,12,14] which seems
to preserve the integrability properties [8]. To get a rattederstanding of the application of the
reductive perturbation technique on difference equatiafter an introduction in Section 2 on
multiscale expansions on the lattice potential KdV equeflpKdV), we discuss in Section 3 its
application to the spectral operator, as was done by Zaktard Kuznetsov in their pioneering
work in 1986 [21] for the KdV equation. Later on we apply, irc8en 4, the multiscale expansion
to the symmetries of the IpKdV [15]. Section 5 is devoted tewa Eonclusive remarks.
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2 Multiscale expansion on the lattice

The aim of this Section is to give a terse survey on the maliisanalysis on the lattice and its
application to the reduction of the IpKdV. We refer to [7, 12] for further details.

2.1 Shift operators defined on the lattice

Letu, : Z — R be a function defined on a lattice of indexc Z. One can always extend it to
a functionu(z) : R — R by defining a real continuous variabte= no,, whereo, € R is the
constant lattice spacing.
An equation defined on the lattice is a functional relatiobmeen the functiorw,, and its
shifted valuess,, 1, u,+2, €tc, expressed in terms of a shift operafprsuch thatl}, u,, = w4 1.
For the continuous functiom(xz) we can introduce an operat@i,, such thatl,u(xz) =
u(x 4+ 0,). The Taylor expansion af(x + o) centered inc reads

=3 r 0 (3 2.1)

il
=0

whereu® (z) = diu(z)/dx’ = diu(z), with d, the total derivative. Eq. (2.1) suggests the

following formal expansion for the differential operafby:

o0

7
_ oxdy Ox 4
T, =e = E o d.

=0

Introducing a formal derivative with respect to the indexayd,,, we can define, by analogy with
T, the operatoff;, as

T, = e’ = i 5—” (2.2)

7!
i=0

The formal expansion (2.2) can be inverted, yielding

[e.o]

bp=InT, =In(1+A,) Z
=1

Z'_

(2.3)

whereA,, = T,, — 1 is the discrete right difference operator w.r.t. the vddab(i.e. A, u, =
Upt1 — Up).

Following [12, 14] we say thai,, is aslow-varying function of ordef iff A‘+1w,, = 0. Hence
the 6,, operators are formal series containing infinite powera&gf but, acting on slow-varying
functions of order, they reduce to polynomials iy,, of order at most.

2.2 Dilations on the lattice

Let us introduce a second lattice, obtained from the first dyadion. Forz € R we can visualize
the problem as a change of variable betweeandz; = ex, 0 < ¢ < 1. On the lattice this
corresponds to a change from the index= z/o, to the new index:; = z;/0,,, Whereo,,
is the new lattice spacing. Assuming that, > o, we can seb, = co,,, 0 < ¢ < 1,
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so thatn; = esn. Asn,ny € Z, e is a rational number and one can define in all generality
ee = My /N < 1 with M;, N € N. However, if we want the lattice of index, to be a sublattice
of the lattice of index:, we have also to require thaf, /N = 1/M with M € N.

The relation between the discrete derivatives defined itvibdattices is given by [7,9,13,14]

AJun—]'Z ”A’ L Un,y - (2.4)

The coefficientsP; ; read
i k
ri=3 () stel
=J

whereSf and 6{3 are the Stirling numbers of the first and second kind resgedygti

If u, is a function of infinite order of slow-varyness, ie= oo, then Eq. (2.4) implies that
a finite difference in the discrete variabledepends on an infinite number of differences on the
variablen;.

2.3 Discrete multiscale expansion

Let us now considet,, = u,.,, as a function depending on a fast indexand a slow index
ny = n(M;/N). At the continuous level, the total derivatidg acting on functions:(z; x;) is
the sum of partial derivatives, i.€, = 0, + €0;,. As

T;L‘ — eo'a:da: — egzazeedzaa:l’ (25)

we can write the total shift operat@t, as
T, = e eM1/N)on; — TnTn(Ml/N) (2.6)

1 )

where the partial shift operato,, 7,,,, defined byZ, u,.,, = wny1.n, ANAT5 Uniny = Uning+1,
are given by

i _:l Ml/N i Ml/N TL1)
=0 ! i=0

andd,, is given by Eq. (2.3) witln substituted by .

Eqg. (2.5) can be extended to the casekoflow variablesr; = €'z, 1 < i < K . Then the
action of the shift operatdf;, on a functionu,,. qni} K depending on both fast and slow variables
can be written in terms of the partial shiffg, T as

K
i=1
where thee,,,’s are suitable functions efande depending parametrically on some integer coeffi-
cientsM; e N, 1 <i < K.
To carry out the multiscale expansion of the fields appeairingartial difference equations
with two independent discrete variables, one has to conligeaction of the operator (2.7) on a
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function depending on two fast indicesandm, and on a set ok, + K, slow variables{m}fi”1
and {m; }7 (we shall use the notatiomn’m;{m}gwmi}gm for such functions). Notice that in
principle it is possible to considét,, = K,, = . We assume a common definition of the small
parametek for both discrete variables andm but we denote with/; the integers for the slow
variablesn; and with M; the ones forn;. We have:

em:%, 1 <1< K,, emi:%, 1 <1< Ky,

Hereafter we shall assuni€, = 1 andK,, = K.
2.4 Multiscale expansion of the lattice potential KdV equabn
The IpKdV is given by [17]:

(T T — 1) + (T — Ton)|tn,m — (Try — Ton) o (T Ty — 1)y, = 0, (2.8)

wherey = p — qgand{ = p + ¢, andp, q, p # q, are two real parameters. The linear part of
Eq. (2.8) has a travelling wave solution of the fou,,, = exp {i[kn — w(x)m]} with

C+p /{>
w(k) = —2arctan | —— tan — |. 2.9
(x) (£t (2.9)
According to [7] the multiscale expansion of Eq. (2.8) isfpened taking into account that
= 1 (e} ia(kn—wm - —(x
) Wu; ) (n, {mi}<, el ), ul™ =4l (2.10)
a€Z k=1

The following statement, proved in [7], provides the mgliile expansion of the IpKdV (2.8)
at the lowest orders df/N.

Theorem 1. The multiscale expansion of Eq. (2.8) gives the followirsyits:
1. O(1/N):

e « = 0: the equation is identically satisfied.

e o = 1. one gets a linear equation identically satisfied by takingpiaccount the
dispersion relation (2.9).

e |a| > 2: one gets a linear equation whose only solutiormﬁ%) =0.
2. O(1/N?):
e o = 1: one gets a linear equation whose solution is
ugl) = u(ll)(ng, {mi}E,), ng = ni F mq, (2.11)

provided that

i . . CQ _ M2
My =FS (p—¢e™), My = Se"=—-—.
pe’ — ¢
HereS = rexp (if), withr > 0 andf = — arctan [(( sink)/({ cos k — p)], assures

that M7 and M are positive integers.
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e o = 0: one gets

ik)2
(0) 2 S 1 U ) R
’ Seir(u+C) (b — Celx)

IR CY
Onyuy = Tiug

whereu!” = u{” (ny, {m;} ).
e o = 2: one gets

1+ elF
(L—e")(p+¢)’

uf? = mufV)?, T =

whereugz) = ug) (na, {mi}£,).
3. O(1/N3):

e o = 1: one gets the following (defocusing) dNLS:

iémgugl) = p157212u§1) + p2u51)|ugl)|2, (2.12)
where
0 p¢r?(¢t — p?) sink 8¢u(¢ — p)(1 + cos k) sin
1= 7= ) 2 = = .
My (¢% + p? — 2¢ucos k) Mo(pu+ €) (€2 + p2 — 2¢ pcos k)*

e o = (: one gets
Suats® = 1 (a7 + 70u) = (605,00 — 1)

with

2isin Kk
T3 = ——,
TR
Whereuéo) = ugo) (n2, {m;}X,) and uél) = uél)(ng, {mi}E,).
e a = 2: one gets
25l (o 4 Bel*)
(e = 1)?(n+¢)’

ugf) = T4u§1)(5n2u§1)) + 2T2u(11)ugl), Ty =

whereu(?) = u? (na, {mi}15,).

We have given above just those results necessary to getratdismnlinear Schrodinger equa-
tion (ANLS) as a secularity condition and its symmetries.
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3 Multiscale expansion of the IpKdV spectral problem

As shown in [14] there are many forms for the linear problessoaiated with the IpKdV. The
first to be introduced [17] is given by first ord2x 2 matrix difference equations. Later on [14] it
was shown that the matrix Lax pair could be easily reducedstasar non-symmetric difference
equation of second order, used by Boiti et. al. [2] to integyem alternative form of the equations of
the Volterra hierarchy. In [15] it was moreover shown thagliiura transformation it is possible
to associate the IpKdV with the Toda spectral problem inioadi by Manakov and Flaskha [6]
when the fieldb,, (¢) = 0.

One could start from any of the three linear problems deledtn the previous paragraph to do
the multiscale expansion. However we choose as startirgraperoblem the one whose second
derivative is expressed in a symmetric form, i.e. the diecBehrodinger spectral problem used to
integrate the Toda and Volterra equations.

The n-evolution equation of the (scalar) spectral problem oflgiadV (2.8) may be written
as [15]:

(bn—l + an(bn—i—l = /ft¢n7 (31)

with

4p2

2p — (T2 + D] [20 — (T + Tr Dttnm]

Herep € C is the spectral parameter.

Our aim is now to perform the multiscale expansion of Eq.)(&lorder to get the corre-
sponding evolution equation of the spectral problem of the$l (2.12). We refer to [21] for the
continuous counterpart of this analysis.

To expand Eq. (3.1) we consider the development (2.10) &fiéd v, ,,,, with the restriction
(2.11), while the function,, will be expanded according to the formula:

Ap =

c- 1 «a ia(kn—wm —a T(a
o= D D 3o (2 {mi}fp)eetnmem2, o = o, (3.2)
aodd k=0
At order O(1), the multiscale analysis of Eq. (3.1) suggests the follgnérpansion for the
spectral parameter:
K o0
1 = 2cos (5) + Z % (3.3)
k=1

Taking into account Eq. (3.3) we proceed to the order 1/N of the multiscale expansion of
Eq. (3.1). We have:

(1) :
M, 2w o (B _ i
On, @ + ) cos <2) 0= "5 (%) 0 s (3.4)
for « = 1. The corresponding equation far= —1 is given by performing the complex conjuga-

tion of Eq. (3.4). The coefficients of the higher harmonic&m (3.2) can be written in terms of
qb(()l). For instance, forr = 3, we have:
621[4} + eiﬁl
o) = T uiVgV,

1—elF
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By a proper rescaling af)(()l) andu; Eq. (3.4) is equivalent to the standard Zakharov-Shabat
spectral problem of the integrable NLS [18].

4 Multiscale expansion of the first two generalized symmetéds

Lie symmetries of a lattice equatiaDd(u,, 1, T tn,m, Tistn.m,--.) = 0 are given by those
continuous transformations which leave the equation ian&r HereT,:Jf"?un,m = Uptk,m and
TE* Uy 1 = U sk, k € N. From the infinitesimal point of view they are obtained byuieigg
the infinitesimal invariant condition

pr X, D =0 (4.1)
where

v _ + +

Xn,m = n,m(un,m’ Tn Un,m, Tmun,ma .. )8unm (42)

By pr )A(mm we mean the prolongation of the infinitesimal general?’q[m to all points appearing
inD=0.

If Fom = Fnm(unm) then we getpoint symmetriesind the procedure to get them from
Eq. (4.1) is purely algorithmic [16]Generalized symmetriese obtained when

_ + +
Fn,m = n,m(un,ma Tn Un,m Tmun,m’ .- )

In the case of nonlinear discrete equations, the Lie poimnsgtries are not very common, but, if
the equation is integrable and there exists a Lax pair, ib&sible to construct an infinite family
of generalized symmetries.

In correspondence with the infinitesimal generator (4.2camin principle construct a group
transformation by integrating the initial boundary prahle

A, m ()
dX

where\ € R is the continuous Lie group parameter. This can be donetiefc only in the
case of point symmetries, as in the generalized case we hdiffeential-difference equation
for which we cannot find the solution for a generic initial @abut, at most, we can find some
particular solutions. Eg. (4.1) is equivalent to the requkat the A-derivative of the equation
D = 0, written foru, ,,, (), is identically satisfied when the-evolution ofw,, ,,,()) is given by
Eq. (4.3). This is also equivalent to say that the flows (indhwup parameter space) given by
Eq. (4.3) are compatible or commute witth= 0.

In [15] one can find an infinite hierarchy of integrable gelizea symmetries for the IpKdV
(2.8) constructed by looking at the isospectral defornmatiof the Lax pair. The first two symme-
tries of this hierarchy are given by

= Fpn(UnmN), Tt m (V) Tt m(N), - - ), Upn(A = 0) = Upm, (4.3)

dlnm _ 1 1 4.)
d)‘ 2]9 + (Tn_ - Tn)an,m 2p’

QU 1 1 1 1

p e~ + — —.
dA [217 + (Tn_ - Tn)un,m]2 2p + (1 - Trg)umm 210 + (TTTQ - 1)un,m 4p3
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The constant terms appearing in the r.h.s. of Egs. (4.4eh&)re that the above flows go asymp-
totically to zero asi,, ,,, — cost.

To perform the multiscale expansion of the generalized sgtrias (4.4,4.5) we consider the
following development for the field,, ,,,, see Eq. (2.10):

T = D Z ) (g, {mi o, I HEetoenmom), " =4, @4.6)
acZ k=1
where \; = A/N® are the slow-varying group parameters, is given by Eq. (2.11) and
~ L K\ _
un,m({)\z =0 i:O) = Un,m-
Since Eg. (2.12) involves the harmom{:” we are actually interested just in those equations,

arising from the multiscale expansions of the symmetrieg @5), which are written in terms this
harmonic. The following statement holds.

Theorem 2. The multiscale expansion up to ordefN* of the symmetry (4.4) gives the following
symmetries for the dNLS (2.12) (after a reparametrizatibthe group parameters):

)

O(1/N) : B =iuy’, (4.7)
ot N

O(/N%): Z = G, 1y, (4.8)
autt) N

O(/N*): H = Gy (4.9)

o oy 5 (1) D2, ~(1)
O(1/N*%): D :p15n2u1 + 3pa|uy ' |“6n,uq 7, (4.10)

with initial condition " )()\ =0,A\1 =0, =0,A3 =0) = ul) Egs. (4.7,4.8,4.9) provide
point symmetries of Eq (2.12), while Eqg. (4.10) is a gerneedl symmetry of Eq. (2.12).

Proof. The proof is done by a direct computation by taking into aotdhe results contained in
Theorem 1.

Inserting Eq. (4.6) in the first symmetry (4.4) we get thedwaiing determing equations:

oul) i .
O(1/N) : I = =2 smliug ), (4.112)
(1) (1) .
O(1/N?): agi Gau;l = 2; (Sll’lliuél) — 1M cos liémﬂgl)) , (4.12)

aa(l) aa(l) 6~(1)

3y . 3 2 Uy
O(1/N?): B\ + O + By (4.13)

. M2
= 2%92 (sinmﬁgl) iM, cos,%5n2u§1) + 21 sink 62, (1)> +

-|—L3 <—isin K sin(QK)igl)ugz) + M sin ﬁagl)dmﬂgo)) +
p

3. (1) 2~
-I-% sin® K |u§1) |2ugl),
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ou” . ouy) oy ol

1/N%): =
O(1/N") o\ O\ O\a O3

(4.14)
. M2
= 2%92 <sin/§ﬁ511) iM, cos,%5n2u(1) + 21 sm/€52 (1)
.M3
_lTl coS ﬁ522ﬂ§1)> +
A [ ising s A0ER 4 E0ge
+p3 [ isink sin(2k) (ul Us + Uy U >+
+M; sink (ug )5n2 é )+ ~(1)5n2 i) 4 ﬂ(;)énﬂgo)) -
—iM} cosnugl)éggﬂg )] +
3i 1 =(1)
—I—w { iM] cos k sin? /{(ug )) 5n2u§ +
+ sin® K ( (1)(~§1))2 + 2ﬂél)|ﬂgl)|2>] )
Let us consider Eq. (4.11); by the reparametrization 2p?\/ sin x, Eq. (4.11) is equivalent
to Eq. (4.7). This is the first point symmetry of the dNLS (3.4Rd it corresponds to a phase

symmetry.
Eq. (4.12) has to be split into the following equations toidsecularities:

8~(1) M,

= 3 COS K Oy U, (4.15)
1 P

(1) .
68)\ = 212 blnnugl). (4.16)

From Eq. (4.16) we see thaé depends or\ asu ( . Eq. (4.15) provides the second point
symmetry (4.8) of the dNLS (2.12), correspondlng to traimstes w.r.t. the indexu,, after the
reparametrization; +— 2p2\; /(Mj cos k).

From Eqg. (4.13), taking into account Egs. (4.11,4.16) aedstitularity conditions, a straight-
forward algebra and the reparametrization— 4p?p; Ao/ (Ml2 sin k) leads to

~(1 ~(1)~(1
- 2,70+ P,

which leads to Eqg. (4.9) thanks to Eq. (2.12). Eqg. (4.9) mehatsthe dNLS (2.12) is invariant
under translations w.r.t. the indexs.

Finally, Eqg. (4.14) gives Eg. (4.10) after a long computatiny taking into account Egs.
(4.11,4.12,4.13). In this last case the reparametrizaifdhe group parameter reads

A3 — 12p%p1 A3/ (M3 cos k).

[ ]
A computation up to ordet/N*, similar to the one just done for the symmetry (4.4), shows

that the multiscale expansion of the second generalizedngtry (4.5) of the IpKdV (2.8) gives

the same symmetries (4.7,4.8,4.9,4.10), after suitaplaragnetrizations of the group parameters.
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5 Concluding remarks

In this paper we have considered the multiscale expansidheospectral problem and of the
symmetries of the partial difference integrable latticéeptial KdV equation. By a proper choice
of the spectral problem of the IpKdV we have been able to ddrivm it the spectral problem of
the reduced equation, a nonlinear Schrodinger equatianthéh did the multiscale expansion of
two generalized symmetries. A generalized symmetry pesvigs with the point and generalize
symmetries of the nonlinear Schrodinger equation. At eadbr of the multiscale approximation,
we get by reduction from the request that no secular comdiiasts, a higher order symmetry.
The same calculation for other generalized symmetries dgravide anything new. All the
information concerning the whole hierarchy of generaliggothmetries for the NLS is contained
in the first generalized symmetry for the IpKdV.

Acknowledgments. MP was partially supported by the European Community thinoting FP6
Marie Curie RTN ENIGMA (contract number MRTN-CT-2004-565PL, MP and CS were par-
tially supported by the PRIN project “Metodi geometrici laeteoria delle onde non lineari ed
applicazioni, 2006” of the Italian Minister for EducationcaScientific Research. RHH was par-
tially supported by the Region of Madrid and Universidadit@ohica de Madrid (UPM) through
the grant ref. CCG06-UPM/ MTM-539 and the Spanish Ministhysoience project MTM2006-
13000- C03-02.

References

[1] AGROTIS M, LAFORTUNE S and KEVREKIDIS P G, On a discrete version of the KdV equation,
Discr. Cont. Dyn. Sis2005supp. 22-29.

[2] BoiTI M, BRUsSCHIM, PEMPINELLI F and RRINARI F, A discrete Schrdinger spectral problem and
associated evolution equatiodsPhys. A: Math. Ger86 (2003) 139-149

[3] CALOGERO F and EEkKHAUS W, Nonlinear evolution equations, rescalings, model PDistheir
integrability. I, Inv. Prob.3 2 (1987) 229-262.
CALOGERO F and EEkHAUS W, Nonlinear evolution equations, rescalings, model PDitstaeir
integrability. II, Inv. Prob.4 1 (1987) 11-33.

[4] DEGASPERISA, MANAKOV S V and NTINI P M, Multiple-scale perturbation beyond the nonlin-
ear Schroedinger equationAhys. D100(1997) 187-211.

[5] DEGASPERISA and RRoOCESID, Asymptotic Integrability, inSymmetry and Perturbation Theory
SPT98(1999) 23-37.

[6] FLASCHKA H, The Toda lattice. I. Existence of integrafys. Rev. B (1974) 1924-1925.
MANAKOV SV, Complete integrability and stochastization in disemynamic systemghur. Eksp.
i Teor. Fiziki.67 (1974) 543-555.

[7]1 HERNANDEZ HEREDEROR, LEVI D, PETRERA M and SIMITERNA C, Multiscale expansion of
the lattice potential KdV equation on functions of an inindiow-varyness ordedpurn. Phys. A0
(2007), F831-F840.

[8] HERNANDEZ HEREDEROR, LEVI D, PETRERA M and SIMITERNA C, Multiscale expansion on
the lattice and integrability or linearizability of part@ifference equations, in preparation.



Multiscale Expansion and Integrability Properties of thatice Potential KdV Equation 333

[9] JorDAN C, Calculus of finite differences, Rottig and Romwalterp@m, 1939.

[10] KobaMA Y and MikHAILOV AV, Obstacles to asymptotic integrability, ilgebraic Aspects of
Integrable Systems, in Memory of Irene DorfmBrogress in Nonlinear Differential Equations, Vol.
26, Birkhauser, Boston, 1996, 173-204.

[11] LeoNJ and MaNNA M, Multiscale analysis of discrete nonlinear evolution atjons,Journ. Phys.
A 32(1999) 2845-2869.

[12] Levi D, Multiple-scale analysis of discrete nonlinear partidledence equations: the reduction of
the lattice potential Kd\Jour. Phys. A38 (2005) 7677—7685.

[13] Levi D and HERNANDEZ HEREDEROR, Multiscale analysis of discrete nonlinear evolutionaqu
tions: the Reduction of the dNLSpur. Nonlinear Math. Phyd4.2 1 (2005) 440-455.

[14] Levi D and FEETRERA M, Discrete reductive perturbation techniqueur. Math. Phys47 (2006)
043509.

[15] Levi D and FETRERA M, Continuous symmetries of the lattice potential KdV edqumatour. Phys.
A40(2007) 4141-4159.

[16] Levi D and WINTERNITZ P, Continuous symmetries of difference equatidosy. Phys. /39 (2006)
R1-R63.

[17] Ni1JHOFFF W and G\PEL H W, The discrete Korteweg-de Vries equatidicta Appl. Math39(1995)
133-158.

[18] Novikov S P, MaNAKOV SV, PRTAEVSKI L P and ZakKHAROV V E, Theory of solitons: the inverse
scattering method, Elsevier, New York, 1984.

[19] TaNiuTI T, Reductive perturbation method for nonlinear wave pragiag, Prog. Theor. Physs5
(1974) 1654-1676.

[20] TaNiuTI T and NSHIHARA K, Nonlinear waves, Pitman, Boston, 1983.

[21] ZakHAROV V E and KuzNETSOV E A, Multi-scale expansions in the theory of systems intblgra
by the inverse scattering transforRhys. D18 (1986) 455—-463.



