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Abstract—Fault detection and diagnosis (FDD) for singular 

stochastic distribution control (SDC) systems via the output 

probability density functions(PDFs) have been discussed. 

The PDFs can be approximated via square-root B-spline 

expansion,and expansions to represent the dynamics 

weighting systems between the system input and output 

PDFs. an novel fault detection and diagnosis algorithm is 

presented using the parameter-updating. Finally,the 

simulation result is included to show that satisfactory 

robustness and closed-loop performance can be achieved. 

Keywords-probability density fuctions;singular stochastic 

distribution;control;fault detection;diagnosis 

I. INTRODUCTION 

Fault detection and diagnosis (FDD) are important 
research area for improving control systems reliability. 
Many effective methods have been presented in the past 
two decades for stochastic system.Up to now,most of the 
existing FDD algorithms have only been concerned with 
Gaussian distribution system. Howere,nonlinearity may 
lead to non-Gaussian output,where mean and variance of 
the system output are insufficient to characterize their 
statistical behavior precisely ([11],[12],[13]). As 
such ,there a new FDD algorithms is need to develop, 
which can be applied to the stochastic system subjected to 
random parameter. It is noted that if only output PDFs can 
be measured, most FDD approaches are invalid. Now 
therefore, an observer-based FDD methods have been 
presented in reference([3],[7],[11],[14],[15],[16],and 
reference therein) to detect and diagnose the fault for 
non-Gaussian SDC system. Whereas, for,few literatures 
have been reported to the FDD problem for singular 
non-gaussian stochastic distribution control systems . This 
forms the main purpose of the current work.  

This paper is organized as follows. In Section 2, the 
output PDFs expansion and the nonlinear weight dynamic 
are established to formulate the FTC problem. In Section 3, 
the FTC filtering is designed to compensate or reject fault. 
The concluding remarks are presented in Section 4. 

Notations: * denotes the elements below the main 
diagonal of a symmetric block matrix. I is the identity 
matrix with appropriate dimensions.‖•‖denotes the 

Euclidean norm vector in 
n

R . diag{…} stands for the 
block diagonal matrix. A− 1 represents the inverse of 

matrix A. tr (A) denotes the trace of matrix A. AT refers 
to the transpose of vector x or matrix A. 

II. PROBLEM FORMULATION AND 

PRELIMINARIES 

Consider a continuous-time dynamic stochastic 
distribution systems where u(t)∈Rm is the control 
input,y(t)∈[a,b] represents the system output,and F is the 
fault to be compensated or rejected,a typical example of 
which is an actuator fault.At any time t, the probability of 
output y(t) lying inside [a,b] can be described as 

01
( , ( ), ) ( ( ), ) ( ) ( , ( ), ) (1)
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i ii
z u t F v u t F b z z u t F 
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where vi(u(t),F)(i=1,2,…,n) are the corresponding 
weights ,bi(z)(i=1,2,…,n) are a pre-specified basis 
function, and ω0(z,u(t),F) stands for the model uncertainty 
or the error,which is supposed to satisfy |ω0(z,u(t),F) |≤δ0, 
δ0 is a  known positive constant. 
Denote  
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the following model is given: 
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From the boundedness of ω0(z,u(t),F), it can be assumed 
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that |ω (z,u(t),F) |≤δ holds for all {z,u(t),F},where δ is a 
known positive constant. 

In this paper the nonlinear dynamic model will be 
considered as follows 

( ) ( ) ( ( )) ( )
(4)

( ) ( )

Ex t Ax t Gg x t Du t F

V t Cx t

   




 

where x(t)∈R
m
 is the unmeasured state,and A,G,D,C 

represent the known parametric matrices of the dynamic 
part of the weight system, In fact, these matrices can be 
obtained either by physical modeling or the scaling 
estimation technique described in [1] and [6];E∈R

m×m
 is 

a known singular matrix,i.e.,rank(E)= r < m;g(x(t))∈R
m
 

is a nonlinear vector function that represents the nonlinear 
dynamics of the weight model and is supposed to satisfy 
g(0)=0.  

The following network can be used to approximate 
the continuous unknown function F(t):=F(x,u) 

( , ) ( , ) ( , ) (5)F x u TWS x u x u   

where T is given matrix,W is the ideal weight matrix, 
θ(x,u) is a neural network approximation error,S(x,u) is 
the basis function. Since the state x is immeasurable,then 
the output of neural network can be expressed as 

ˆ ˆˆ ˆ( , ) ( , ) (6)F x u TWS x u  

where ˆ( )x t is the estimated state,
1Ŵ is an estimated 

matrix 

III. FAULT DETECTION AND DIAGNOSIS VIA 

OUTPUT PDFS 

A. Observer-based fault detection 

Since the measured informance is the output probability 
distribution, in order to detect the fault based on the 
changes of output PDFs,the following full-order observer 
is applied to detect the fault. 

ˆ ˆ ˆ( ) ( ) ( ( )) ( ) ( )
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where ˆ( )x t is the estimated state,L∈R
m×p

 is the gain to be 

determined and the rsidual ε(t) is formulated as an 
integral of the difference between the measured PDFs and 
the estimated ones, ζ(z)∈R

m×m
 can be regarded as a 

pre-specified weight vector lying [a,b] and makes the 
integration simple or adjust the scale of ε(t). 
  By defining 

ˆ( ) ( ) ( )e t x t x t  , ˆ( ) ( ( )) ( ( ))g t g x t g x t  ,

ˆ( ) ( ( )) ( ( ))h t h Cx t h Cx t  ,the estimation error system can 

be described 
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  It can be seen that 

1 2( ) ( ) ( ) ( ) (9)t e t h t t      

From ( , ( ),z u t F  ,it can be verified that  
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E is a singular matrix,hence exist two orthogonal 
matrices U and V such that  

0
(10)

0 0
UEV
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where ( )idiag   and λi > 0 are the singular 

values of singular matrix E. 
  As shown in reference [7] and [8],Denote 
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Assumption 1. If A22 is invertible,then the following 
inequality  

22

1 2 2 2

22( )

A
G C H

K A
  

 

holds, where K(A22) is the condition number of A22. 
In the absence of F, Eq.(4) is transformed into 

1 11 1 12 2 1 1 1

21 1 22 2 2 2 2
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First,when there is no fault, our objective is to find L 

such that the system (12) is stable,which can be 
formulated in the following theorem. 
  Theorem 1. For the parameters γ > 0 and κi > 0,(i=1,2
 ), if there exist matrices R and P with P being 
nonsingular,satisfying 
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where 
1 1

T T T TA P P A R R I       ,then in the 

absence of F(x,u),the error system (11) with gain L=P
-T

R 
is asymptotically stable. 

Proof. Substituting Eq.(10) and (11) into Eq.(13), it 

can be seen that 
11 11 0T TP P     and P12=0. A22 and P22 

are inveritible.  
Define the Lyapunov candidate function as follows 
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   Along the trajectories of (12) in the absence of F,it 
can be shown that 
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Using Assumptions 1 and 2, then we can get that 
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Thus,under (14),it can be seen that 
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  Therefore,it can be claimed that  
1
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As before,A22 is inveritible, by Eq.(12) and 
assumption 1,2 and 3,we can calculated that 
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  It can be seen that 
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  From Eq.(15) and (16), we can seen that the error 
system is stable.  

Theorem 1 presents a necessary condition for fault 
detection. In order to detect F, we select ε(t) as residual 
signal and propose the following result to determine the 
threshold. 

B. Observer-based fault diagnosis 

After the fault is detected based upon the results in 
section 3.1,the fault diagnosis need to be carried out in 
order to estimate the size of fault F.when a fault 
occurs,we construct the following adaptive observer. 
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  The system (4) can be rewritten as 
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  By defining 
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1  , the estimation system can be described as  
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   Then, an adaptive fault estimation algorithm is 
presented by the following theorem. 
  Theorem 2 For the parameters κi > 0 (i=1,2), if there 
exist matrices R, P with P being non-singular,and β > 
0,such that the following LMI holds: 
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Where 
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system (19) with gain L=P
-T

R is stable and the fault 
estimation algorithm is as 
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It is noted that 
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It is noted that 
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Where 
1 max 2 max( ), ( )T TP P R R     are the 

maximum eigenvalue of P
T
P and R

T
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In the presence of F,the following inequality can be 
obtained that 
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Eq. (19) with diagnosis observer Eq.(16) based on gain 
L=P

-T
R is stable and the estimation error satisfies  

2 2

1 2( ) (25)e t     

If 
2 2

1 2( )e t    is satisfied,which indicates that 

1( )e t or 
2 ( )e t is larger than 1 or 2 .  it can be 

seen that that fault occurs in this case. Eq.(25) means that 
the estimated error be guaranteed to be small if we selects 
suitable design parameters.This implies that the estimated 
error can be made arbitrarily small by choosing the 
suitable design parameters

1 2, ,   and L. 
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IV. CONCLUSION 

In this paper,a new FDD method is investigated for 
singular non-Gaussian stochastic system. It is developed 
from the technology of PDFs,which is modeled by a 
square root B-spline expansion. Based on LMI techniques, 
the complexity FDD problem of singular non-Gaussian 
stochastic system is transformed into the classical 
nonlinear FDD problem by introducing the tuning 
parameter,the corresponding estimation error system is 
guaranteed to be stable. 
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