
Extremal Optimization Combined with LM Gradient Search for MLP Network Learning

PENG CHEN *

Department of Automation, Shanghai Jiaotong University
Shanghai, 200240, P. R. China
E-mail: pengchen@sjtu.edu.cn

YONG-ZAI LU
Department of Automation, Shanghai Jiaotong University

Shanghai, 200240, P. R. China
E-mail: y.lu@ieee.org

YU-WANG CHEN
Manchester Business School, The University of Manchester

Manchester M15 6PB, UK
E-mail: yu-wang.chen@mbs.ac.uk

Abstract

Gradient search based neural network training algorithm may suffer from local optimum, poor generalization and
slow convergence. In this study, a novel Memetic Algorithm based hybrid method with the integration of “extremal
optimization” and “Levenberg–Marquardt” is proposed to train multilayer perceptron (MLP) networks. Inheriting
the advantages of the two approaches, the proposed “EO-LM” method can avoid local minima and improve MLP
network learning performance in generalization capability and computation efficiency. The experimental tests on
two benchmark problems and an application example for the end-point-prediction of basic oxygen furnace in
steelmaking show the effectiveness of the proposed EO-LM algorithm.

Keywords: Back propagation; Extremal optimization; “Levenberg–Marquardt” (LM) gradient search; Memetic
Algorithms; Supervised learning;

*Corresponding author. Email: pengchen@sjtu.edu.cn.

1. Introduction

The properties of feed-forward multilayer
perceptron (MLP) network are governed by the
activation functions of neurons and the synaptic
connections between the layered neurons, as shown in
Fig. 1. The associative memories from input space to
output space are built up and stored in the synaptic
weights through supervised learning from learning
examples. The performance under its working

environment measures the generalization capability of a
MLP network.1 After introduced by Werbos2 and
popularized by Rumelhart,3,4 the gradient search (GS)
based Back Propagation (BP) algorithm has been the
most popular learning technique in MLP network
training due to its implementation simplicity and
applicability. However, in view of the drawbacks of
gradient search in nature, such as easily trapping into
local minima, sensitivity to initial weights and poor
generalization, etc.1,5 there have been a variety of well

International Journal of Computational Intelligence Systems, Vol.3, No. 5 (October, 2010), 622-631

Published by Atlantis Press
 Copyright: the authors
 622

zegerkarssen
Texte tapé à la machine
Received: 16-10-2009
Accepted: 13-08-2010

P. Chen et al.

Li near st r uct ur e Chr omosome
I n EO evol ut i on

Wei ght ed Synapses
Mat r i x

f r om i nput l ayer
t o hi dden l ayer 1

Bi as
f or

hi dden
l ayer 1

Wei ght ed Synapses
Mat r i x

f r om hi dden l ayer
n- 1 t o hi dden

l ayer n

Bi as
f or

hi dden
l ayer n

Wei ght ed Synapses
Mat r i x

f r om hi dden l ayer
n t o out put l ayer

Bi as
f or

out put
l ayer

I nput Layer Hi dden Layer Out put Layer

Neur al Net wor k
Out put 1. . . n

jkω

kiv

Wei ght s
Bi as

kθ
Wei ght s Bi as

ir

Tr ai ni ng Al gor i t hm

Wei ght s and bi as adapt i on

Neur al Net wor k
I nput 1. . . m

Par amet er s
I n NN

11ω 1θjkω 11v

EO evol ut i on cycl e
f or t he sear chi ng of

best Chr omosome

Codi ng t he wei ght s & bi as
Mat r i x i n NN i nt o a l i near
Chr omosome f or opt i mi zat i on

Genot ype
Repr esent at i on

Phenot ype
Repr esent at i on

Decodi ng t o NN wei ght s
Mat r i x f or cal cul at i on of

out put and f i t ness

kθ kiv 1r ir

Fig. 1. Mapping neural network weights/biases from Phenotype space into a linear chromosome of Genotype space

known attempts to improve the original BP algorithm.6-8
The applications of these approaches may result in
better solutions, but require higher computation cost.9

On the other hand, Hush has proved that the
parameter optimization for a MLP network with
sigmoid function is a NP-Hard problem.10 The recent
research results in bio-inspired computational
intelligence11 (e.g., evolutionary algorithms, extremal
optimization and ant colony optimization) and their
superior capabilities in solving NP-hard and complex
optimization problems have motivated researchers to
use computational intelligence methods for the training
of MLP network. One way to overcome the drawbacks
of the BP learning is to formulate the training process as
computational intelligence based evolution of MLP
network structure, synaptic weights, learning rule and
input features, etc.9,12-17 In fact, the NN evolution with
computational intelligence methods may significantly
enlarge its search space and provide better performance
than BP algorithms. However, most computational
intelligence methods are rather inefficient in fine-tuned

local search although they are good at global search,
especially when the searching solutions approach to a
local region near the global optimum, this will result in
high computation cost. Moreover, a particular class of
global-local search hybrids with both efficiency and
robustness named “Memetic Algorithms” (MAs) have
been proposed in recent years, which are motivated by
Richard Dawkins’s concept of a meme representing a
unit of cultural evolution that can exhibit local
refinement.18 MAs are a class of stochastic heuristics for
global optimization which combine the global search
nature of computational intelligence methods with local
search to improve individual solutions.19 In MAs, the
rules governing global/local search are co-evolved and
self-adapted alongside the problem representation
within a coupled gene-meme evolutionary system.
According to the No-Free-Lunch theorem,20 a search
algorithm strictly performs in accordance with the
amount and quality of the problem knowledge they
incorporate, this fact clearly underpins the exploitation
of problem knowledge intrinsic to MAs. The MAs have

Published by Atlantis Press
 Copyright: the authors
 623

 EO-LM Based NN Learning

been successfully applied to hundreds of real-world
problems such as graph coloring,21 vehicle routing
problem,22 nurse rostering problem23 and
bioinformatics,24 etc. Consequently, the MA based
hybrid optimization solutions are also applicable for the
improvement of NN learning.

Based on the complexity of nonlinear optimization
involved in NN learning, this study presents the
development of a novel MA based hybrid method called
“EO-LM” learning algorithm, which combines the
recently proposed heuristic extremal optimization
(EO)25 with the popular Levenberg–Marquardt (LM)
gradient search algorithm.26 The rest of the paper is
organized as follows: Section II gives the math
formulation for the problem under study; Section III
illustrates the EO-LM fundamentals and algorithms;
Section IV shows the comparison results between EO-
LM and standard LM algorithms on two experimental
problems. Section V presents the industrial application
of EO-LM learning for BOF end-point-quality
prediction. The concluding remarks and future work are
included in Section VI.

2. Problem Statement and Math Formulation

 A feed-forward MLP network with a single hidden
layer is shown in Fig. 1, if we select the tan-sigmoid and
linear function as the activation functions of hidden and
output layers respectively, the map from jth input

, (1...)jx j m= to ith output can be
written as:

ˆ , (1...)iy i n=

 (1)

()
1

1 1

ˆ (, , , ,)

 log

 1...

p

i k
k

p m

ki jk j k i
k j

y f X w v r v z r

v x

i n

θ

ω θ

=

= =

= =

⎛ ⎛ ⎞
= +⎜ ⎜⎜ ⎝ ⎠ ⎠

= .
⎝

∑

∑ ∑

i k i

r

+

⎞
+ ⎟⎟ ⎟

k pthe th hidden layer variable (1,...);
the weight linking the th input variable

 with the th hidden layer variable;
 the weight li

nking th

e

ki

k

jk

k
j

k

z

v

ω
=

k

 th hidden layer
 variable with the th output variable;

 the bias of the th hidden layer variable;
 the bias of the th output variable;

log sig the logi
i

k
i

k
r i
θ

stic transfer function
 sig (a)=1/[(1+ex p log (-a))]

In NN training, the learning samples are often
divided into a training dataset and a validation dataset,
the former is used for updating the network weights and
biases. The error on the validation set is monitored
during the training process, which will guarantee the
generalization of the NN. The aim of this study is to
develop a novel MA based hybrid approach to optimize
the synaptic weights for a MLP network that may
provide good performance in generalization and
robustness with the minimum output error:

_ 2

1 1

*

ˆmin (, , ,)

. , , ,

n Trainn
l l
i i

i l

m p p n p n

E w v r y y

s t w R v R R r R

θ

θ
= =

∗

⎧
⎡ ⎤= −⎪ ⎣ ⎦⎨

⎪ ∈ ∈ ∈ ∈

.

⎩

∑ ∑ (2)

where represents the training data number. _n Train
, , ,w v rθ are bounded by the searching space of the

optimization algorithm. represents the ith desired
output.

iy

3. EO-LM algorithm for MLP network Training

3.1. Extremal Optimization

The “Extremal Optimization (EO)” proposed by
Boettcher and Percus25 is derived from the fundamentals
of statistical physics and self-organized criticality
(SOC)27 based on the Bak-Sneppen (BS) model28 which
simulates far-from equilibrium dynamics in statistical
physics. SOC states that large interactive systems
evolve to a state where even a minor change in a single
element may lead to generating avalanches or domino
effects that can reach any other element in the system.
In contrast to other evolutionary computational methods
which operate on an entire “gene-pool” of huge number
of possible solutions, EO successively eliminates those
worst components in the sub-optimal solutions. Its large
fluctuations provide significant hill-climbing ability,
which enables EO to perform well particularly at the
phase transitions.29 For an optimization problem with n
decision variables, EO proceeds as follows:
(i) Initialize a configuration at will, set S bestS S= ,

(ii) For the current solution , S
(a) Evaluate the fitness for each decision variable

ix ,
(b) Rank all the components by their fitness and find

the component with the “worst fitness”,

Published by Atlantis Press
 Copyright: the authors
 624

P. Chen et al.

(c) Choose one solution S ′ in the neighborhood of
, i.e., such that the worst component S jx must

change its state,
(d) Accept unconditionally, S S ′=
(e) If , set , () ()bestF S F S< bestS S=

(iii) Repeat Step(2) as long as desired.
(iv) Return and . bestS ()bestF S

Generally speaking, EO is particularly useful for
dealing with large complex problems with rough
landscape or multiple local optima. It is less likely to be
trapped in local minima than traditional gradient-based
search algorithms. Benefited from its generality and
ability of exploring complicated configuration spaces,
EO and its derivatives have been successfully applied to
some combinatorial or numerical optimization problems,
such as graph bi-partitioning,29 TSP,29 graph coloring,30
spin glasses,31 MAX-SAT32 and dynamic combinatorial
problems.33 The research results by Chen and Lu show
EO can be effectively applied in solving combinatory
and multi-objective hard benchmarks and real-world
optimization problems.34-37

3.2. Levenberg–Marquardt algorithm

The Levenberg-Marquardt (LM) gradient search
algorithm was introduced to the feed-forward network
training to provide better performance.26 Generally, the
LM algorithm is a Hessian-based algorithm for
nonlinear least squares optimization.38 Similar to the
quasi-Newton methods, the LM algorithm was designed
to approach second-order training speed without having
to compute the Hessian matrix. Under the assumption
that the error function is some kind of squared sum, the
Hessian matrix can be approximated as:

 TH J J= . (3)

and the gradient can be computed as:

 Tg J e= . (4)

where J is the Jacobian matrix that contains first
derivatives of the network errors with respect to weights
and biases, and e is an error vector. The Jacobian
matrix can be computed through a standard BP
technique that is much less complex than computing the
Hessian matrix.26

The LM algorithm uses this approximation to the
Hessian matrix in the following Newton-like update:

 1
1 []T

k k
Tx x J J I J eµ −

+ = − + . (5)

The parameter µ is a scalar controlling the behavior of
the algorithm. The convergence behavior of the LM is
similar to that of the Gauss-Newton method. Near a
solution with small residual, it performs well and gives
a very fast convergence rate; while for the large-residual
case, the performance of the Gauss-Newton and LM
algorithms is usually poor.38

3.3. Hybrid EO-LM algorithm and workflow

As mentioned above, the efficiency of evolutionary
training can be improved significantly by incorporating
a local search procedure into the optimization; the local
search algorithm could be gradient based methods such
as LM or other methods. In this study, a hybrid EO-LM
algorithm is developed and applied in NN network
training. The structure of the new algorithm is based on
the standard EO, the characteristic of the gradient search
is added by propagating the individual solution with LM
algorithm during EO evolution. The proposed EO-LM
solution has the abilities in avoiding local minimum and
performing the detailed local search with both
efficiency and robustness. The incorporation of
stochastic EO method with the conventional
deterministic LM algorithm can combine the global
explorative power of EO with the local exploitation
behaviors of LM, complementing their individual weak
points, and thus make MLP network training superior in
generalization, computation efficiency and avoiding
local minima. The EO-LM learning is executed between
two phases in parallel: the genotype phase for EO-LM
and the phenotype phase for NN.

Here we illustrate workflow of the algorithm and
introduce three mutation operators adopted in this
paper: the standard EO mutation, LM mutation and
Multi-start Gaussian mutation. To utilize the advantages
of each mutation operator, one or more phases of local
search (mutation operator) are applied to the best
solution so far based on a probability parameter m
in each generation. In contrast to the standard EO
mutation, when LM mutation or Multi-start Gaussian
mutation is adopted, we use the “GEO

S p

var”39 strategy to
evolve the current solution by improving all variables
simultaneously, as an attempt to speed up the process of
searching the local minimum. There are two
evolutionary levels during the proposed EO-LM
optimization: On one hand evolution takes place at the
“chromosome level” as in any other Evolutionary
Algorithm; chromosomes (genes) represent solutions

Published by Atlantis Press
 Copyright: the authors
 625

 EO-LM Based NN Learning

and features of the problem one is trying to solve. On
the other hand, evolution also happens at the “meme
level”, that is, the behaviors that individuals will use to
alter the survival value of their chromosomes.40
Accordingly, the solutions are evaluated by fitness
functions of two different levels: The fitness of the
respective gene itself (global fitness) and the interaction
fitness between the respective gene and the respective
meme (local fitness). Thus, both genetic and meme
materials are co-evolved, the evolutionary changes at
the gene level are expected to influence the evolution at
the meme level, and vice versa. The proposed EO-LM is
able to self-assemble different mutation operators and
co-evolve the behaviors it needs to successfully solve
the NN supervised learning problem. The flowchart of
the proposed EO-LM algorithm to optimize parameters
(the connection weights and the biases) of MLP network
is shown in Fig. 2.

The work steps of the proposed EO-LM based MLP
training algorithm in this study can be described below:
(i) Define the number of hidden layer, the numbers of

input neurons, output neurons and the control
parameters to be used in EO-LM algorithm.

(ii) Initialize the neural network with randomly
generated weights and biases based on the
predefined structure in step-i.

(iii) Map the weights/biases matrices of the neural
network from the problem oriented phenotype
space into a chromosome, as shown in Fig. 1.

(iv) For the first iteration of EO, decode the initial
chromosome back to weights/biases matrices
and calculate the object fitness function, set

S

bestS S= .
(v) Decide what kind of mutation operators should be

imposed to the current chromosome S based on
randomly generated probability parameters , if mp

_m m basicP P≤ , goes a); if ,
goes b); else if , goes c)

_ _m basic mP P< ≤ m LMP

_m m LMP P>
St ar t

I ni t i al i ze NN Wei ght s/
Bi as r andoml y

Def i ne NN’ s
ar chi t ect ur e

Encode NN Wei ght s/ bi as
i nt o Chr omosome

Ter mi nat i on?

Next Gener at i on

Y

N

St op

Gl obal Fi t ness
Cal cul at i on

Repl ace t he best
so f ar sol ut i on

Y

N

St andar d EO
mut at i on

LM mut at i on Mul t i - st ar t
Gaussi an mut at i on

Cur r ent sol ut i on i s bet t er
t han best so f ar sol ut i on

Fig. 2. Flowchart of the EO-LM algorithm

(a) Perform the standard EO mutation on the best so
far solution . S
(1) Change the value of each component in the
current and get a set of new solutions S

, [1,2,...,]kS k n′ ∈ .
(2) Sequentially evaluate the localized fitness kλ
specified in Eq. (10) for every , and rank
them according to their fitness values.

kS ′

(3) Choose the best solution S from the new
solutions set

′
[]S ′ , which is a neighbor subspace

of the best so far solution . S
(b) Perform the LM mutation on the current

chromosome . S
(1) Decode the chromosome S back to
weights/biases matrices in MLP networks.
(2) The weight vector is updated for N iterations
by:

 (6) 1[]TS S J J I J eµ −′ = − + .T

.

where J is the Jacobian matrix, e is a vector of
network errors defined in Eq. (7)

 (7)
_

2

1 1

ˆ() ()
n Trainn

l l
i i

i l
e x y y

= =

−= ∑ ∑

(3) Encode the updated weights/biases matrices
to the chromosome . S ′

Published by Atlantis Press
 Copyright: the authors
 626

P. Chen et al.

(c) Perform the Multi-start Gaussian mutation on
the current chromosome S . Multi-start methods
have their main objective to increase diversity,
whereby larger parts of the search space are
explored.11 This strategy is often adopted in MA
to explore the neighborhood of the current
solution.19
(1) Generate a new chromosome by adding a
Gaussian distribution random vector with n
dimensional to the best so far chromosome .

0S ′

S

 (8) 0 * (0,1)S S Scale N′ = + .

where n is the length of chromosome, Scale is
the mutation step size.

(2) Decode the chromosome back to
weights/biases matrices in MLP networks.

0S ′

(3) Training the MLP network based on LM
algorithm in Eq. (6) for M iterations.
(4) Encode the updated weights/biases matrices
to the chromosome . S ′

(vi) Decode the chromosome S ′ back to weights/biases
matrices and calculate the global object fitness
function. If , Set . () ()bestF S F S′ < bestS S ′=

(vii) If the termination criteria are not satisfied, go to
step-v, else go next.

(viii) Return . bestS

3.4. Fitness function

The fitness function measures how fit an individual
(i.e., solution) is, and the “fittest” one has more chance
to be inherited into the next generation. A “global
fitness” must be defined to evaluate how good a
solution is. The errors on training set and validation set
are often used to control and monitor the NN training
process. Over-fitting usually occurs during the NN
training with descending training error and ascending
prediction error. It greatly debilitates the generalization
ability of a network. Consequently, in this paper, the
global fitness is defined as the sum of root mean square
error (RMSE) on training set (LRMSE) and validation
set (GRMSE), as defined in Eq. (9):

() (), , , , , ,

_ _
2

1 1 1 1

()

ˆ() ()
 =

* _ * _

global S w v r S w v r

n Train n Validn n
l l l l
i i i i

i l i l

Fitness S LRMSE GRMSE

y y y y

n n Train n n Valid

θ

= = = =

= +

−
+

2ˆ

θ

−
.

∑ ∑ ∑ ∑ (9)

Unlike GA, which works with a population of
candidate solutions, EO depends on a single individual
(i.e. chromosome) based evolution. Through performing
mutation on the worst component and its neighbors
successively, the individual in EO can evolve itself
towards the global optimal solution generation by
generation. This requires a suitable representation which
permits each component to be assigned a quality
measure (i.e. fitness) called “local fitness”. In this paper,
the local fitness kλ is defined as an improvement in
LRMSE made by the mutation imposed on the kth
component of best so far chromosome : S

() (, , , , , ,

() ()

k

k local

S w v r S w v r

Fitness k LRMSE k
LRMSE LRMSEθ θ

λ

′

= = ∆

= −) .
 (10)

As long as the neural network is not over-fitting, the
improvement on the local fitness kλ will also improve
the global fitness described in Eq. (9).

4. Experimental tests on Benchmark problems

This section presents the experimental tests of EO-
LM algorithm in two benchmark problems. Without loss
of generality, input/output data used are normalized to
the range [0.1, 0.9].

4.1. Example 1: A MISO (multi-input, single-
output) static nonlinear function

In this example, the EO-LM algorithm is applied to
establish a MISO map specified by a highly nonlinear
function as follows:

 0.5 0.5
1 1 2 2 30.2(2)Y x x x x x x= + + + 3 . (11)

First we randomly generate 300 I/O observation
pairs, for which the input variables are generated
randomly in the regions I: , 1 [0,1]x ∈ 2 [0,1]x ∈ ,

3 [0,1]x ∈ , use 200 of them as learning data and the
other 100 as interpolation test data to be used for
measuring the generalization performance, we randomly
generate another 100 I/O data pairs within the regions
II: 1 [1,2]x ∈ , 2 [1,2]x ∈ , , they are beyond the
region I and will be used as an extrapolation test data
set. In this case, the structure of the network was {3, 2,
1}, namely three, two and one nodes in input, hidden
and output layers, respectively, totally 11 parameters
need to be optimized in this example.

3 [1,2]x ∈

For the purpose of fair comparison, this test was
repeated 10 times using a Monte Carlo method for EO-

Published by Atlantis Press
 Copyright: the authors
 627

 EO-LM Based NN Learning

LM and standard LM algorithms. The comparison
results between these two algorithms are listed in Table
1. In addition to the popular criteria of root mean square
error (RMSE) and mean error (ME), the efficiency
coefficients R2 or R that measures the proportion of the
variation of the observations around the mean usually
explained by the fitted regression model is also be used

as an additional measure. The value of R2 or R falls
between 0 and 1. When the R2 or R reaches to 1, the
model’s outputs perfectly agree with its system’s actual
outputs. The Table 1 and Fig. 3 show the comparison
between EO-LM and LM based on the statistical data.

-2.4

-2.3

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

EO-LM LM

Camparison between EO-LM and LM (RMSE on train set)

lo
g1

0(
R

M
SE

)

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

EO-LM LM

Camparison between EO-LM and LM (RMSE on interpolation test set)

lo
g1

0(
R

M
SE

)

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

EO-LM LM

Camparison between EO-LM and LM (RMSE on extrapolation test set)

lo
g1

0(
R

M
SE

)

Fig. 3. The comparison of RMSE distribution between EO-LM
and LM on train/ interpolation test/ extrapolation test set

Table 1 shows the performance of each algorithm
over the 10 runs, giving an indication of the robustness
and the generalization ability of each algorithm. As
mentioned above, the better solution has smaller RMSE
over “train”, “interpolation test” and “extrapolation test”
datasets, and lower standard deviation as well. We can
see that the EO-LM algorithm performs much better
than standard LM algorithm. Fig. 3 shows comparison
of RMSE distribution between EO-LM and LM on
training and test data. From Table 1 and Fig. 3, we can
see that the solution is more robust and consistent than
the solution evolved by standard LM.

Fig. 4 gives the comparisons in generalization
performance between EO-LM and LM algorithms on
training, interpolation and extrapolation test datasets.
We can see both algorithms provide good results for

 Train set

Max 0.0077
Min 0.0075

Mean 0.0076
RMSE

Std Dev 6.76e-05
R2 Mean 0.9985
Training Time

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Predicted and mea
training data EO

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Predicted and mea
training data orig

Fig. 4. The performance co
Table 1. Comparison between the EO-LM and LM

EO-LM ALGORITHM LM ALGORITHM
Test data set

(interpolation)
Test data set

(extrapolation) Train set Test data set
(interpolation)

Test data set
(extrapolation)

0.0091 0.1857 0.0306 0.0328 0.4000
0.0090 0.0688 0.0075 0.0091 0.1328
0.0090 0.1273 0.0141 0.0149 0.2212

4.56e-05 0.0378 0.00997 0.0094 0.0977
0.9970 0.7819 0.9924 0.9890 N/A

61.44s 74.53s
100 120 140 160

sured value on
-LM

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Predicted and measured value on
interpolation test data EO-LM

0 20 40 60 80 100
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Predicted and measured value on
extrapolation test data EO-LM

100 120 140 160

sured value on
inal LM

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Predicted and measured value on
interpolation test data original LM

0 20 40 60 80 100
1

1.5

2

2.5

Predicted and measured value on
extrapolation test data original LM

Predicted Value
Measured Value

Predicted Value
Measured Value

mparison between EO-LM and LM on train/ interpolation test/ extrapolation test set

Published by Atlantis Press
 Copyright: the authors
 628

P. Chen et al.

training dataset and EO-LM performs slightly better for
the interpolation test dataset, but much better for the
extrapolation test dataset. The extrapolation test dataset
is a most crucial test phase to tell which algorithm will
have a better ability to learn, EO-LM performs pretty
well in this case, while LM corrupts.

4.2. Example 2: dynamic modeling for continuous
stirred tank reactor (CSTR)

The system considered here is an isothermal CSTR
process with first order reaction A B P+ → , in the
presence of excess concentration of A . The
corresponding MIMO CSTR model is as following41:

[]

1
1 2 1 1

2 1 2
1 2 2 2 2

1 1

1 2

() ()
(1)

1 0
0 1

B B

T

dx
u u k x

dt
dx u u k x

C x C x
dt x x x

y x x

⎧ = + −⎪⎪
⎨
⎪ = − + − −
⎪ +⎩

⎛ ⎞
= .⎜ ⎟
⎝ ⎠

2 2

2

)1
)

)

 (12)

 (13) 1

2

0.1 2
s.t

0.1 2
u
u

≤ ≤⎧
⎨ ≤ ≤⎩

where 1 2 1 20.2, 1, 24.9, 0.1B Bk k C C= = = =
The plant has two inputs and two outputs and their

relationship expresses strong nonlinearity. For
, the CSTR has three equilibrium points

at , , with the middle
equilibrium point being unstable, and the others stable.

() (1 2, 1,u u =

1 100x = (2 0.633,2.72,7.07x =

Here we use the nonlinear autoregressive model
with Exogenous inputs (NARX) to model the dynamic
systems shown in Eq. (12) and Eq. (13), it can be
mathematically represented as follows:

 (14)

(1 2 1 2() (1), (1), (1), (1)Y n f u n u n y n y n= − − − −

where , In this
case, a multi-input multi-output (MIMO) MLP network
is employed to build the nonlinear mapping

1 2 1 2() [(), ()] [(), ()]T TY n y n y n x n x n= =

()f •
between inputs and outputs. The structure of the

network was {4, 10, 2}, totally 72 parameters need to be
optimized. We randomly generate 500 observation pairs
and use 400 of them as the learning data and the other
100 as the test data set. The example was run 10 times
for each algorithm randomly. The performance by EO-
LM and standard LM is listed in Table 2.

Table 2 shows the comparison between predicted
and measured values at training and test phases by
hybrid EO-LM and LM. We can see that EO-LM
performs better than standard LM both on train data and
test data.

5. Application to end-point temperature
prediction model of a production scale BOF

In this section, the proposed hybrid EO-LM
algorithm is applied to a practical engineering problem
for a production scale batch Basic Oxygen Furnace
(BOF) in steelmaking. BOF is a complex multivariable
and multiphase chemical reactor to produce the desired
steel grade. The precise prediction of the end-point-
temperature as a key performance index is vital for BOF
operation. To evaluate the effectiveness of the proposed
hybrid EO-LM for the predictions of end-point
temperature, we perform the simulation experiment
using real industry data. First, we gather over 1600 data
from the historical database of the steel plant. Among
them, randomly select 800 pairs as training data, 480
pairs as validation data and the rest 320 pairs as test data.
Subsequently, two learning algorithms are used to train
the MLP networks. One is the proposed EO-LM method
and the other is the conventional LM algorithm, the
example was run 10 times for each algorithm randomly.
Based on the mechanism of BOF process, a network
{13, 10, 1} is used for the industrial tests. The
performance comparisons between EO-LM and LM
after 10 runs are listed in Table 3 and Fig. 5.

It can be seen the generalization performance of EO-
LM evolved model is better than that of LM. The
prediction RMSE of best model by EO-LM on test
dataset is reduced by 8.6% compared with LM
algorithm. The experimental results indicate that MA

Table 2. Comparison between the EO-LM and LM on CSTR Model

 EO-LM ALGORITHM LM ALGORITHM
 Train set Test set Train set Test data set
 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2

Best 0.0023 0.0024 0.0043 0.0045 0.0025 0.0031 0.0048 0.0048
Mean 0.0024 0.0025 0.0046 0.0052 0.0027 0.0031 0.0051 0.0054 RMSE

Std Dev 8.05e-05 1.81e-04 2.41e-04 5.98e-04 3.01e-04 3.38e-04 3.53e-04 4.13e-04

Published by Atlantis Press
 Copyright: the authors
 629

 EO-LM Based NN Learning

1600 1620 1640 1660 1680 1700 1720 1740
1600

1620

1640

1660

1680

1700

1720

1740
Best EO-LM result (Real Value Vs Predict Value)

Predict Value (°C)

R
ea

l V
al

ue
 (

 °C
)

RMSE=17.5232°C
R=0.61162
Correlation=0.61545

1600 1620 1640 1660 1680 1700 1720 1740
1600

1620

1640

1660

1680

1700

1720

1740
Best LM result (Real Value Vs Predict Value)

Predict Value (°C)

R
ea

l V
al

ue
 (

 °C
)

RMSE=19.1821°C
R=0.49995
Correlation=0.54899

Fig. 5. The performance comparison of EO-LM and LM for BOF end-point temperature prediction

Table 3. Comparison between the EO-LM and LM
on BOF end-point temperature prediction

 TEST SET RMSE
 Mean Max Min Std Dev

EO-LM 18.4344 19.1793 17.5232 0.5721
LM 19.6829 20.3726 19.1821 0.4156

based hybrid EO-LM algorithm proposed in this paper
can easily avoid the local minima, over-fitting or under-
fitting problems suffered by traditional GS based neural
network learning algorithms.

6. Concluding Remarks

In view of the drawbacks of gradient based NN
learning algorithms, a novel hybrid “EO-LM” learning
algorithm with the integration of EO and LM has been
developed and evaluated with two benchmark problems
and a practical engineering problem for a production
scale batch Basic Oxygen Furnace (BOF) in
steelmaking. The main advantages of the proposed
algorithm are to utilize the superior features of EO and
LM in global and local search respectively. As a result,
the applications of the proposed EO-LM learning
algorithm in neural network training may create a neural
network model with better performance, such as
avoiding stuck in to local minima and having good
generalization capability.

The future studies involve the applications of EO
and its derivatives in optimizing both the architecture
and parameters of NN and more fundamental research
on evolution dynamics for more benchmark and real-
world problems.
References

1. S. Haykin, Neural Networks: A Comprehensive
Foundation, (Macmillan, New York, 1994).

2. P. Werbos, Beyond Regression: New Tools for Prediction
and Analysis in the Behavioral Sciences, Ph.D.
dissertation, Harvard University, 1974.

3. D. E. Rumelhart, G. E. Hinton and R. J. Williams,
Learning internal representations by error propagation, in
Parallel Distributed Processing: Exploration in the
Microstructure of Cognition. (MIT Press, Cambridge,
MA, 1986), pp. 318-362.

4. D. E. Rumelhart, G. E. Hinton and R. J. Williams,
Learning representations by back propagating errors,
Nature. 323(9) (1986) 533-536.

5. R. Salomon, Evolutionary algorithms and gradient
search: similarities and differences, IEEE Trans Evol
Comput. 2 (2) (1998) 45-55.

6. R. A. Jacobs, Increased rates of convergence through
learning rate adaptation, Neural Networks. 1(4) (1988)
295-307.

7. A. K. Rigler, J. M. Irvine and T. P. Vogl, Rescaling of
variables in back propagation learning, Neural Networks.
4(2) (1991) 225-229.

8. Y. Fukuoka, H. Matsuki, H. Minamitani and A. Ishida, A
modified back propagation method to avoid false local
minima, Neural Networks. 11(6) (1998) 1059-1072.

9. B. Dengiz, C. Alabas-Uslu and O. Dengiz, A tabu search
algorithm for the training of neural Networks, J. Oper.
Res. Soc. 60 (2) (2009) 282-291.

10. D. R. Hush, Training a sigmoidal node is hard, Neural
Comp. 11(5) (1999) 1249-1260.

11. A. P. Engelbrecht, Computational Intelligence, An
introduction, 2nd ed. (John Wiley & Sons, New York,
2007).

12. J. Arifovic and R. Gencay, Using genetic algorithms to
select architecture of a feedforward artificial neural
network, Phys A Stat Mech Appl. 289 (2001) 574-594.

13. A. Fasih, C. J. Chedjou and K. Kyamakya, Cellular
Neural Networks-Based Genetic Algorithm for
Optimizing the Behavior of an Unstructured Robot, Int. J.
Comput. Intell. Syst. 2 (2) (2009) 124-133.

14. A. Reyaz-Ahmed, Y. Q. Zhang, R. W. Harrison, Granular
Decision Tree and Evolutionary Neural SVM for Protein

Published by Atlantis Press
 Copyright: the authors
 630

P. Chen et al.

Secondary Structure Prediction, Int. J. Comput. Intell.
Syst. 2 (4) (2009) 343-352.

15. A. Sedkia, D. Ouazar and E. El. Mazoudi, Evolving
neural network using real coded genetic algorithm for
daily rainfall-runoff forecasting, Expert Sys Appl. 36 (3)
(2009) 4523-4527.

16. S. J. Li, Y. Li, Y. Liu and Y. F. Xu, A GA-based NN
approach for makespan estimation, Appl. Math. Comput.
185 (2) (2007) 1003-1014.

17. X. Yao and Md. M. Islam, Evolving artificial neural
network ensembles, IEEE Comput. Intell. Mag. 3(1)
(2008) 31-42.

18. R. Dawkins, The Selfish Gene, (Oxford University Press,
Oxford, 1976).

19. C. Cotta and P. Moscato, Memetic Algorithms, in
Handbook of Approximation Algorithms and
Metaheuristics (CRC press, 2007), 27.1–27.12.

20. D. H. Wolpert and W. G. Macready, No free lunch
theorems for optimization, IEEE Trans Evol Comput. 1
(1) (1997) 67-82.

21. Z. Lü and J. K. Hao, A memetic algorithm for graph
coloring, Eur J Oper Res. 203 (1) (2010) 241-250.

22. Y. Nagata, O. Bräysy and W. Dullaert, A penalty-based
edge assembly memetic algorithm for the vehicle routing
problem with time windows, Comp. Oper. Res. 37 (4)
(2010) 724-737.

23. E. Ozcan, self-generation and nurse rostering, Lect. Notes
Comput. Sci. 3867 (2007) 85-104.

24. Z. Zhu, Y. S. Ong and J. M. Zurada, Identification of full
and partial class relevant genes, IEEE/ACM Trans.
Comput. BioL. Bioinf. 7 (2) (2010) 263-277.

25. S. Boettcher and A. G. Percus, Extremal Optimization:
Methods derived from Co-Evolution, in Proceedings of
the Genetic and Evolutionary Computation Conference.
(1999), pp. 825-832.

26. M. T. Hagan and M. B. Menhaj, Training feedforward
networks with the Marquardt algorithm, IEEE Trans
Neural Networks. 5 (6) (1994) 989-993.

27. P. Bak, C. Tang and K. Wiesenfeld, Self-organized
criticality: An explanation of the 1/f noise, Phys. Rev.
Lett. 59 (8) (1987) 381-384.

28. P. Bak and K. Sneppen, Punctuated equilibrium and
criticality in a simple model of evolution, Phys. Rev. Lett.
71 (24) (1993) 4083-4086.

29. S. Boettcher and A. G. Percus, Nature’s way of
optimizing, Artif. Intel. 119 (2000) 275-286.

30. S. Boettcher and A. G. Percus, Extremal optimization at
the phase transition of the 3-coloring problem, Phys. Rev.
E Stat. Nonlinear Soft Matter Phys. 69 (6) (2004)
066703.

31. S. Boettcher, Extremal Optimization for the Sherrington-
Kirkpatrick Spin Glass, Eur. Phys. J. B. 46 (4) (2005)
501-505.

32. M. E. Menai and M. Batouche, Efficient Initial Solution
to Extremal Optimization Algorithm for Weighted
MAXSAT Problem, Lect Notes Artif Intell. 2718 (2003)
592-603.

33. I. Moser and T. Hendtlass, Solving problems with hidden
dynamics - comparison of extremal optimization and ant
colony system, in Proceedings of 2006 IEEE Congress
on Evolutionary Computation. (2006), pp. 1248-1255.

34. Y. Z. Lu, M. R. Chen and Y. W. Chen, Studies on
extremal optimization and its applications in solving real
world optimization problems, in Proceedings of the 2007
IEEE Symposium on Foundations of Computational
Intelligence. (2007), pp. 162-168.

35. M. R. Chen and Y. Z. Lu, A novel elitist multiobjective
optimization algorithm: Multiobjective extremal
optimization, Eur J Oper Res. 188(3) (2008) 637-651.

36. Y. W. Chen, Y. Z. Lu and G. K. Yang, Hybrid
evolutionary algorithm with marriage of genetic
algorithm and extremal optimization for production
scheduling, Int J Adv Manuf Technol. 36 (2008) 959-968.

37. Y. W. Chen, Y. Z. Lu and P. Chen, Optimization with
extremal dynamics for the traveling salesman problem,
Phys A Stat Mech Appl. 385 (1) (2007) 115-123.

38. J. Nocedal, J. W. Stephen, Numerical optimization,
(Springer, New York, 2006).

39. F. L. Sousa, V. Vlassov and F. M. Ramos, Generalized
extremal optimization: An application in heat pipe design,
Appl. Math. Model. 28 (10) (2004) 911-931.

40. N. Krasnogor and S. Gustafson, A study on the use of
“self-generation” in memetic algorithms, Natural
Comput. 3 (1) (2004) 53-76.

41. F. Martinsen, L. T. Biegler and B. A. Foss, A new
optimization algorithm with application to nonlinear
MPC, J Process Control. 14 (8) (2004) 853-865.

Published by Atlantis Press
 Copyright: the authors
 631

