

Generating Null Models for Large-Scale Networks on GPU
Huan Li, Gang Lua, Junxia Guo

College of Information Science & Technology, Beijing University of Chemical Technology, Beijing,
100029, China

aemail: sizheng@126.com

Keywords: complex network; null model; GPU; parallel algorithm;

Abstract. A network generated by randomly rewiring the edges of an original network on some
constraint conditions is called the null model of the original network. It’s a useful tool for revealing
some mechanisms affecting the topology of networks. As the scales of networks become larger and
larger, time consumption of generating null models increases. How to randomly rewire the edges of
a large-scale network quickly becomes an urgent. In this paper, the generating algorithms for 0K,
1K and 2K null models of networks are implemented on GPU, which have not been done yet before.
The experimental results show that the parallel algorithms greatly reduce the time consumption.
Generating null models for large-scale networks on GPU is an efficient solution for study on null
models of large-scale networks.

Introduction
Complex networks vary in scales and structures. Null models of neworks are always created as

reference using numerical algorithms and mathematical methods based on statistical theory. It was
proposed by ecologists initially, and then molecular biology scientists Maslov and Slppen [1]
clearly stated the concept of null models of complex networks. A null model [2][3] of a complex
network is a randomized network which has the same number of nodes and some same
characteristics as the original network. The strategy is to deliberately exclude the mechanism being
tested and decide whether the null model has the same characteristics as the original network. The
specificity and flexibility provided by null models often cannot be supplied by general statistical
tests in data analysis.

A null model of a network can be generated by randomly rewiring the edges of the network
under some constraint conditions. According to the number of constraint conditions, null models
can be classified into different orders:

(1) 0K-null model: randomized network which has the same number of nodes and edges as the
original network.

(2) 1K-null model: randomized network which has the same number of nodes and degree
distribution as the original network.

(3) 2K-null model: randomized network which has the same number of nodes and joint degree
distribution as the original network.

Null models with higher orders can be defined by adding more constraint conditions. However,
as more and more constraint conditions are added, the number of edges can be rewired will decrease.
Consequently, the generated randomized networks will become more and more similar to the
original networks. Quan Chen et al. point out that if there are L edges in a network, the basic steps
of random rewiring algorithms for generating a randomized network need to be iterated for 4L times
[4]. In addition, in order to get statistically stable results, many randomized networks need to be
generated for an original network. As a result, generating reasonable randomized null models for
large-scale networks with millions, tens of millions or even more edges in acceptable time periods
will become impossible without certain techniques. As far as the authors know, all the existing
random rewiring algorithms of null models are implemented sequentially on CPU. There are no
parallel ones on CPU or on GPU.

The rest of this paper is organized as follows: The basic random rewiring algorithms for

International Industrial Informatics and Computer Engineering Conference (IIICEC 2015)

© 2015. The authors - Published by Atlantis Press 204

generating null models of networks are introduced. The algorithms are then implemented on GPU.
Finally, the performance of the parallel algorithms is evaluated by comparing the implementations
on CPU and GPU.

Random Rewiring Algorithm for Networks
A null model of a network is generated by randomly rewiring the edges of the network under

some conditions. For example, to construct a randomized network model with the same degree
sequence as the original network, we can make the positions of edges as random as possible on the
condition that the degree of each node is preserved. If the edge between node vi and node vj is
called as ei,j, the random rewiring algorithms [5][6] can be stated as follows:

(1) Random rewiring algorithm for 0K null model. In each step, randomly delete an edge em,n
from the original network and then randomly add a new edge ep,q if it doesn’t exist.

(2) Random rewiring algorithm for 1K null model. In each step, randomly pick two edges from
the original network, which are em,n and ep,q. If em,q and ep,n do not exist, em,n and ep,q are deleted,
and then em,q and ep,n are created.

(3) Random rewiring algorithm for 2K null model. In each step, a constraint condition which
says the nodes vn and vq must have the same degree is added to 1K null model.

Figure 1 shows the rewiring process of the three algorithms.

vm

vp

vn

vq vy

vx

0K
vm

vm vm vm

vmvn vn

vn vn

vp

vp

vp

vp

vq

vq vq vq

vq

vn

vx

vx

vx

vyvy

1K 2K

vy

vp
Fig. 1. Random rewiring algorithms for 0K, 1K and 2K null models

The above random rewiring algorithms can be extended to directed networks easily, such as by
preserving both in-degree and out-degree of each node to generate 1K null model.

Maslov’s matlab programs use an adjacency matrix to store a network. For storing a network
with N nodes, an N by N adjacency matrix is needed. However, an adjacency matrix will occupy a
lot of memory for a large scale network. It also wastes memory for storing a lot of zeros because
complex networks are usually sparse networks. So Maslov’s algorithms is only applicable to some
small-scale of networks. In this paper, vectors are used in C++ to store data and implement both
serial and parallel algorithms on CPU, and parallel algorithms on GPU as well.

Implementing the Random Rewiring Algorithm on GPU
Given a directed graph G = (V, E), we have V as the nodes set, E as the edges set, M = |V| as the

number of nodes, and L = |E| as the number of edges.
In order to focus on the algorithms for randomly rewiring, but not be trapped in the details of

programming and debugging, C++ AMP is selected rather than other techniques such as CUDA or
OpenCL. That makes it easy to write codes for GPU just by adding some features basing on
classical C++.

In fact, random rewiring algorithms of null models have great requirements for sequence, every
rewiring result will become next rewiring’s basement. So there’re two key problems to be solved
when migrating the algorithms onto GPU: (1) Multiple threads may try to disconnect the same edge.
(2) Multiple threads may try to create the same edge. All the following parallel algorithms on GPU
for every order null model of networks have to solve the two problems.

205

A. Generating 0K Null Models of Networks on GPU
Firstly, we backup the graph’s edges, and then randomly select a series of different edges to be

rewired into a vector called raneg. After that, each edge in raneg is assigned to a thread on GPU.
During the rewiring, every thread randomly selects two different vertices, if there is no edge
between them, rewiring is then done. When all threads have finished rewiring, we serially search
duplicated edges in the new edge set. If duplicated new edges are found, we retain the edge that
appeared for the first time and replace the left by their backup. As the new set of edges are backup,
previous duplicated rewirings need to be randomly rewired again by repeating above steps until
there are no more duplicated new edged generated in the same iteration.

In this way, the number of edges of the network and the average degree of the network won’t be
changed. For a network with L edges, L different edges can be selected at most at a time. If N is
larger than L, it is necessary to run the above algorithm repeatedly with no more than L rewirings in
each iteration.

B. Generating 1K Null Models of Networks on GPU
For the 1K null model, two edges are randomly selected to be crossly rewired in each step. If

multiple threads randomly select the same edge, the degree distribution of the network will be
changed after rewiring, which will break the constraint condition of preserving degree distribution
for 1K null model. To avoid this situation, in our algorithm, a series of edges to be rewired are
randomly and non-repetitively selected from the original network and then grouped into
nonoverlapping pairs at random. After that, different pairs of edges are assigned to different threads
for 1K rewiring. Like 0K algorithm, different threads also may generate same new edges here. As it
is done in 0K algorithm, duplicated new edges are serially found out. Except one of them, the left
are restored by their backups. The restored duplicated edges need to be rewired at random
repeatedly until no duplicated edges are generated. Since the edges need to be grouped into pairs,
random rewiring times N must be smaller than or equal to L/2. When N is larger than that, it is just
rewired for L/2 times in one iteration, until the left rewiring times is smaller than or equal to L/2.

C. Generating 2K Null Models of Networks on GPU
2K null model has one more constraint condition than the 1K one, which is node vn and node vq

must have the same degree, as Figure1 shows. Algorithm for 1K null model can be easily extended
for 2K null model by adding condition that node vn and node vq must have the same degree, so no
more tautology here.

Test results
A Wikipedia vote relationship network1 is chosen for experiments here. There’re 7115 nodes and

103689 edges in this network. The nodes of this network stand for Wikipedia users. An edge from
node i to node j means user i votes for user j. The experiments are taken on a computer with a Intel
i7-4770 CPU, 32GB memory, a NVIDIA GTX480 GPU, and 64-bit Windows Server 2008 system.

The execution time of serial and parallel algorithms for 0K, 1K and 2K null models is tested by
randomly rewiring the original network for 50000 to 450000 times. Every test is taken for 5 times,
and the average time spent is taken as the result. The results are shown in Figure 2. The horizontal
and vertical axis represent random rewiring times and time spent in seconds respectively. To make
the figure more clear, the values on vertical axis are logarithmic.

206

Fig. 2. Comparison of time consumption between serial and parallel algorithms

As the figure shows, the time consumption of serial algorithms grows linearly as random
rewiring times increase. As the constraint conditions become stricter, the CPU needs to do more
judgments, which makes the algorithms slower.

Among the three parallel algorithms on GPU, the one for 1K null models is slower than the 2K
one. That’s because it needs several iterations for duplicated new edges. Meanwhile, the strict
constraint conditions of 2K null model result in less edges to be rewired, which makes the 2K
algorithm faster. When randomly rewiring for 400000 times, which is about 4 times of the number
of edges, the speed-up ratios of parallel algorithms on GPU for 0K, 1K and 2K null models can
reach 283, 4 and 276 respectively.

To further demonstrate the superiority of GPU, the same parallel algorithms are also
implemented on CPU. The experimenting computer has an i7-4770 CPU with 4 cores and 8 threads
in total. All of the 8 threads are used in the experiments. Five public datasets, which are
p2p-Gnutella (P2P), wiki_Vote (WV), email-EuAll (EM), amazon (AM), and web-stanford (WS),
are used to take the experiments. Table I lists the numbers of nodes, edges, and random rewiring
times of the five netwoks. The random rewiring times are set to be 4 times of number of the edges.
The time consumptions of serial algorithms on CPU, parallel algorithms on CPU, and parallel
algorithms on GPU are compared. Table II, Table III and Table IV list the results of 0K, 1K and 2K
null models respectively. C-S means serial algorithms on CPU, C-P means parallel algorithms on
CPU, and G-P means parallel algorithms on GPU. N/A means the time spent is beyond 24 hours.

As the tables show, the classical serial algorithms on CPU can not finish in 24 hours for
networks larger than wiki_vote. Though parallelizing them on CPU can get several times speed-up,
it still can not finish in 24 hours for amazon or web-stanford network. Parallel algorithms on GPU,
however, mostly can finish in less than 1 hour for all the five datasets, and it only takes less than 2
hours for web-stanford’s 0K and 1K null model.

TABLE I. THE INFORMATION OF THE DATASETS TABLE II. GENERATION TIME OF 0K NULL MODEL

dataset C-S C-P G-P
P2P 4m 30.021s 2.855s

WV 38m2s 9m 18.209s

EM N/A 2h59m53s 1m7s

AM N/A N/A 21m1s

WS N/A N/A 38m55s

dataset nodes edges # of random rewiring
P2P 6,301 20,777 83,108

WV 8,298 103,689 414,756

EM 265,214 420,045 1,680,180

AM 262,111 1,234,877 4,939,508

WS 281,903 2,312,497 9,249,988

207

TABLE III. GENERATION TIME OF 1K NULL MODEL TABLE IV. GENERATION TIME OF 2K NULL MODEL

dataset C-S C-P G-P
P2P 4m35s 58.193s 16.493s

WV 1h1m10s 48m3s 13m31s

EM N/A N/A 15m46s

AM N/A N/A 35m

WS N/A N/A 1h43m30s

Conclusion
By single-threaded serial algorithms on CPU, the time consumption of generating null models

for complex networks increases rapidly as the scales of the networks expand. In this paper, new
algorithms for generating null models based on existing graphs by GPU are proposed. The
algorithms are able to generate 0K, 1K, and 2K null models. The experimental results show that the
parallel algorithms on GPU are much faster than single-threaded serial algorithms on CPU.
However, the memory of GPU is always limited, while the scales of networks are not. Therefore, it
will be interesting work to design and implement similar algorithms on multiple GPUs. Loading
data by segmentation for even larger scale complex networks which cannot be loaded into memory
of a GPU at one time will be interesting as well.

Acknowledgement
In this paper, the research was sponsored by Beijing Higher Education Young Elite Teacher

Project (Project No. YETP0506).

References
[1] Sergei Maslov and Kim Sneppen. Specificity and Stability in Topology of Protein networks [J].
Science. 2002, 296 (5569):910–913.
[2] Nicholas. J. Gotelli and Werner Ulrich. Statistical Challenges in Null Model Analysis [J]. Oikos.
2012 121 (2) 171–180.
[3] Priya Mahadevan, Dmitri Krioukov, Kevin Fall, and Amin Vahdat. Systematic Topology
Analysis and Generation Using Degree Correlations [J]. ACM SIGCOMM Computer
Communication Reveiw, 2006 36 (4) 135–146.
[4] Quan Chen, Jianmei Yang and Jinqun Zeng. Null Model and Its Application in the Research of
Complex Networks [J]. Complex systems and consumption science, 2013 10 (1) 8-17.
[5] Yabing Liu and Xiaofan Wang. Community Structure Analysis of Complex Network based on
Random Rewiring [J]. Microcomputer Applications, 2010 26 (11) 29-32.
[6] Priya Mahadevan, Calvin Hubble, Dmitri Krioukov, Bradley Huffaker, and Amin Vahdat. Orbis:
Rescaling Degree Correlations to Generate Annotated Internet Topologies [J]. ACM SIGCOMM
Computer Communication Reveiw, 2007 37 (4) 325–336.

dataset C-S C-P G-P
P2P 4m53s 35.348s 2.923s

WV 1h54m18s 12m 25.001s

EM N/A 3h30m32s 2m22s

AM N/A N/A 25m9s

WS N/A N/A 1h5m36s

208

	A. Generating 0K Null Models of Networks on GPU
	B. Generating 1K Null Models of Networks on GPU
	C. Generating 2K Null Models of Networks on GPU

