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Abstract 

Gradient search based neural network training algorithm may suffer from local optimum, poor generalization and 
slow convergence. In this study, a novel Memetic Algorithm based hybrid method with the integration of “extremal 
optimization” and “Levenberg–Marquardt” is proposed to train multilayer perceptron (MLP) networks. Inheriting 
the advantages of the two approaches, the proposed “EO-LM” method can avoid local minima and improve MLP 
network learning performance in generalization capability and computation efficiency. The experimental tests on 
two benchmark problems and an application example for the end-point-prediction of basic oxygen furnace in 
steelmaking show the effectiveness of the proposed EO-LM algorithm. 

Keywords: Back propagation; Extremal optimization; “Levenberg–Marquardt” (LM) gradient search; Memetic 
Algorithms; Supervised learning; 
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1. Introduction 

The properties of feed-forward multilayer 
perceptron (MLP) network are governed by the 
activation functions of neurons and the synaptic 
connections between the layered neurons, as shown in 
Fig. 1. The associative memories from input space to 
output space are built up and stored in the synaptic 
weights through supervised learning from learning 
examples. The performance under its working 

environment measures the generalization capability of a 
MLP network.1 After introduced by Werbos2 and 
popularized by Rumelhart,3,4 the gradient search (GS) 
based Back Propagation (BP) algorithm has been the 
most popular learning technique in MLP network 
training due to its implementation simplicity and 
applicability. However, in view of the drawbacks of 
gradient search in nature, such as easily trapping into 
local minima, sensitivity to initial weights and poor 
generalization, etc.1,5 there have been a variety of well 
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Fig. 1.  Mapping neural network weights/biases from Phenotype space into a linear chromosome of Genotype space 

known attempts to improve the original BP algorithm.6-8 
The applications of these approaches may result in 
better solutions, but require higher computation cost.9

On the other hand, Hush has proved that the 
parameter optimization for a MLP network with 
sigmoid function is a NP-Hard problem.10 The recent 
research results in bio-inspired computational 
intelligence11 (e.g., evolutionary algorithms, extremal 
optimization and ant colony optimization) and their 
superior capabilities in solving NP-hard and complex 
optimization problems have motivated researchers to 
use computational intelligence methods for the training 
of MLP network. One way to overcome the drawbacks 
of the BP learning is to formulate the training process as 
computational intelligence based evolution of MLP 
network structure, synaptic weights, learning rule and 
input features, etc.9,12-17 In fact, the NN evolution with 
computational intelligence methods may significantly 
enlarge its search space and provide better performance 
than BP algorithms. However, most computational 
intelligence methods are rather inefficient in fine-tuned 

local search although they are good at global search, 
especially when the searching solutions approach to a 
local region near the global optimum, this will result in 
high computation cost. Moreover, a particular class of 
global-local search hybrids with both efficiency and 
robustness named “Memetic Algorithms” (MAs) have 
been proposed in recent years, which are motivated by 
Richard Dawkins’s concept of a meme representing a 
unit of cultural evolution that can exhibit local 
refinement.18 MAs are a class of stochastic heuristics for 
global optimization which combine the global search 
nature of computational intelligence methods with local 
search to improve individual solutions.19 In MAs, the 
rules governing global/local search are co-evolved and 
self-adapted alongside the problem representation 
within a coupled gene-meme evolutionary system. 
According to the No-Free-Lunch theorem,20 a search 
algorithm strictly performs in accordance with the 
amount and quality of the problem knowledge they 
incorporate, this fact clearly underpins the exploitation 
of problem knowledge intrinsic to MAs. The MAs have 
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been successfully applied to hundreds of real-world 
problems such as graph coloring,21 vehicle routing 
problem,22 nurse rostering problem23 and 
bioinformatics,24 etc. Consequently, the MA based 
hybrid optimization solutions are also applicable for the 
improvement of NN learning. 

Based on the complexity of nonlinear optimization 
involved in NN learning, this study presents the 
development of a novel MA based hybrid method called 
“EO-LM” learning algorithm, which combines the 
recently proposed heuristic extremal optimization 
(EO)25 with the popular Levenberg–Marquardt (LM) 
gradient search algorithm.26 The rest of the paper is 
organized as follows: Section II gives the math 
formulation for the problem under study; Section III 
illustrates the EO-LM fundamentals and algorithms; 
Section IV shows the comparison results between EO-
LM and standard LM algorithms on two experimental 
problems. Section V presents the industrial application 
of EO-LM learning for BOF end-point-quality 
prediction. The concluding remarks and future work are 
included in Section VI. 

2. Problem Statement and Math Formulation 

 A feed-forward MLP network with a single hidden 
layer is shown in Fig. 1, if we select the tan-sigmoid and 
linear function as the activation functions of hidden and 
output layers respectively, the map from jth input 

,  ( 1... )jx j m=  to ith output  can be 
written as: 
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In NN training, the learning samples are often 
divided into a training dataset and a validation dataset, 
the former is used for updating the network weights and 
biases. The error on the validation set is monitored 
during the training process, which will guarantee the 
generalization of the NN. The aim of this study is to 
develop a novel MA based hybrid approach to optimize 
the synaptic weights for a MLP network that may 
provide good performance in generalization and 
robustness with the minimum output error: 
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where  represents the training data number. _n Train
, , ,w v rθ  are bounded by the searching space of the 

optimization algorithm.  represents the ith desired 
output. 

iy

3. EO-LM algorithm for MLP network Training 

3.1. Extremal Optimization 

The “Extremal Optimization (EO)” proposed by 
Boettcher and Percus25 is derived from the fundamentals 
of statistical physics and self-organized criticality 
(SOC)27 based on the Bak-Sneppen (BS) model28 which 
simulates far-from equilibrium dynamics in statistical 
physics. SOC states that large interactive systems 
evolve to a state where even a minor change in a single 
element may lead to generating avalanches or domino 
effects that can reach any other element in the system. 
In contrast to other evolutionary computational methods 
which operate on an entire “gene-pool” of huge number 
of possible solutions, EO successively eliminates those 
worst components in the sub-optimal solutions. Its large 
fluctuations provide significant hill-climbing ability, 
which enables EO to perform well particularly at the 
phase transitions.29 For an optimization problem with n 
decision variables, EO proceeds as follows: 
(i) Initialize a configuration  at will, set S bestS S= , 

(ii) For the current solution , S
(a) Evaluate the fitness for each decision variable 

ix , 
(b) Rank all the components by their fitness and find 

the component with the “worst fitness”, 
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(c) Choose one solution S ′  in the neighborhood of 
, i.e., such that the worst component S jx  must 

change its state, 
(d) Accept  unconditionally, S S ′=
(e) If , set , ( ) ( )bestF S F S< bestS S=

(iii) Repeat Step(2) as long as desired. 
(iv) Return  and . bestS ( )bestF S

Generally speaking, EO is particularly useful for 
dealing with large complex problems with rough 
landscape or multiple local optima. It is less likely to be 
trapped in local minima than traditional gradient-based 
search algorithms. Benefited from its generality and 
ability of exploring complicated configuration spaces, 
EO and its derivatives have been successfully applied to 
some combinatorial or numerical optimization problems, 
such as graph bi-partitioning,29 TSP,29 graph coloring,30 
spin glasses,31 MAX-SAT32 and dynamic combinatorial 
problems.33 The research results by Chen and Lu show 
EO can be effectively applied in solving combinatory 
and multi-objective hard benchmarks and real-world 
optimization problems.34-37  

3.2. Levenberg–Marquardt algorithm 

The Levenberg-Marquardt (LM) gradient search 
algorithm was introduced to the feed-forward network 
training to provide better performance.26 Generally, the 
LM algorithm is a Hessian-based algorithm for 
nonlinear least squares optimization.38 Similar to the 
quasi-Newton methods, the LM algorithm was designed 
to approach second-order training speed without having 
to compute the Hessian matrix. Under the assumption 
that the error function is some kind of squared sum, the 
Hessian matrix can be approximated as: 

 TH J J= .  (3) 

and the gradient can be computed as: 

 Tg J e= .  (4) 

where J  is the Jacobian matrix that contains first 
derivatives of the network errors with respect to weights 
and biases, and e  is an error vector. The Jacobian 
matrix can be computed through a standard BP 
technique that is much less complex than computing the 
Hessian matrix.26

The LM algorithm uses this approximation to the 
Hessian matrix in the following Newton-like update: 

 1
1 [ ]T

k k
Tx x J J I J eµ −

+ = − + .  (5) 

The parameter µ  is a scalar controlling the behavior of 
the algorithm. The convergence behavior of the LM is 
similar to that of the Gauss-Newton method. Near a 
solution with small residual, it performs well and gives 
a very fast convergence rate; while for the large-residual 
case, the performance of the Gauss-Newton and LM 
algorithms is usually poor.38

3.3. Hybrid EO-LM algorithm and workflow 

As mentioned above, the efficiency of evolutionary 
training can be improved significantly by incorporating 
a local search procedure into the optimization; the local 
search algorithm could be gradient based methods such 
as LM or other methods. In this study, a hybrid EO-LM 
algorithm is developed and applied in NN network 
training. The structure of the new algorithm is based on 
the standard EO, the characteristic of the gradient search 
is added by propagating the individual solution with LM 
algorithm during EO evolution. The proposed EO-LM 
solution has the abilities in avoiding local minimum and 
performing the detailed local search with both 
efficiency and robustness. The incorporation of 
stochastic EO method with the conventional 
deterministic LM algorithm can combine the global 
explorative power of EO with the local exploitation 
behaviors of LM, complementing their individual weak 
points, and thus make MLP network training superior in 
generalization, computation efficiency and avoiding 
local minima. The EO-LM learning is executed between 
two phases in parallel: the genotype phase for EO-LM 
and the phenotype phase for NN. 

Here we illustrate workflow of the algorithm and 
introduce three mutation operators adopted in this 
paper: the standard EO mutation, LM mutation and 
Multi-start Gaussian mutation. To utilize the advantages 
of each mutation operator, one or more phases of local 
search (mutation operator) are applied to the best 
solution  so far based on a probability parameter m  
in each generation. In contrast to the standard EO 
mutation, when LM mutation or Multi-start Gaussian 
mutation is adopted, we use the “GEO

S p

var”39 strategy to 
evolve the current solution by improving all variables 
simultaneously, as an attempt to speed up the process of 
searching the local minimum. There are two 
evolutionary levels during the proposed EO-LM 
optimization: On one hand evolution takes place at the 
“chromosome level” as in any other Evolutionary 
Algorithm; chromosomes (genes) represent solutions 
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and features of the problem one is trying to solve. On 
the other hand, evolution also happens at the “meme 
level”, that is, the behaviors that individuals will use to 
alter the survival value of their chromosomes.40 
Accordingly, the solutions are evaluated by fitness 
functions of two different levels: The fitness of the 
respective gene itself (global fitness) and the interaction 
fitness between the respective gene and the respective 
meme (local fitness). Thus, both genetic and meme 
materials are co-evolved, the evolutionary changes at 
the gene level are expected to influence the evolution at 
the meme level, and vice versa. The proposed EO-LM is 
able to self-assemble different mutation operators and 
co-evolve the behaviors it needs to successfully solve 
the NN supervised learning problem. The flowchart of 
the proposed EO-LM algorithm to optimize parameters 
(the connection weights and the biases) of MLP network 
is shown in Fig. 2.  

The work steps of the proposed EO-LM based MLP 
training algorithm in this study can be described below: 
(i) Define the number of hidden layer, the numbers of 

input neurons, output neurons and the control 
parameters to be used in EO-LM algorithm. 

(ii) Initialize the neural network with randomly 
generated weights and biases based on the 
predefined structure in step-i. 

(iii) Map the weights/biases matrices of the neural 
network from the problem oriented phenotype 
space into a chromosome, as shown in Fig. 1.  

(iv) For the first iteration of EO, decode the initial 
chromosome  back to weights/biases matrices 
and calculate the object fitness function, set 

S

bestS S= . 
(v) Decide what kind of mutation operators should be 

imposed to the current chromosome S  based on 
randomly generated probability parameters , if mp

_m m basicP P≤ , goes a); if ,  
goes b); else if , goes c) 

_ _m basic mP P< ≤ m LMP

_m m LMP P>
St ar t
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Fig. 2.  Flowchart of the EO-LM algorithm 

(a) Perform the standard EO mutation on the best so 
far solution . S
(1) Change the value of each component in the 
current  and get a set of new solutions S

, [1,2,..., ]kS k n′ ∈ . 
(2) Sequentially evaluate the localized fitness kλ  
specified in Eq. (10) for every , and rank 
them according to their fitness values. 

kS ′

(3) Choose the best solution S  from the new 
solutions set 

′
[ ]S ′ , which is a neighbor subspace 

of the best so far solution . S
(b) Perform the LM mutation on the current 

chromosome . S
(1) Decode the chromosome S  back to 
weights/biases matrices in MLP networks. 
(2) The weight vector is updated for N iterations 
by: 

   (6) 1[ ]TS S J J I J eµ −′ = − + .T

.

where J is the Jacobian matrix, e is a vector of 
network errors defined in Eq. (7) 

   (7) 
_

2

1 1

ˆ( ) ( )
n Trainn

l l
i i

i l
e x y y

= =

−= ∑ ∑

(3) Encode the updated weights/biases matrices 
to the chromosome . S ′
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(c) Perform the Multi-start Gaussian mutation on 
the current chromosome S . Multi-start methods 
have their main objective to increase diversity, 
whereby larger parts of the search space are 
explored.11 This strategy is often adopted in MA 
to explore the neighborhood of the current 
solution.19 
(1) Generate a new chromosome  by adding a 
Gaussian distribution random vector with n 
dimensional to the best so far chromosome . 

0S ′

S

  (8) 0 * (0,1)S S Scale N′ = + .

where n is the length of chromosome, Scale is 
the mutation step size. 

(2) Decode the chromosome  back to 
weights/biases matrices in MLP networks. 

0S ′

(3) Training the MLP network based on LM 
algorithm in Eq. (6) for M iterations. 
(4) Encode the updated weights/biases matrices 
to the chromosome . S ′

(vi) Decode the chromosome S ′  back to weights/biases 
matrices and calculate the global object fitness 
function. If , Set . ( ) ( )bestF S F S′ < bestS S ′=

(vii) If the termination criteria are not satisfied, go to 
step-v, else go next. 

(viii) Return . bestS

3.4. Fitness function 

The fitness function measures how fit an individual 
(i.e., solution) is, and the “fittest” one has more chance 
to be inherited into the next generation. A “global 
fitness” must be defined to evaluate how good a 
solution is. The errors on training set and validation set 
are often used to control and monitor the NN training 
process. Over-fitting usually occurs during the NN 
training with descending training error and ascending 
prediction error. It greatly debilitates the generalization 
ability of a network. Consequently, in this paper, the 
global fitness is defined as the sum of root mean square 
error (RMSE) on training set (LRMSE) and validation 
set (GRMSE), as defined in Eq. (9): 

 

( ) ( ), , , , , ,

_ _
2

1 1 1 1

( )

ˆ( ) ( )
        = 

* _ * _

global S w v r S w v r

n Train n Validn n
l l l l
i i i i

i l i l

Fitness S LRMSE GRMSE

y y y y

n n Train n n Valid

θ

= = = =

= +

−
+

2ˆ

θ

−
.

∑ ∑ ∑ ∑  (9) 

Unlike GA, which works with a population of 
candidate solutions, EO depends on a single individual 
(i.e. chromosome) based evolution. Through performing 
mutation on the worst component and its neighbors 
successively, the individual in EO can evolve itself 
towards the global optimal solution generation by 
generation. This requires a suitable representation which 
permits each component to be assigned a quality 
measure (i.e. fitness) called “local fitness”. In this paper, 
the local fitness kλ  is defined as an improvement in 
LRMSE made by the mutation imposed on the kth 
component of best so far chromosome : S

 
( ) (, , , , , ,

( ) ( )
   

k

k local

S w v r S w v r

Fitness k LRMSE k
LRMSE LRMSEθ θ

λ

′

= = ∆

= − ) .
 (10) 

As long as the neural network is not over-fitting, the 
improvement on the local fitness kλ  will also improve 
the global fitness described in Eq. (9). 

4. Experimental tests on Benchmark problems 

This section presents the experimental tests of EO-
LM algorithm in two benchmark problems. Without loss 
of generality, input/output data used are normalized to 
the range [0.1, 0.9]. 

4.1. Example 1: A MISO (multi-input, single-
output) static nonlinear function 

In this example, the EO-LM algorithm is applied to 
establish a MISO map specified by a highly nonlinear 
function as follows: 

 0.5 0.5
1 1 2 2 30.2( 2 )Y x x x x x x= + + + 3 .  (11) 

First we randomly generate 300 I/O observation 
pairs, for which the input variables are generated 
randomly in the regions I: , 1 [0,1]x ∈ 2 [0,1]x ∈ , 

3 [0,1]x ∈ , use 200 of them as learning data and the 
other 100 as interpolation test data to be used for 
measuring the generalization performance, we randomly 
generate another 100 I/O data pairs within the regions 
II: 1 [1,2]x ∈ , 2 [1,2]x ∈ , , they are beyond the 
region I and will be used as an extrapolation test data 
set. In this case, the structure of the network was {3, 2, 
1}, namely three, two and one nodes in input, hidden 
and output layers, respectively, totally 11 parameters 
need to be optimized in this example. 

3 [1,2]x ∈

For the purpose of fair comparison, this test was 
repeated 10 times using a Monte Carlo method for EO-
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LM and standard LM algorithms. The comparison 
results between these two algorithms are listed in Table 
1. In addition to the popular criteria of root mean square 
error (RMSE) and mean error (ME), the efficiency 
coefficients R2 or R that measures the proportion of the 
variation of the observations around the mean usually 
explained by the fitted regression model is also be used 

as an additional measure. The value of R2 or R falls 
between 0 and 1. When the R2 or R reaches to 1, the 
model’s outputs perfectly agree with its system’s actual 
outputs. The Table 1 and Fig. 3 show the comparison 
between EO-LM and LM based on the statistical data. 
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Fig. 3.  The comparison of RMSE distribution between EO-LM 
and LM on train/ interpolation test/ extrapolation test set 

Table 1 shows the performance of each algorithm 
over the 10 runs, giving an indication of the robustness 
and the generalization ability of each algorithm. As 
mentioned above, the better solution has smaller RMSE 
over “train”, “interpolation test” and “extrapolation test” 
datasets, and lower standard deviation as well. We can 
see that the EO-LM algorithm performs much better 
than standard LM algorithm. Fig. 3 shows comparison 
of RMSE distribution between EO-LM and LM on 
training and test data. From Table 1 and Fig. 3, we can 
see that the solution is more robust and consistent than 
the solution evolved by standard LM. 

Fig. 4 gives the comparisons in generalization 
performance between EO-LM and LM algorithms on 
training, interpolation and extrapolation test datasets. 
We can see both algorithms provide good results for 
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training dataset and EO-LM performs slightly better for 
the interpolation test dataset, but much better for the 
extrapolation test dataset. The extrapolation test dataset 
is a most crucial test phase to tell which algorithm will 
have a better ability to learn, EO-LM performs pretty 
well in this case, while LM corrupts. 

4.2. Example 2: dynamic modeling for continuous 
stirred tank reactor (CSTR) 

The system considered here is an isothermal CSTR 
process with first order reaction A B P+ → , in the 
presence of excess concentration of A . The 
corresponding MIMO CSTR model is as following41: 
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where  1 2 1 20.2,  1,  24.9,  0.1B Bk k C C= = = =
The plant has two inputs and two outputs and their 

relationship expresses strong nonlinearity. For 
, the CSTR has three equilibrium points 

at , , with the middle 
equilibrium point being unstable, and the others stable. 

( ) (1 2, 1,u u =

1 100x = (2 0.633,2.72,7.07x =

Here we use the nonlinear autoregressive model 
with Exogenous inputs (NARX) to model the dynamic 
systems shown in Eq. (12) and Eq. (13), it can be 
mathematically represented as follows: 

 
 (14) 

( 1 2 1 2( ) ( 1), ( 1), ( 1), ( 1)Y n f u n u n y n y n= − − − −

where , In this 
case, a multi-input multi-output (MIMO) MLP network 
is employed to build the nonlinear mapping 

1 2 1 2( ) [ ( ), ( )] [ ( ), ( )]T TY n y n y n x n x n= =

( )f •  
between inputs and outputs. The structure of the 

network was {4, 10, 2}, totally 72 parameters need to be 
optimized. We randomly generate 500 observation pairs 
and use 400 of them as the learning data and the other 
100 as the test data set. The example was run 10 times 
for each algorithm randomly. The performance by EO-
LM and standard LM is listed in Table 2. 

Table 2 shows the comparison between predicted 
and measured values at training and test phases by 
hybrid EO-LM and LM. We can see that EO-LM 
performs better than standard LM both on train data and 
test data. 

5. Application to end-point temperature 
prediction model of a production scale BOF 

In this section, the proposed hybrid EO-LM 
algorithm is applied to a practical engineering problem 
for a production scale batch Basic Oxygen Furnace 
(BOF) in steelmaking. BOF is a complex multivariable 
and multiphase chemical reactor to produce the desired 
steel grade. The precise prediction of the end-point-
temperature as a key performance index is vital for BOF 
operation. To evaluate the effectiveness of the proposed 
hybrid EO-LM for the predictions of end-point 
temperature, we perform the simulation experiment 
using real industry data. First, we gather over 1600 data 
from the historical database of the steel plant. Among 
them, randomly select 800 pairs as training data, 480 
pairs as validation data and the rest 320 pairs as test data. 
Subsequently, two learning algorithms are used to train 
the MLP networks. One is the proposed EO-LM method 
and the other is the conventional LM algorithm, the 
example was run 10 times for each algorithm randomly. 
Based on the mechanism of BOF process, a network 
{13, 10, 1} is used for the industrial tests. The 
performance comparisons between EO-LM and LM 
after 10 runs are listed in Table 3 and Fig. 5. 

It can be seen the generalization performance of EO-
LM evolved model is better than that of LM. The 
prediction RMSE of best model by EO-LM on test 
dataset is reduced by 8.6% compared with LM 
algorithm. The experimental results indicate that MA 

Table 2.  Comparison between the EO-LM and LM on CSTR Model 

  EO-LM ALGORITHM LM ALGORITHM 
  Train set Test set Train set Test data set 
  Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 

Best 0.0023 0.0024 0.0043 0.0045 0.0025 0.0031 0.0048 0.0048 
Mean 0.0024 0.0025 0.0046 0.0052 0.0027 0.0031 0.0051 0.0054 RMSE 

Std Dev 8.05e-05 1.81e-04 2.41e-04 5.98e-04 3.01e-04 3.38e-04 3.53e-04 4.13e-04 

 

Published by Atlantis Press 
    Copyright: the authors 
                  629



 EO-LM Based NN Learning 
 

1600 1620 1640 1660 1680 1700 1720 1740
1600

1620

1640

1660

1680

1700

1720

1740
Best EO-LM result (Real Value Vs Predict Value)

Predict Value  ( °C )

R
ea

l V
al

ue
  (

 °C
 )

RMSE=17.5232°C
R=0.61162
Correlation=0.61545

1600 1620 1640 1660 1680 1700 1720 1740
1600

1620

1640

1660

1680

1700

1720

1740
Best LM result (Real Value Vs Predict Value)

Predict Value  ( °C )

R
ea

l V
al

ue
  (

 °C
 )

RMSE=19.1821°C
R=0.49995
Correlation=0.54899

 

Fig. 5.  The performance comparison of EO-LM and LM for BOF end-point temperature prediction 

Table 3.  Comparison between the EO-LM and LM 
on BOF end-point temperature prediction 

 TEST SET RMSE 
 Mean Max Min Std Dev 

EO-LM 18.4344 19.1793 17.5232 0.5721 
LM 19.6829 20.3726 19.1821 0.4156 

based hybrid EO-LM algorithm proposed in this paper 
can easily avoid the local minima, over-fitting or under-
fitting problems suffered by traditional GS based neural 
network learning algorithms. 

6. Concluding Remarks 

In view of the drawbacks of gradient based NN 
learning algorithms, a novel hybrid “EO-LM” learning 
algorithm with the integration of EO and LM has been 
developed and evaluated with two benchmark problems 
and a practical engineering problem for a production 
scale batch Basic Oxygen Furnace (BOF) in 
steelmaking. The main advantages of the proposed 
algorithm are to utilize the superior features of EO and 
LM in global and local search respectively. As a result, 
the applications of the proposed EO-LM learning 
algorithm in neural network training may create a neural 
network model with better performance, such as 
avoiding stuck in to local minima and having good 
generalization capability. 

The future studies involve the applications of EO 
and its derivatives in optimizing both the architecture 
and parameters of NN and more fundamental research 
on evolution dynamics for more benchmark and real-
world problems. 
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