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Abstract  
Increasing complexity of the modern market 

dynamics requires new quantitative frameworks for 
the discovery of stable portfolio strategies. Important 
requirements include the ability of the coupled and 
self-consistent optimization of the dynamic strategies 
and asset allocations as well as robust built-in 
mechanisms for the strategy complexity control to 
ensure acceptable out-of-sample performance. 
Recently introduced boosting-based optimization 
naturally incorporates all these features. Originally, the 
framework was described as a generic tool for the 
discovery of compact portfolio strategies from a given 
pool of existing financial instruments and base trading 
strategies. Here I outline the important generalization 
of this framework that allows simultaneous discovery 
of new synthetic instruments represented as 
generalized spreads of existing financial instruments 
and dynamic trading strategies for each such spread. 
Detailed arguments and real-market example clarify 
the essence of this new framework as a powerful 
generalization of the exiting pairs trading strategies 
and cointegration-based techniques.  

  
Keywords: Boosting, Ensemble Learning, 
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1. Introduction 
Increasing complexity of the modern market 

dynamics and financial instruments requires new 
quantitative frameworks for the discovery of the 
robust portfolio strategies.  Important requirements for 
such a system include the ability of the coupled and 
self-consistent optimization of the dynamic strategies 
and asset allocations as well as interpretability of the 
obtained portfolio strategy. In contrast to the classical 
trading strategy and portfolio optimization 
frameworks, it should also provide robust built-in 
mechanisms for the strategy complexity control that 
ensures acceptable out-of-sample performance.  

Recently introduced boosting-based optimization 
framework naturally incorporates all these features [5-
7]. Preliminary results of its application to the real 
market data confirmed the practical value of the 
proposed framework. Originally, the framework was 
described as a generic tool for the automated discovery 
of the compact portfolio strategy from a given pool of 
existing financial instruments and base trading 
strategies. 

Increasing number of the intelligent market 
participants improves market efficiency and makes it 
more difficult to discover stable portfolio strategies 
that operate with existing financial instruments. Novel 
cointegration-based and related approaches for the 
discovery of the long/short market-neutral portfolios 
and “pairs” trading strategies could offer more stable 
solutions [1-3]. These tools help to discover new 
synthetic instruments (expressed as spreads of existing 
instruments) that have more predictable time series 
with a typical mean-reverting feature and not directly 
observed by the majority of other market participants.      

However, as these techniques become more 
widespread, typical pairs or sets of cointegrated 
instruments become well-known. This makes it much 
more difficult to exploit deviations (spreads) from 
such co-dependencies on a regular basis. Moreover, 
rigorous cointegration relations can be often violated 
making strategies relaying on the simple mean-
reverting dynamics of the particular spread unstable. 
Cointegration-based techniques alone do not provide 
any generic solutions for spread trading in the more 
common and less ideal situations where only 
weak/partial or complex time-varying co-dependencies 
exist.     

The pool of such weakly cointegrated instruments 
could be very large. This could offer a lot of 
unexplored potential for the discovery of stable 
market-neutral portfolio strategies. Indeed, any pair/set 
of instruments that have one or more common 
economic/market factors in their approximate factor 
model can be a candidate for such a pool. However, to 
discover stable portfolio strategies based on spreads of 
weakly cointegrated instruments one should exploit 
not only spreads (synthetic instruments) with simple 



mean-reverting features but also with more general 
characteristics including multi-scale trends and other 
complex dynamics. The generic framework should 
also be able to discover dynamic strategies for each of 
these multiple spreads and optimally combine them.  

In this work, I outline the important generalization 
of the original boosting framework that allows 
simultaneous discovery of new synthetic instruments 
represented as generalized spreads of existing financial 
instruments and dynamic trading strategies for each 
such spread. This framework can be considered as a 
powerful generalization of the exiting techniques for 
the pairs trading including cointegration-based tools 
[1-3]. Real market example illustrating operational 
details of the new framework and its potential practical 
value is also presented. 

 

2. Market-neutral portfolio 
selection and pairs trading: 
Limitations of the existing 
techniques and multi-spread 
generalization 
Traditional techniques for “pairs trading” and 

hedging are based on a relative value analysis of asset 
prices [3]. The two or more assets can be selected on 
the basis of intuition, fundamentals, long-term 
correlations, past experience or other empirical 
knowledge. Obvious limitation of these approaches is 
the absence of the systematic statistical or fundamental 
framework that can be generically applied across the 
universe of financial instruments.   

More sophisticated and systematic techniques for 
hedging and construction of the market-neutral 
portfolios are based on factor models that can be built 
using various statistical or fundamental approaches 
[2,3]. However, in many cases, it is difficult to identify 
a minimum set of measurable risk factors that are 
required for a factor model with acceptable accuracy.     

Novel cointegration techniques [1-4] provide a 
powerful generalization of the traditional approaches 
by introducing a systematic statistical framework for 
the construction of synthetic pairs/sets in the form of 
appropriate long/short combinations of two or more 
assets. Cointegration is essentially an econometric tool 
to identify possible stable relationships between a set 
of time series [3,4].  

In its original form cointegration can be used to 
identify potential hedges for a given position or to 
construct market-neutral buy&hold portfolios [1-3]. 
Cointegration can also be used to measure the short-
term deviations from the equilibrium [3]. This is 
interesting as a potential source of statistical arbitrage 
strategies. Deviations from the long-term “fair price” 
relationship, identified by cointegration analysis, can 

be considered as statistical “mispricings” that should 
always revert towards the longer term equilibrium [3]. 

In the case of statistical arbitrage, cointegration 
can be considered as an extension of the relative value 
strategies such as “pairs trading”. In the case of 
hedging and market-neutral portfolio construction 
cointegration can be considered as extending factor- 
model hedging to include situations where the 
underlying risk factors are not measurable directly, but 
are instead manifested implicitly through their effect 
on asset prices [3]. 

The most common method of testing for 
cointegration [4] is based upon the concept of a 
“cointegrating regression”. In this approach a 
particular time series (“target series”) S0,t is regressed 
upon the remainder of the set of time series 
(“cointegrating series”) S1,t … Sn,t: 
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If series are cointegrated then statistical tests will 
indicate that st is stationary and the parameter vector 
(1,-α, −β1, ..., −βn) determines the cointegration 
relationship. Two standard statistical tests are 
recommended by Engle and Granger [4]. 

The relevance of cointegration to hedging is based 
upon the recognition that much of the “risk” or 
stochastic component in asset returns is caused by 
variations in market and/or economic factors which 
have a common effect on many assets. This viewpoint 
forms the basis of traditional asset pricing models such 
as the CAPM (Capital Asset Pricing Model) of Sharpe 
and the APT (Arbitrage Pricing Theory) of Ross [2]. 
Essentially these pricing models can be formulated as 
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This general formulation relates changes in asset 
prices ΔSi,t to sources of systematic risk expressed as 
changes in market and/or economic factors Δfj,t 
together with an idiosyncratic asset-specific 
component εi,t. 

The presence of market-wide risk factors creates 
the possibility of hedging through the construction of 
appropriate combination of assets. For example, if 
asset price dynamics can be described by (2) then the 
combined return of the portfolio with long position in 
asset S1 and short position in asset S2 is given by  
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From (3) it is clear that the proportion of variance 
caused by market-wide factors will be significantly 



reduced if all corresponding factor exposures are 
similar, i.e.  
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 A common approach to hedging is to assume that 
one can explicitly construct a reasonable factor model 
(2) using existing fundamental or statistical 
approaches [2]. Using these factor models one can try 
to select an optimal long/short portfolio with minimal 
exposures to these factors (i.e., market-neutral). 

However, when it is not possible to identify a 
reasonable set of explicit factors, cointegration 
provides an alternative method for implicit hedging 
the common underlying sources of risk. Given a 
particular “target asset” S0, a cointegration regression 
(1) is used to create a synthetic asset as a linear 
combination of assets Sj (j=1…n) which exhibit the 
maximum possible long-term correlation with the 
target asset [1-4]. The coefficients βj of this linear 
combination can be found using standard ordinary 
least squares (OLS) regression. 

The obtained synthetic asset provides an optimal 
statistical hedge for the target asset. Coefficients βj 
specify capital allocations for the hedging assets (in 
units of the target asset capital), and position types: 
short for positive β and long otherwise (target asset is 
long). A linear combination of assets acts as a proxy 
for the unobserved (implicit) common risk factors. 

Although cointegrating regression can be used to 
estimate the “fair price” relationship between a set of 
assets, it does not provide any tools to detect 
deterministic components in the mispricing dynamics 
for a possible statistical arbitrage strategy. Only for 
simple mean-reverting dynamics of such mispricings, 
additional intelligent techniques are not required.  

In the real applications to stock/index data, 
cointegration relationship between logarithms of time 
series is considered, i.e., all Sj should replaced by 
ln(Sj) in (1). The essence of the pairs trading can be 
described in terms of the spread s recovered from (1): 
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Without loss of generality we will consider α=0 from 
now on. The main goal of the traditional pairs trading 
is to find a set of βj that produces spread (5) with 
stable mean-reverting properties. This search can be 
based on cointegration or other relevant techniques. 

A strict requirement for a stable mean-reverting 
dynamics of the spread makes pairs trading simple 
once such pair or group of instruments is found. For 
example, one can take long or short position 
(depending on the spread sign) in the synthetic 
instrument described by (5), i.e. long/short positions in 

the underlying instruments Sj with capital allocations 
specified by βj, when spread |s| becomes larger than 
some critical value and exit the position when s 
becomes close to zero.     

However, the number of undiscovered instrument 
pairs/sets with simple mean-reverting spread dynamics 
decreases as cointegration and related techniques 
become widespread. This leads to more efficiency 
with respect to this type of arbitrage and spread 
dynamics becomes more complex and less stable. 
Also, even the best pairs/sets found by cointegration 
on historical data can significantly change their co-
dependency in the future. Therefore, strategies, tuned 
to the single regime of the mean-reverting spread, 
could abruptly break down.   

To resolve these limitations, the more generic 
spread trading strategies, that can work with different 
types of complex spread time series, should be 
considered. Besides spreads with more complex mean-
reverting behavior, one can also use a large class of 
spreads with multi-scale trends that can often be 
exploited by the portfolio of dynamic strategies [5,6].  

According to (3), this means that the more generic 
goal of synthetic instrument construction is not to 
remove dependence on all common factors specified 
by condition (4), but only on some least deterministic 
factors. In this way, it could be possible to discover 
spreads with cleaner and more predictable trends and 
other patterns than in the original time series of the 
underlying instruments. 

The relaxation of requirements for the spread 
dynamics will significantly expand the universe of 
existing instruments that can be potential constituents 
of the long/short synthetic instruments suitable for the 
stable trading. Indeed, many different weakly-
cointegrated instruments, that have only some similar 
exposures to the common risk factors, could be 
included. In addition, the more complex spread 
dynamics will ensure that several different regimes are 
covered at the training stage. This could significantly 
improve out-of-sample stability of the strategies 
compared to the traditional pairs strategies tuned for 
the strict mean-reverting historical behavior.            

To illustrate potential spread-dynamics diversity 
that can be found even for two underlying time series, 
we use historical data for S&P mid-cap (MID) and 
S&P500 (SPX) indexes. Mid-cap index is considered 
as a target time series S0. These two indexes 
demonstrate quite significant cointegration with 
typical mean-reverting feature for the last few years. 
However, in the longer run (> 6-7 years), their overall 
codependence is less stable and more diverse. This 
suggests that varying only one parameter β1, many 
different types of spread dynamics can be observed.  



In the following we will use argument of the 
logarithm in (5) as a spread measure: 
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In the limiting case of βj=0, the original target time 
series S0 is recovered from s*. This simplifies direct 
comparisons between spread and underlying time 
series. 

In fig.1, the original mid-cap time series and 
MID-SPX spread for different values of β1 are plotted. 
It is clear that by changing β1, different types of spread 
dynamics can be obtained: from complex multi-scale 
trends to the low-noise long-term trends and mean-
reverting behavior. More detailed analysis of the types 
and predictability of spread dynamics can be 
performed using variance ratio tests [3].        
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. MID time series (solid line) and MID-SPX 
spread time series for β1=1.75 (dashed line, first from 
the bottom), β1=0.75 (dashed-dotted line), and β1=-0.3 
(dotted line, last from the bottom).  
 

One of the possible approaches to the generic 
spread trading is to choose a single set of βj that 
creates spread with desired dynamics and to search for 
the technical strategies that are capable to exploit 
possible deterministic patterns in the spread time 
series. As shown in previous works [5,6], boosting-
based optimization can be effectively used for the 
discovery of stable portfolio of strategies with 
adaptive capital for a single instrument. The same 
framework can be used to exploit multi-scale trends 
and/or oscillatory patterns in spread time series.  

However, diversity of the spread dynamics 
suggests that more generic and more powerful 
approach should include combination of dynamic 
trading strategies applied to multiple spreads specified 

by different sets of βj (i.e., multiple synthetic 
instruments). The final portfolio strategy would still be 
specified as a long/short variable-capital strategy 
applied to the initially chosen underlying instruments. 
As described in the next section, boosting-based 
optimization could be easily generalized to allow 
simultaneous self-consistent discovery of trading 
strategies and new synthetic instruments.  

 

3. Boosting-based framework for 
the discovery and optimization of 
the multi-spread portfolio 
strategy 
As described in my previous works [5-7], 

boosting for optimization could be based on different 
boosting frameworks. However, the generalized 
AdaBoost algorithm for classification [8,12,13] could 
be a preferred choice in many applications due to its 
simplicity, comprehensive theoretical foundation, and 
proven robust performance in a large number of 
realistic classification problems.  

For our purposes it is sufficient to describe 
boosting algorithm only for two-class classification 
problem, where classifier outputs either +1 or -1. 
Generalized AdaBoost for two-class classification 
consists of the following steps [12]: 
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Here N is a number of training data points, xn is a 
model/classifier input set of the n-th data point and yn 
is the corresponding class label (i.e., -1 or +1), I(z) = 0 
for z<0 and I(z)=1 otherwise, T is a number of 
boosting iterations, wn

(t) is a weight of the n-th data 
point at t-th iteration, Zt is weight normalization 
constant at t-th iteration, ht(xn)->[-1; +1] is the best 
base hypothesis/model at t-th iteration, ρ is a margin 
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control parameter, and f(x) is a final weighted linear 
combination of the base hypotheses. 

Boosting starts with equal and normalized weights 
for all training data (step (8.1)). A base classifier ht(x) 
is trained using weighted error function εt (step (8.2)). 
If a pool of several types of base classifiers is used, 
then each of them is trained and the best one 
(according to error function) is chosen at the current 
iteration. The training data weights for the next 
iteration are computed in steps (8.3)-(8.5). 

According to (8.5), at each boosting iteration, data 
points misclassified by the current best model (i.e., yn 
ht(xn) < 0) are penalized by the weight increase for the 
next iteration. In subsequent iterations, AdaBoost 
constructs progressively more difficult learning 
problems that are focused on hard-to-classify patterns. 
This process is controlled by the weighted error 
function (8.2).   

Steps (8.2)-(8.5) are repeated at each iteration 
until stop criteria γt < ρ (i.e., εt >= 1/2(1-ρ)) or γt = 1 
(i.e., εt = 0) occurs. Step (8.6) represents the final 
combined (boosted) model that is ready to use. The 
model classifies unknown sample as class +1 when 
f(x) > 0 and as -1 otherwise. Details of more general 
versions of boosting algorithms are given in [12]. 

Boosting also offers a flexible framework for the 
incorporation of other ensemble learning (model 
combination) techniques. Instead of choosing the 
single best model at each boosting iteration, one can 
choose mini-ensemble of models that is optimal 
according to other ensemble learning techniques. For 
example, it is often useful to form an equal weight 
ensemble of several comparable best models at each 
iteration. In many cases, this generalization improves 
out-of-sample performance compared to the standard 
boosted ensemble.   

Portfolio strategy discovery is a direct 
optimization rather than classification problem. 
However, it was argued [5-7] that for a large class of 
objective functions, boosting for classification (8.1)-
(8.6) can be efficiently used as a basis for the 
framework that could be labeled as “boosting for 
optimization” or “boosting-based optimization”. 

One of the natural and robust objectives for the 
trading strategy optimization consistent with market 
neutrality is to require returns (r) generated by the 
strategy on a chosen time horizon (τ) to be above 
certain threshold (rc). By calculating strategy returns 
on a series of intervals of length τ shifted with a step 
Δτ and encoding them as +1 (for r >= rc) and -1 (for r 
< rc), one obtains symbolically encoded time series 
(distribution) of strategy returns. 

Contrary to the classification problems, here the 
purpose is not to correctly classify (between +1 and -
1), but rather to increase the number of +1 samples 

(i.e., the number of cases with supercritical returns). 
This can still be considered as classification problem 
with potentially uneven sample number between two 
classes. The objective to have maximum number of 
samples in +1 class (i.e., r >= rc) can be incorporated 
into the boosting operation (8.1)-(8.6) by considering 
output -1 as misclassification, i.e., yn=+1 for all n. In 
such setting, boosting (8.1)-(8.6) provides a 
framework for optimization, where maximization 
objection function is a “hit rate”, i.e., number of +1 
samples divided by the total number of samples. 

Symbolic encoding and corresponding objective 
function can be based on any complex condition that 
combines different measures of profit maximization 
and risk minimization specified by the utility function 
of interest. This can be easily achieved with 
combination of several simple conditions. 

In the case of trading strategy optimization, the 
final usage of boosting output is different from the 
classical case of boosting for classification. Instead of 
using weighted linear combination (8.6) of the base 
models as a final model for classification, one uses 
boosting weights to construct portfolio of strategies. 
The initial capital is distributed among different base 
strategies in amounts according to the weights (αt/Σαt) 
obtained from boosting which are already normalized.   

As discussed in [5-7], boosting can be used to 
discover the optimal combination of different dynamic 
trading strategies for a single financial instrument as 
well as the simultaneous combination of trading 
strategies and different instruments. In both cases, 
boosting steps (8.1)-(8.6) are applied to a pool of base 
strategies {BSi(pi)}, where pi is a vector of adjustable 
parameters for strategy BSi. However, in the first case 
all base strategies are applied to a time series of a 
single instrument S0, while set {BSi}x{Sj} of all 
possible pairs of strategies BSi and instruments Sj 
should be used in the latter case. 

According to error function (8.2), if the objective 
is to maximize the number of supercritical returns on 
the shifted intervals, the following optimization 
problems are solved for all base strategies BSi(pi) and 
instruments Sj at each boosting iteration,: 
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Here, rn
τ is a return produced by the strategy BSi(pi)  

applied to the instrument Sj over n-th shifted interval 
of length τ and rc is a chosen threshold value. Based 
on the results of these minimization procedures for all 
(i,j) pairs, the best pair “strategy-instrument” of the 
current iteration is added to the portfolio.  

A possible generalization is to consider synthetic 
instruments (defined by the fixed β sets) instead of 
original instruments Sj and to apply base strategies to 



the corresponding spread time series (7). However, the 
more generic and flexible approach should include 
simultaneous optimization of the spread time series 
itself. This can be interpreted as an adaptive discovery 
of new synthetic instruments. Thus, at each boosting 
iteration, an optimal vector of β coefficients is found 
by solving the following coupled minimization 
problem:  
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In this generalized framework, the final output of the 
boosting optimization is a portfolio of different 
synthetic instruments defined by their β vectors (i.e., 
multiple spreads) with corresponding optimal 
strategies for each of them.  

In general, performance of this framework could 
be very different from that relying on the same set of 
base strategies and underlying instruments but treating 
these instruments independently. Indeed, search for the 
stable strategies for each individual instrument 
(specified by (9)) could encounter all the problems 
associated with constantly improving efficiency of the 
existing instrument dynamics due to their direct 
availability to the increasing number of intelligent 
market participants. In contrast, the generalized 
framework (10) adaptively creates new synthetic 
instruments that are not directly exposed to other 
market players and featuring time series properties 
exploitable by the technical trading strategies.   

 

4. Application example 
The proposed framework for the discovery of 

multi-spread portfolio strategies can be used with a 
wide range of underlying financial instruments and 
base trading strategies. For the illustration of a typical 
application, two well-known indexes, S&P500 and 
S&P mid-cap, will be used.  

As discussed in section 2, the long-term co-
dependency of these two time series is quite complex, 
so that stable portfolio strategy cannot be easily 
discovered by co-integration and related tools alone. It 
is also one of many examples where spreads with 
significantly different dynamics can be generated by 
changing just one β coefficient.  

In practical settings, different types of base 
technical strategies (trend-following, oscillator-type, 
etc.) can be used. However, to stress out flexibility of 
the boosting framework in comparison to the existing 
approaches dealing solely with simple mean-reverting 
spreads, only trend-following (momentum) strategies 
will be included in the base pool. This will be the most 
obvious illustration of difference with simple 

oscillator-type strategies used in the case of stable 
mean-reverting dynamics.   

For clarity, a base strategy pool is restricted to a 
set of simple trend-following strategies [9]: the 
exponential moving average of the daily closing prices 
EMA(n,a) for entry combined with adaptive trailing 
stops ATS(m,α) based on different volatility measures 
for exit. Entry into long (short) position on spread 
occurs when EMAt(s*)>EMAt-1(s*) (EMAt(s*)< EMAt-

1(s*)), i.e., the current value of EMA is greater 
(smaller) than the previous day value. Here s* is spread 
given by (7), n is a number of points to be averaged, 
and a is a smoothing constant. Position entry occurs at 
the next trading day. More sophisticated low-pass 
filters [9] could be added in addition to or instead of 
EMA in real applications. 

As mentioned in section 2, entrance into long 
spread position means taking simultaneous long and 
short positions in the underlying instruments 
according to their β values. Position side for a 
particular instrument (i.e., long or short) is determined 
by the sign of its βj. The capital allocation Cj for each 
instrument is specified by the absolute value of its βj:  

!
=

+

=
N

j

j

jj

C
C

1

max

||1

||

"

"                                          (11) 

Here N is the total number of underlying instruments 
and Cmax is the maximum total capital exposure (both 
long and short).  In the short spread position the side 
of each underlying instrument is just the opposite.   

Long (short) spread position is closed when 
intraday spread fells below scmax[1-ασ(m)] (jumps 
above scmin[1+ασ(m)]). Here scmax(scmin) is a maximum 
(minimum) of the spread (computed using closing 
prices) with respect to present day, and σ(m) is a daily 
return standard deviation of the spread or other 
volatility measure computed using m last points. 
Trailing stops based on global and local (i.e., the most 
recent) maximum (minimum) calculations used for the 
exit spread level can demonstrate complimentary 
performance. In this example, both exit types have 
been used in the base strategy pool.  

It is often useful to include multiple trailing stops 
with different volatility measures into a base strategy 
pool. For example, volatility measures based on the 
extreme (bar) values (i.e., open, high, low, and close 
prices) [10 and references therein] usually provide 
significantly more accurate estimation of the current 
volatility, especially when time interval m is small 
(important in the regimes with fast volatility changes). 
In the presented example, four different volatility 
measures have been used: simple standard deviation 



based on close prices as well as Parkinson, Garman & 
Klass, and Rogers & Satchell estimators [20].      

For each type of volatility measure (estimator) 
and exit level (global/local), two base strategies 
[EMA(n,a), ATS(m,α)] are included in the pool. One 
is long-only (ignores short entry signals) and the other 
is short-only (ignores long entry signals). Thus, the 
pool of total 16 base strategies has been used in the 
presented example. 

Daily strategies considered here are very tolerant 
to a wide range of transaction costs that depend on the 
type of trading vehicles used (e.g., ETFs, futures, or 
mixture). For simplicity of presentation, in the 
reported results such costs are ignored. The min/max 
values of intraday spread used for testing of stop-loss 
execution are approximated based on daily bar data. 
Unlike single instrument trading, a rigorous modeling 
of “pairs” trading requires intraday data.  

Adaptive boosting (8.1)-(8.6), (10) with ρ=0.1 
and Τ=7 has been applied to the described base 
strategy pool and two underlying instruments: MID as 
target and SPX with variable β. Binary hit rate 
objective function with rc=5% (annualized) for the 
horizon of τ=63 days and Δτ=20 days is used. Training 
data period is 1997/05/15-2005/05/15.  At every 
boosting iteration, each strategy [EMA(n,a), 
ATS(m,α)] from the base strategy pool is optimized 
with respect to (n,a,m,α,β) parameter set using global 
optimization algorithm based on simulated annealing 
combined with downhill simplex method [11]. At each 
boosting iteration, in addition to the best model, other 
models that are inferior to the best model by no more 
than 2% are also retained with equal weights. 

The result of boosting-based optimization is 
portfolio of 17 complimentary multi-scale strategies 
[EMA(n,a), ATS(m,α)] operating on 17 different 
spread time series calculated from the underlying MID 
and SPX data with 17 different β values. The ranges of 
parameters are the following: n=11..130, a=0.96..0.99, 
m=4..87, α=0.20..0.55, and β=-0.34..0.43. 

Distribution of annualized returns of the boosted 
portfolio of MID-SPX multi-spread trading strategies 
for the horizon of τ=63  business days is plotted in 
fig.2 (solid line). Here, a period from 1997/01/01 to 
2006/01/10 is covered. Fig.2 presents both in-sample 
(training) data and up to 1.5 years of out-of-sample 
data. Stability of the obtained portfolio strategy even 
for such short-term horizon is obvious. Return 
distribution improves for larger time horizons.  

Complexity of the underlying indexes is evident 
from the distribution of the returns produced by the 
buy&hold strategies: MID-long (dashed line) and ½ 
MID-long, ½ SPX-short (dotted line). In contrast to 
the stable distribution of only positive returns 
generated by the boosted portfolio strategy, buy&hold 

strategies have comparable number of negative and 
positive returns.  

 
 

 
 
 
 
 
 
 
 
 

 
 
 
Fig.2. Distribution of the annualized returns (%) for 63 
days horizon: MID-SPX multi-spread portfolio 
strategy (solid line), MID long buy&hold (dashed 
line), ½ MID long and ½ SPX short buy&hold (dotted 
line).    
 

Finally, we illustrate the mechanism responsible 
for stability and robustness of the boosted portfolio 
strategy. As obvious from the very boosting operation, 
obtained single strategies are locally uncorrelated or 
negatively correlated and capable to support each 
other through many different market regimes. Often 
the global performance (i.e., an average over all 
market regimes) of single members of the boosted 
portfolio is not impressive. However, since they are 
locally complementary to each other, the global 
performance of the final portfolio could be very stable 
and significantly superior to the best single strategy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Distribution of the annualized returns (%) for 63 
days horizon: MID-SPX multi-spread portfolio 
strategy (solid line) and each individual strategy from 
the portfolio (dotted lines).  
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This is illustrated in fig.3, where distributions of 
the annualized returns on the 63 day period for all 17 
strategies from the boosted portfolio are shown by 
dotted lines. The corresponding distribution of returns 
produced by the boosted portfolio is shown by solid 
line. The qualitative jump from the sub-optimal 
performance of single strategies to the impressive 
stability of their combination is very clear.      

Returns of three strategies with comparable 
weights from the current portfolio are plotted in fig.4 
chronologically. These strategies exploit spread trends 
on different time scales (n=70, 11, 50) and operate on 
different spread time series (β=0.18, -0.11, -0.34) 
(solid, dashed, and dotted lines). It is clear from fig.4 
that these strategies are complimentary to each other. 
This is the underlying source of the boosted portfolio 
robustness and stability.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Shifted annualized returns (%) of 3 individual 
strategies from the MID-SPX multi-spread boosted 
portfolio (in chronological order). 
 

5. Conclusions 
Limitations of the modern techniques for the 

identification of the market-neutral portfolios and 
dynamic spread (“pairs”) trading strategies have been 
discussed. A generic boosting-based framework for 
the discovery of the stable multi-spread portfolio 
strategy, that can address many unresolved issues, has 
been proposed. The framework can be efficiently used 
for the simultaneous discovery of new synthetic 
instruments specified as spreads of existing 
instruments and optimal trading strategies for each 
such spread. 

Presented arguments and real-market example 
clarify the essence of the new framework as a 
powerful generalization of the exiting pairs trading 
techniques and cointegration tools. Existing 
approaches are applicable only to a small and 
constantly decreasing subset of existing instruments 

with a simple mean-reverting spread dynamics. In 
contrast, the proposed framework can be used with 
much larger set of weakly-cointegrated instruments 
featuring complex spread dynamics.   
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