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Abstract

This paper reports on the use of possibil-
ity theory and agent based explicit spatio-
temporal simulation to compare the
effects on each of three real communities
given the assumption that a rare disease is
carried out of a hypothetical high contain-
ment biological research laboratory sited
in that community. The initial event has
nonzero possibility but its probability is
not well measurably different from zero.
The conditional distributions obtained by
making this event an input to the simula-
tion resemble "counterfactual condition-
als" that can provide useful information
about the relative technical and social
desirability of alternative sites even
though a conventional risk assessment is
not possible.

Keywords: Rare events, counterfactuals,
geographic information systems, spatio-
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1. Introduction
1.1. Rare Events, Rare Diseases

Release of an exotic disease such as Ebola
from a high-containment biological
research facility is an extremely rare
event. In hundreds of thousands of
person-hours of work in laboratories in
the United States, there has not been even
one clinical case of laboratory-acquired
infection, let alone any cases of infection
in the community. Such an event can be
treated as an "adventitious" event [3] [9]
[10].

Comparing the magnitudes of the
minuscule threats to different local
communities based on where a new facil-
ity is located can only be done in a
relative manner by assuming, in effect,
that the probability of a release is 100%
when in fact we know that it is not meas-
urably different from zero. Based on this
counter-factual assumption, it becomes
possible to compare the conditional prob-
ability of various degrees of harm taking
the initial release as a given. This enables
a possibilistic risk analysis to be done,
even though a realistic probabilistic risk
analysis would be impracticable because
the point estimates would be substantially
smaller than the width of the confidence
intervals, and in many case the lower
bound of the confidence interval is zero.
Logically, the result may be considered a
"counterfactual conditional." [7]

The agent based explicitly spatial and
temporal modeling (A-BEST) approach
used in this simulation is built on a
conceptual framework developed by Bian
[1] and an analytical framework by Bian
and Liebner [2]. The approach uses the
continuing advances in geographical
information systems to quickly craft a
high resolution, efficient model of disease
transmission within a rural area, a small
city, or a distinct community within a
large city. This is useful for assessing
risks associated with moderately commu-
nicable diseases such as those typically
studied in high containment biological
research facilities.
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The simulation is constructed based on
a hypothetical situation of a laboratory
worker who sustains a laboratory-
acquired infection such as Ebola despite
all the equipment, procedures, and rules
to prevent this. The worker is then
assumed to leave the laboratory and enter
the community without following any of
the required precautions mandated after
any possible exposure. Finally, he visits a
prostitute  during his convalescence
despite standard warnings to abstain from
intercourse during recovery from the
disease, and infects her despite the fact
that no known sexual transmission of
actual Ebola has ever been observed. The
simulation employs an individual-based
and spatially explicit modeling approach
for predicting possible health outcomes in
three communities: urban, suburban==,
and rural.

Many of the parameters of the disease
model correspond to disease characteris-
tics that are not precisely known. In the
simulation setup, these uncertainties are
resolved on a "worst case" basis. In some
cases, such as the potential for sexual
transmission, parameter values are used
which go beyond what is justified by the
data; "worse than worst case." Any
reasonable variation in the estimates
would increase the already high propor-
tion of Monte Carlo runs in which there
was no contagion at all.

1.2. Ebola

Ebola hemorrhagic fever (EHF) is a viral
disease that occurs in humans and nonhu-
man primates. It is fatal in 50% to 90%
of clinically ill cases. Researchers believe
that the virus is zoonotic (animal-borne)
and that it naturally occurs in an animal
native to the African continent that does
not get the disease.

Ebola virus can be transmitted through
direct contact with blood, body fluids, or
tissues of an infected person or animal, or
contact with contaminated objects, such

as needles. Spread of the disease through
airborne particles has not been docu-
mented among humans in a real-world
setting, such as a hospital or household.
While virus or viral RNA has been found
in seminal fluid in patients recovering
from Ebola infection [4], there is no direct
evidence of sexual transmission of Ebola
virus [8]. Nevertheless, the US Centers
for Disease Control and Prevention
recommend a period of abstinence from
unprotected sex during convalescence. [8]

Outside of two laboratory workers who
became infected but did not transmit the
disease to others [4] [6]. .

2. Population Simulation
2.1. Three Populations, Two Scales

The A-BEST model and subsequent simu-
lations allow study of the interactions
within a community that may lead to
infectious disease transmission subse-
quent to a laboratory-acquired infection.
The simulation focuses on the modeling
of discrete individuals, individualized
interactions, and how these interactions
change with location and time [1] [2].
Based on this conceptual framework, the
analytical framework further defines a
multi-population and two-scale network.
The two scales include a local-level and a
population-level network.

The interactions between individuals at
home, in workplaces, or at service places
form a local network, whereas the mobil-
ity of individuals between these places
links the local networks into the popula-
tion level network. In this network, each
individual is represented as a node and
the interaction between any two individu-
als is a link. Collectively, these individu-
als and their individualized interactions
portray a heterogeneous spread of disease
through the three-population and two-
scale network.

Three populations are modeled in this
simulation, namely, a nighttime popula-
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tion at home, a daytime population in
workplaces, and a pastime population at
service-places.  Individuals within the
populations travel between home, work-
places, and service-places. Disease can
be transmitted from one location to
another and spread through individual
interactions consistent with daily life
activities. [2]

These three populations represent the
same set of individuals at different loca-
tions and time periods of a day. Each
individual is assigned to a household, a
workplace, and a number of service-
places to create the three populations, and
to establish the links between the popula-
tions. The spatial locations of homes,
workplaces, and service-places and the
travel routes for each individual between
these three sets of locations are explicitly
represented.

2.2 Simulating the Nighttime Popula-
tion

Two sets of data are used to simulate the
nighttime population at homes for the
three communities, the 2000 census data
and a household dataset purchased from
ReferenceUSA, Inc. Since the US census
statistics are created based on the residen-
tial locations of the population, they are
used as the basis for the simulation of the
nighttime population.

Two sets of information are extracted
from the aggregated information, one for
individuals and another for households in
a block group. The information for indi-
viduals includes statistics of age range
(children, adults, seniors), gender, and the
relationship to the householder (house-
holder self, spouse, own children, other
children, other). The information for
households includes statistics of house-
hold size and household type. The latter
includes family households (married-
couple, single-father, and single-mother

families) and non-family households
(living alone and not living alone).

2.3. Simulating the Daytime
Population.

Three sets of information are used to
simulate the daytime population at work-
places for the three communities, the
2000 census data, a "business" dataset
purchased from Environment Systems
Research Institute Inc. (ESRI), and the
attributes associated with previously
simulated individuals and households.
While the ESRI data provide information
about workplaces, the census data and the
previously created attributes of the indi-
viduals and households help assign the
individuals to these workplaces.

Collectively, these datasets help create
the daytime population and establish the
links between the nighttime population
and the daytime population. The work-
places are defined as those businesses that
are within a one-hour driving distance
from the three communities. The driving
distance is computed using Geographic
Information Systems (GIS) software and
the speed limit of the road network This
definition results in a total of 310,400
workplaces. Each contains the following
attributes: name, location, number of
employees, estimated sales, and the type
of business that is coded by the North
America Industry Classification System.

Four sets of statistics information are
extracted from the data:

(1) persons working outside the home,

(2) transportation means (walk, bus, car,
and subway) used by these workers to
travel to work,

(3) time needed for the workers' travel,
(4) type of employer (NAICS code).

The service-oriented workplaces are
open in both daytime and pastime, thus
two shifts of workers are assigned to
these workplaces. For a given type of
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worker and a given type of workplace, the
assignment of a specific worker to a
specific workplace is based on the Monte
Carlo method. The school-aged individu-
als in each household are assigned to a
school as their workplace.

This completes the creation of the
daytime population at workplaces and
links the nighttime population at homes to
the daytime population in workplaces.

2.4. Simulating the Pastime
Population.

The simulation of the pastime population
at service-places is based on three sets of
information. The first set is a 1991 travel
diary survey data obtained from the
Massachusetts Central Transportation
Planning Staff. The second is a subset of
workplaces that is identified as service-
places. The third is the attributes for indi-
viduals and households created in the
previous simulations for the nighttime and
daytime populations.

The travel diary survey provides infor-
mation on the type and frequency of serv-
ices needed, the service-place data
describe the characteristics of the service-
places, and the attributes data help assign
individuals to service-places.  Subse-
quently, the three sets of data collectively
help create the pastime population and
link it with the nighttime and daytime
populations.

A total of 89,159 workplaces are iden-
tified as service-places from the 310,400
workplaces based on their NAICS attrib-
utes. The individuals in households are
assigned to service-places based on the
attributes of individuals (gender and age
range) and households (the number of
workers in a household, the number of
vehicles in a household, and the house-
hold size). Using the frequency statistics
as constraints, the total number of trips
for a household is first determined.
Workers in a household, then other

members of the household, are randomly
assigned to one of the three types of serv-
ice trips (workplace-to-service, home-to-
service, and service-to-service), then to
one of the six types of services. For a
given type of service trip, a given type of
service, and a given type of individual in
a given type of household, the model
assigns an individual to a nearby service
place.  Trips to service-places occur
during both the daytime and pastime peri-
ods of the day.

Each service-place has two sets of indi-
viduals, those who need services and
those who provide services.

3. Disease Transmission Model.

Using the A-BEST model, the transmis-
sion of a disease may follow any of an
extremely large number of possible paths
in the three-population and two-scale
network.

After an initial infection ("index case")
is introduced into a community, the model
simulates the first generation of infection.
That is, the model identifies the first set of
individuals who are in direct contact with
the first infected individual through
contacts at home, in the workplace, and at
service-places. Each of these first-set
individuals is assigned an infection status,
either healthy or infected, according to the
primary infection rate of a specific
disease.

(In the Ebola model, one simulated
first-set individual is deterministically
modeled as infected; as with the unrealis-
tically high values of the parameters, this
was done in order to have enough cases in
each simulated community to allow
comparison of counterfactual conditional
infection rates.)

Next, the model simulates the second
generation of infection by identifying the
second set of individuals who are in direct
contact with those infected in the first
generation of infection. An infection
status is assigned to these second-set indi-
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viduals according to a secondary infection
rate.

Thirdly, the model identifies the set of
individuals who are in direct contact with
those infected in the second generation of
infection. These third-set individuals are
assigned an infection status according to
what is known as a tertiary infection rate.

The declining human-to-human infec-
tion rate between primary, secondary, and
tertiary transmission is an important char-
acteristic of zoonotic diseases. For exam-
ple, most human cases of avian influenza
were acquired from birds while a smaller
number were acquired from humans who
had been infected by contact with birds,
but so far there are no cases of a human
acquiring the disease from a human who
had themselves acquired it from a third
human.

The probability of an individual
becoming infected after being in contact
with an infected individual is based on the
primary, secondary, and tertiary infection
rate of a disease. For a given infection
rate, a given disease, and a given set of
individuals who are in direct contact with
an infected individual, the Monte Carlo
method assigns the infected status to
certain individuals. Each infected indi-
vidual experiences three stages of disease
development: an incubation period, an
infectious period, and (for survivors) an
immune period. Infected individuals may
recover or die based on the fatality rate of
the simulated disease.

Table 1: Counterfactual Assumptions

1. High probability of sexual transmission
even though none has been documented.

D. Transmission by casual contact even
though only transmission by blood or other
infected tissues or by contaminated medical
equipment has been documented

3. Violation of multiple laboratory and CDC
rules and procedures by index case.

K. Failure of hospital to place hemorrhagic
fever patient in isolation.

Table 1 summarizes the counterfactual
assumptions about the potential for conta-
gion that were used to create a variant of
Ebola which is possible in the sense of
Lewis' "possible worlds" [Lewis, 2001]
but whose probability is not well meas-
urably different from zero.

4. Results

The results of the simulation include the
day of the infection, the identification of
the infected individuals, the time period
and location of the infection, and the
consequence of the infection (recovery or
death). Results of each simulation over-
state the actual risks to the communities,
to a large degree, as a result of the highly
unlikely initial scenario and the higher
transmissibility of the simulated disease
compared to Ebola.

Two hundred simulations in each
community were conducted; 600 in all.
Each of the 600 simulations included
many thousands of interactions between
simulated members of the populations.

Ebola Cases for Three Communities After
Simulated Accidental Release.

Infections Infections per
10,000

Community Mean Mean per 10,000
(Population)| (St. Er. Mean) (st. Err. Mean)
Suburban 2.95 0.98
(30,022) (0.06) (0.02)
Rural 3.07 3.43
(8,941) (0.07) (0.08)
Urban 3.76 0.13
(284,805) (0.09) (0.003)

The data presented above clearly show
that the presence of disease was not
directly proportional to the number of
people living in each community. The
urban community has almost 15 times as
many people, but only 1.25 times as many
cases of disease on average than the aver-
age of the other two communities, and
therefore far lower per-capita risk than the
suburban or rural communities.
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Close examination of the simulation
outputs shows that the largest driver of
the differences among localities is the size
of the local hospital since this determines
the number of health care workers who
encounter the index case during the acute
phase of the illness. In a real outbreak,
this difference would be reduced or elimi-
nated since any patient with a hemor-
rhagic fever would promptly be placed in
isolation.

5. Summary and Conclusion

The continuing advances in simulation
and geographical information systems
make it possible for a multidisciplinary
team to quickly craft a high resolution,
efficient explicitly spatial and temporal
model of a rural area, a small city, or a
distinct community within a large city.
This is useful for assessing risks associ-
ated with moderately communicable
diseases such as those typically studied in
high containment biological research
facilities.

Release of an exotic disease such as
Ebola from a high-containment biological
research facility is an extremely rare
event. Comparing the magnitudes of the
minuscule threats to different local
communities based on where a new facil-
ity is located can only be done in a rela-
tive manner by making counterfactual
assumptions whose probability is not well
measurably different from zero and evalu-
ating the probability distribution of results
conditional on those assumptions. This
enables a possibilistic risk analysis to be
done, even though a realistic probabilistic
risk analysis would be impracticable

Many of the parameters of the disease
model correspond to disease characteris-
tics that are not precisely known. In the
simulation setup, these uncertainties are
resolved on a "worst case" basis. In some
cases, such as the potential for sexual
transmission, parameter values are used

which go beyond what is justified by the
data; "worse than worst case." Any
reasonable variation in the estimates
would increase the already high propor-
tion of Monte Carlo runs in which there
was no contagion at all. This might or
might not be more realistic, but it would
make it harder to discern differences in
risk among the three communities.
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