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Abstract. Architecture Analysis and Design Language (AADL) is an architecture description 

language that has been adopted as an industry standard for embedded real-time systems by the 

International Society for Automotive Engineers (SAE) in 2004.To meet the need of verification and 

analysis of the AADL models, model transformation technologies are generally used to automatically 

extract a formal specification suitable for verification and analysis.  

This paper surveys the research and practice of verification and analysis of non-functional 

properties of AADL Model based on model transformation, presents a discussion from different 

perspectives of the state of the art, identifies open issue and presents some future work directions in the 

field. 

Introduction 

Widely used in domains such as avionics and aerospace platforms, embedded real-time systems with 

features like limited-resource, real-time response, fault-tolerance and hardware-special have to face 

higher demands of timeliness and reliability. Those systems were named performance-critical 

systems
[1]

. Moreover, they are becoming more and more complex, so reducing both the cost and time 

of development becomes a significant problem that academia and industry face
[2]

. 

The Architecture Analysis and Design Language (AADL)
[3]

 is an architecture description language 

that has been adopted as an industry standard for embedded real-time systems by the International 

Society for Automotive Engineers (SAE) in 2004. AADL employs formal modeling concepts for the 

description of software/hardware architecture and run-time environment in terms of distinct 

components and their interactions, and it is especially effective for model-driven design of complex 

embedded real-time systems
[4]

. 

All systems shall pass qualification and certification processes before their deployment especially 

those real-time systems (for example DO-178C).  When such a system specification is  described using 

an AADL model,it’s often transformed into another formal language/model for verification and 

analysis. Examples of such transformations are numerous: translations to Behavior Interaction Priority 

(BIP) 
[5]

, to TLA+ 
[6]

, to IF 
[7]

,to real-time process algebra ACSR 
[8]

, to Fiacre 
[9]

, to Real-Time Maude 
[10]

,to Polychrony 
[11]

, to Lustre 
[12]

,to TASM 
[13]

 etc. The goal of such a transformation is to reuse 

existing verification and analysis tools and to validate the AADL models. 

This paper surveys the research and practice of verification and analysis of non-functional 

properties of AADL Model based on model transformation, presents a discussion from different 

perspectives of the state of the art, identifies open issue and presents some future work directions in the 

field.  
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The rest of the paper is organized as follows. Section 2 surveys 36 proposals from 51 papers, 

ordering according to their presentation. Section 3 presents a discussion from different perspectives of 

the state of the art. Section 4 identifies open issue and presents some future work directions in the field.  

Proposals for verification and analysis 

During the last decade, embedded real-time system modeling for verification and analysis has received 

a growing interest. In particular, significant efforts have been focused on defining architecture models 

(generally based on AADL) and transformations of architecture models into different types of formal 

modeling languages or analysis models used to verify or to analysis non-functional properties. 

In this section, we consider 36 representative proposals that have been developed in a total of 51 

papers: Table 1 lists the papers that gather the proposals, ordered according to their presentation. These 

proposals are all based on AADL. 

 

Table 1 List of surveyed proposals 

Properties Approach name Papers 

Behavior Verification Bjornander 
[14]

 

Behavior Verification Rolland 
[6]

 

Behavior Verification Bomel 
[15]

 

Behavior Verification Berthomieu 
[9]

 

Behavior Verification Bodeveix 
[16]

 

Behavior Verification Yang 
[17]

 
[18]

 
[13]

 

Behavior Verification Belala 
[19]

 

Behavior Verification Cherfia 
[20]

 

Behavior Verification Jahier 
[12]

 
[21, 22]

 

Behavior Verification Niz 
[23]

 

Behavior Verification Monteverde 
[24]

 

Behavior Verification Zheng 
[25]

 

Behavior Verification Liu Bo 
[26]

 

Schedulability Chkouri 
[5]

 
[27]

 

Schedulability Sokolsky-a 
[8]

 
[28]

 

Schedulability Zhou 
[29]

 

Schedulability Hugues 
[30]

 

Schedulability Liu Qian 
[31]

 

Schedulability Li Zhensong 
[32]

 

Timing Yu 
[33-35]

 
[36]

 

Timing Ma 
[33-35]

 
[37]

 

Timing Renault 
[38]

 
[39]

 

Timing Sokolsky-b 
[40]

 

Timing Abdoul 
[7]

 

Timing Varona-Gomez 
[41]

 

Dependability Rugina 
[42-44]

 
[45]

 

Dependability Dong 
[46]

 

Dependability Gao 
[47]

 

Dependability Yang Zhiyi 
[48]

 

Dependability Baudali 
[49]

 

Dependability Sun 
[50]

 

Dependability Bozzano 
[51]

 
[52]

 

Dependability Johnsen 
[53]
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Dependability Olveczky 
[10]

 

Dependability Bae 
[54]

 

Dependability Liu Wei 
[55]

 

Behavior Verification. All the 13 proposals surveyed in this section, aim at providing support to a 

behavior verification of embedded real-time systems. Some proposals also support other kinds of 

verification or analysis. 

Bjornander’s proposal 
[14]

 presents a verifier of systems behaviors called ABV (AADL and the 

Behaviors Annex Verifier), using which a subset of the AADL models and their Behavior Annex are 

converted into CTL (Computation Tree Logic) and then verified. 

Rolland’s proposal 
[6]

 transforms AADL models into TLA+. TLA+ can only express discrete time, 

and the only tool support, TLC, is not very efficient. 

Bomel’s proposal 
[15]

 firstly converts AADL models into ATL, and then the ATL can automatically 

generate SystemC models which support simulation. 

Berthomieu’s proposal 
[9]

 translates a synchronous subset of AADL and the behavior annex into 

Fiacre, and then the Fiacre model is compiled into Timed Petri Nets (TPN) for verification. The paper 

did not explain the semantics, but just presented the transformation principle. Based on Berthomieu’s 

proposal, Bodeveix’s proposal 
[16]

  considers the semantics, and transforms an AADL synchronous 

subset into Fiacre. This proposal also provides transformation rules. The two methods are both 

integrated into TOPCASED (AADL integrated development tool).Yang has some cooperation with 

Berthomieu and Bodeveix in the former proposals, and his proposal firstly formalizes some subsets of 

the AADL (such as Behaviors Annex 
[17]

 and mode conversion 
[18]

) using TASM (Timed Abstract State 

Machines), and then presents a translation of AADL into TASM and a methodology to prove the 

semantics preservation under the assumption that the reference semantics expressed in TTS are correct 
[13]

. 

Belala’s proposal 
[19]

 translates an AADL subset into Real-Time Maude, which could be used to 

verify timing requirements and behavioral attributes. 

Cherfia’s proposal 
[20]

 uses BRS (Bigraphical Reaction System) model to formalize AADL system 

dynamic architecture reconstruction and analysis embedded real-time systems. 

Jahier’s proposal 
[12]

 includes transformation of a subset of AADL except behavior annex, and the 

transformation is in the form of synchronous program language Lustre. In this work, AADL is 

translated into Polychrony which focuses on the multiple partition structure of the embedded 

architecture to simulate and verify GALS (globally asynchronous locally synchronous) model got 

from AADL specifications. In two other papers 
[21, 22]

, they transforms AADL model into BIP and PCP 

at the same time to analysis the complex scheduling policy behavior of shared resources. 

Niz’s proposal 
[23]

 transforms AADL concurrent execution semantics into Alloy, then defines an 

AADL attribute set which contains the sorting, reliability and fault tolerance, to analyze the system 

behavior by comparing the AADL and Alloy model. 

Monteverde’s proposal 
[24]

 proposes Visual Timed Scenarios (VTS) as a graphical language used in 

AADL behavior property specification, which is then transformed into Timed Petri Net (TPN). So 

model checking of attributes expressed in VTS could be done based on TPN tools. 

Zheng’s proposal 
[25]

 uses MDE heterogeneous model transformation framework to transform 

AADL model into Interface Automaton (IA),then verifies the compatibility of IA using formal method, 

constructs components compatible operation environment using IA tools, maps the environment to 

AADL components to solve the problem of compatibility of behaviors of AADL component 

combination. 

Liu Bo’s proposal 
[26]

 verifies AADL behavior model using a formal verification tools calls 

NuSMV, but the deficiency of MuSMV itself limits its application. 

Schedulability. All the 6 proposals surveyed in this section, aim at providing support to 

schedulability analysis of embedded real-time systems. Some proposals also support other kinds of 

verification or analysis. 
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Chkouri’s proposal 
[5]

 transforms most AADL concepts into BIP language which is a diversified 

real time modeling framework, including three levels, low-level describe the behavior, the 

middle-level describes interactions and the top-level describes scheduling policy. BIP provides two 

kinds of verification, using Aldebaran to detect deadlock and observers to verify some simple time 

performance. In another paper 
[27]

 this idea is extended, new approach generates one executable model 

from AADL and another from BIP based on network communication protocol, so we can simulate the 

distributed system described by AADL and verify it formally based on verification technology of BIP 

at the same time. 

Sokolsky’s proposal 
[8]

 mainly focuses on the schedulability analysis of AADL models, a smaller 

subset (modes and the behavior annex are excluded) is translated into the real-time process algebra 

ACSR, and use the ACSR-based tool VERSA to explore the state space of the model, looking for 

violations of timing requirements. ACSR can express the notation of resource explicit in system 

models, but focuses on single processor environment. So Sokolsky extends the application of ACSR 
[28]

, presents two tools which support AADL simulation respectively to track the resource utilization 

and analyze the schedulability to determine whether the resources meet the time constraints or not. A 

subset of the asynchronous  

Zhou’s proposal 
[29]

 maps an asynchronous subset of AADL into TASM to support the resource 

consumption and schedulability analysis. 

Hugues’s proposal 
[30]

 presents a tool named Ocarina, which can transform AADL model into Petri 

Nets to do formal verification, do schedulability analysis based on Cheddar and generate Ada and c 

code automatically. 

Liu Qian’s proposal 
[31]

 uses model checking tool UPPAAL to formally verify and analyze the 

schedulability of thread components of AADL model with non-preemptive scheduling police, and 

presents the model transformation tool which could transform AADL model into UPPAAL model. 

Li Zhensong’s proposal 
[32]

 carries out the verification and analysis of AADL behavior model. First, 

it presents model transformation rules from AADL to UPPAAL TASM based on Behavior Annex and 

its behavior description, designs and implies the prototype tool for model transformation. Then 

simulate the automatic model get from automatic transformation rules in UPPAAL to validate the 

automatic model’s behavior and prove the availability of the model transformation. 

Timing. All the 6 proposals surveyed in this section, aim at providing support to timing analysis of 

embedded real-time systems. Some proposals also support other kinds of verification or analysis. 

Ma and Yu’s proposal 
[33-35]

 expresses functional behavior with synchronous data flow model and 

uses Simulink/Gene-Auto for modeling ;distribute hardware architecture is modeled with 

AADL ;bridges the two different types of models with SME/Polychrony based on computing 

polychromous. They present the transformation rules from Simulink and AADL to SME model, and 

then simulate and analyze the timing properties in the framework of Polychrony. This approach can 

simulate time constraints in early phases. Yu 
[36]

 extends this idea based on previous works. The new 

method changes AADL semantics based on computing polychronous model and then maps 

Polychrony to SynDEx to ensure the consistency of timing semantics between different formal models. 

Finally, real-time schedulability analysis and the optimum configuration of multi-processor are done 

based on SynDEx. In another paper, Ma 
[37]

 transforms AADL model into synchronous language 

SIGNAL, to analyze and verify the timing with the Polychrony tools. 

Renault’s proposal 
[38]

 extends the approach transforms AADL into Symetric Nets (SN) 
[39]

 to 

transforms AADL into Timed Petri Net (TPN) and verify timing properties. Verification based on SN 

could be reference to validate these properties. 

Sokolsky’s proposal 
[40]

 extracts analysis model based on Real-Time Calculus, which supports 

performance analysis and end-to-end timing analysis. 

Abdoul’s proposal 
[7]

 translates a behavioral subset, minus mode changes, to IF, to analyze some 

safety properties of the system. The behaviors are not expressed using AADL Behavior Annex, but 

their own behavioral language. 
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Varona-Gomez’s proposal 
[41]

  uses AADS tool to transform AADL model into SystemC model, 

and then uses SCoPE tool for performance, and other NFPs (such as CPU occupation, timing, energy 

consumption) analysis. 

Dependability. All the 11 proposals surveyed in this section, aim at providing support to 

dependability analysis of embedded real-time systems. Some proposals also support other kinds of 

verification or analysis. 

The original definition of dependability is the ability to deliver service that can justifiably be trusted. 

As pointed out by 
[56]

, this definition stresses the need for justification of trust. An alternative definition 

states the dependability of a system as the ability to avoid failures that are more frequent and severe 

than acceptable. In this case the definition provides the criterion for deciding if the service is 

dependable. According to [paper], dependability encompasses five attributes :reliability, the continuity 

of correct service ;availability, the readiness for correct service ;maintainability, the ability to undergo 

modifications and repairs ;integrity, the absence of improper system alterations ;safety, the absence of 

catastrophic consequences on the users and environment. 

Rugina’s proposal 
[42-44]

 annotates AADL architecture model with dependability related 

information through standard Error Model Annex, such as failure, failure mode, maintenance strategy, 

error propagation, etc. It also provides a set of transformation rules, which can automatically transform 

AADL model into Generalized Stochastic Petri Net (GSPN) used in the dependability analysis. These 

rules are applied in ADAPT tool 
[45]

 which connect to the open-source tool OSATE which provides 

AADL tool support; SURF - 2 at the same time provides GSPN tool support. There are domestic 

similar researches like 
[46-48]

 also use GSPN on dependability analysis. 

Baudali’s proposal 
[49]

 presents an extendable formal reliability evaluation framework: Arcade 

(ARChitecturAl Dependability Evaluation), which supports a wide range of modeling languages 

including AADL. This proposal transforms the input model into I/O-LMC (Input/Output Interactive 

Markov Chains) model, and further transforms the I/O-IMC model into CTMC (Continuous Time 

Markov Chains).Finally, reliability analysis shall be made upon CTMC based on the CADP tools, at 

the same time this approach also supports compositional analysis, so it could support complex 

systems.  

Sun’s proposal 
[50]

 combines AADL model with Fault Tree Analysis (FTA) to make reliability and 

safety analysis. 

Bozzano’s proposal 
[51]

 uses event-data automata and probabilistic finite-state machine to define the 

formal semantics of AADL and the Error Model Annex. Then, it integrates the normal behavior and 

error behavior by constructing two formal models, the formal semantics of the formal models support 

multiple types of qualitative and quantitative system analysis, including the verification of the 

dependability properties. It also develops integrated toolset COMPASS 
[52]

.COMPASS gets the 

information of models specified by formal semantics and the set of attributes needed to be verified and 

generates FMEA table and stochastic fault tree. COMPASS verifies system properties based on 

symbolic model checking technique. 

Johnsen’s proposal 
[53]

 supports automatic fault avoidance of AADL model and verifing the 

integrity and consistency of model. It formalizes a subset of AADL through semantic anchoring, and 

presents corresponding transformation rules to transform the subset into TASM, finally verifies TASM 

using UPPAAL. 

For safety-critical systems, Bae and Olveczky’s proposal 
[10]

 transforms an AADL subset into 

Real-Time Maude, and presents AADL simulators and LTL model checking tool AADL2Maude for 

testing system safety-critical behaviors. Real-Time Maude is a formal real-time rewriting logic. In 

another paper 
[54]

 they presents Synchronous AADL Language, modeling synchronous real-time 

systems, and provides the synchronous AADL formal semantics in Real-Time Maude, integrates the 

semantics with the OSATE modeling environment. These works simplifies the verification process. 

Liu Wei’s proposal 
[55]

 the transformation from AADL model to the real-time system modeling 

framework BIP based on component, verifies the safety of AADL model indirectly through verifying 
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BIP model. And it’s similar to other model transformation methods, which are simple, feasible and 

beneficial to check model’s consistency or model reuse. 

As complex real-time embedded systems become networked, modularized, systems may also be 

influenced by external attacks and malicious code. So security is getting concern. The ability of 

security modeling of AADL is still rudimentary, only supports simple tests for security level. Eby’s 

proposal 
[57]

 makes it clear that almost no current modeling tools support the security modeling, and in 

most cases embedded system engineers are not aware of security problems. Generally, system 

vulnerability can be found only after being attacked. What’s more, even with firewall and intrusion 

detection system, systems are hard to avoid the internal attack. So it is necessary to integrate security 

into the modeling environment at an early phase. 

Discussion 

In this section we discuss, from different perspectives, the state of the art in the area of NFPs’ 

verification and analysis based on model transformation of AADL models, based on the contributions 

presented in last section. More specifically, we surveyed 36 approaches based on 51 papers, which are 

summarized in Table 1 in the order of their presentation. As mentioned before, all the approaches are 

using AADL as a system modeling language. 

Software Engineering Criteria. 
 Life Cycle Phase. The support provided by the approaches within the software life cycle spans 

from the requirements to the deployment phase (Table 2); however, the most important contributions 

are given in the early phases, in particular during the system architecture, and design specification. 

This result is not surprising, as it occurred also for performance model-based approaches 
[58]

. It is due 

to the fact that a major modeling effort is placed early in the life cycle, where the detection of both 

functional and non-functional (e.g., schedulability, dependability) problems can be fixed more 

effectively with less effort and lower costs that late fixes. 

Table 2 Contributions by life cycle phase 

Approach Requirements Architecture Design Impl./Deployment 

Rolland  √   

Baudali  √   

Rugina  √ √  

Bozzano  √ √  

Dong  √ √  

Gao  √ √  

Yang Zhiyi  √ √  

Li  √ √  

Liu Qian  √   

Bodeveix   √  

Liu Wei  √   

Liu Bo √ √ √  

Renault   √  

Johnsen  √   

Bjornander  √   

Chkouri   √  

Sokolsky   √  

Zhou  √   

Yu  √ √  
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Bomel   √  

Abdoul √ √ √ √ 

Varona-Gomez   √  

Berthomieu   √  

Yang  √   

Zheng   √  

Bae   √  

Olveczky   √  

Belala  √   

Ma   √  

Cherfia  √   

Niz  √   

Jahier √ √ √  

Monteverde   √  

It’s observed that a significant number of approaches aim at providing solutions for verification or 

analysis of embedded real-time systems, while quite fewer contributions aim at requirement elicitation 

or NFP specification (i.e., how to express dependability characteristics in the AADL model).  

The implementation and deployment phase are addressed by only one approach (Abdoul); while 

none of the works we considered focus on testing phase. We suggest that research efforts should be 

devoted to combine model-driven approaches with experimental ones in the testing phase, e.g., by 

exploiting use case to drive the testing activities through test cases and to trace back the latter to NFP 

requirements. 

Application Domain. Most of the works either focus on a specific software domain or provide 

specific support for embedded real-time systems. The majority of the surveyed works support 

verification or analysis of general software systems. We observe that the kind of NFP to be evaluated is 

influenced by the software and the application domains considered by a given work. In particular, 

considering in detail the application domain (Table 3), we notice that most of the works that address 

avionics, automate, and critical systems are interested in providing support for dependability analysis. 

On the other hand, in the case of real-time system applications, it is often desirable to guarantee the 

timing of service delivery, when requested by the end-user. Therefore, schedulability and timing are 

the main issues addressed by the works dealing with this type of applications. 

Table 3 Application domain 

Approach gene

ral 

avionics autom

ate 

Real-tim

e system 

Critical 

system 

com

mun

icat

e 

aero

spac

e 

electr

onic 

Rolland √        

Baudali √        

Rugina  √ √      

Bozzano  √ √      

Dong  √       

Gao  √       

Yang Zhiyi  √       

Li       √  

Liu Qian √        

Bodeveix √        
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Liu Wei  √       

Liu Bo √        

Renault    √     

Johnsen    √ √    

Bjornander     √    

Chkouri √ √       

Sokolsky √     √   

Zhou       √  

Yu √ √       

Bomel        √ 

Abdoul √        

Varona-Gomez √        

Berthomieu  √     √  

Yang √        

Zheng       √  

Bae  √       

Olveczky √ √   √    

Belala √        

Ma  √       

Cherfia √        

Niz  √       

Jahier √        

Monteverde √        

 

Tool Support. All of the surveyed contributions provide tool support for the approaches they 

propose. However most of the tools are research prototypes that do not cover all the aspects or 

processes, the potential for building more powerful tool support exists. Many approaches could be 

automated since they propose either rigorous transformation techniques of AADL models into formal 

modeling languages or analysis models. Only a few proposals are difficult to implement or do not 

provide any indication of an existing implementation. 

NFP Characteristics Criteria.  
Attributes. We observe a significant number of works intent to verify system behaviors, and then 

they can further analyzing schedulability, timing, or to do reliability analysis. But fewer works pay 

attention to security. Verification of behaviors is tightly interrelated with schedulability or timely 

analysis, because the system schedulability and timing is generally associated with real-time states of 

system behaviors. 

Analysis Types. One of the criteria for discussion is the type of NFPs analysis proposed, i.e., 

qualitative or quantitative. Qualitative analysis aims to verify systems, while quantitative analysis 

aims to compute NFPs measures. We notice that behavior verification, schedulability and timing 

contributions fall basically in the first category (i.e., qualitative) while the works that focus on 

dependability (except safety which is mainly analyzed qualitatively) belong to the second category 

(i.e., quantitative). There are also some exceptions that support both types of analysis. 

Considering the approaches aimed at quantitative dependability analysis, the majority of them rely 

on stochastic (or probabilistic) assumptions.  

Formal Modeling Language and Analysis Model. Table 4 summarizes the techniques adopted by 

the surveyed works to support NFPs verification or analysis of AADL-based specifications. 
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Table 4 Formal languages/models 

Approach TASM Petri 

Net 

CTL Fiacre GSP

N 

Maude BIP ACS

R 

FTA FM

EA 

others 

Rolland           √ 

Baudali           √ 

Rugina     √       

Bozzano         √ √  

Dong     √       

Gao     √       

Yang Zhiyi     √       

Li √           

Liu Qian √           

Bodeveix    √        

Liu Wei       √     

Liu Bo   √         

Renault  √          

Johnsen √           

Bjornander   √         

Chkouri       √     

Sokolsky        √   √ 

Zhou √           

Yu           √ 

Bomel           √ 

Abdoul           √ 

Varona-Go

mez 

          √ 

Berthomieu  √  √        

Yang √           

Zheng           √ 

Bae      √      

Olveczky      √      

Belala      √      

Ma           √ 

Cherfia           √ 

Niz           √ 

Jahier       √    √ 

Monteverd

e 

 √          

 

Quality Criteria. 
Validation. The validation of the proposed methods is not a primary issue in the surveyed 

approaches; few of them even do not consider validation at all. However, when validation is 

considered, it is carried out mainly to show the applicability and/or the scalability of the method to 

realistic examples, i.e., through case studies. Only a few works (Li and Yang) conduct empirical 
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analysis in an academic environment, to assess not only the applicability of the proposed approaches 

but also their correctness. 

We suggest that those approaches providing support for quantitative NFPs analysis and missing the 

validation of the correctness of the proposed methods could be verified, e.g., by comparing the analysis 

results with results obtained from testing activities. 

Presentation of Result. The majority of the approaches provide a basic support to present the 

results of the verification or analysis. The most common way is textual, followed by graphical and 

tabular presentation. We observed that the most promising approaches are those that feedback the 

results to the original AADL specification (Zheng); this makes the analysis process transparent to the 

software analyst. 

However, more research is needed to address this issue. In particular, the problem of how to identify 

the critical elements of the system specification which are the cause of unsatisfactory NFPs is still open. 

Good solutions would provide useful information to the software engineers for changing the design 

accordingly. 

Limitations. Almost all the surveyed approaches present limitations, as summarized in detail in 

Table 5.One of the more common deficiency is the lacking of direct feedback to the AADL models. 

Table 5 Limitations 

Approach Limitations 

Rolland TLA+ can only express discrete time, and the only tool support 

TLC is not very efficient. 

Baudali The expression of system failure is simple, does not support 

stochastic model checking. 

Rugina  

Bozzano The levels of Fault Tree that COMPASS generates are few. 

Dong  

Gao  

Yang Zhiyi  

Li UPPAAL does not support preemptive scheduling. 

Liu Qian UPPAAL does not support preemptive scheduling, UCaS, the 

modified tool, is inefficient. 

Bodeveix The ability of model constructing is inefficient, does not support 

some attributes, such as resource. 

Liu Wei The platform special module (PSM) of AADL is hard to be 

described in BIP, which could describe the behavior of system 

platform, but cannot define the parameters of platform hardware of 

system in detail.  

Liu Bo  

Renault  

Johnsen The supported types of time and data are few, more subsets of 

AADL need to be formalized 

Bjornander Don’t support enough time description semantics. 

Chkouri The verification types supported by verification tools of BIP are 

few. 

Sokolsky Don’t support complex system, and the assumption of instant 

communicating is unreasonable. 

Zhou The supported types of time and data are few, more subsets of 

AADL need to be formalized 

Yu Don’t support round-trip transformation of SIGNAL and SynDEx 

Bomel  
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This section summarizes the conclusion of the discussion from the 

 

Abdoul The behavior description language developed isn’t supported by 

any other tools 

Varona-Gom

ez 

 

Berthomieu The definition of logistic attributes is tedious; fault reports and 

verification process need to be improved. 

Yang The supported types of time and data are few, more subsets of 

AADL need to be formalized 

Zheng Don’t support compatibly operation of components whose 

behaviors are incompatible. 

Bae Maude does not support real-time description; the performance of 

tool is inefficient. 

Olveczky Maude does not support real-time description 

Belala Maude does not support real-time description 

Ma  

Cherfia  

Niz The verification speed is slow for Alloy’s limitation 

Jahier Can’t verify complex system (for states explosion);Supports 

simulation and testing but doesn’t support analysis and verification 

when AADL model including dispersal threads that Lustre doesn’t 

support 

Monteverde Timed Petri Net lack attributes of time divergence. 

 

Discussion Summary.. 

previous section and identifies open issues that emerged from the study. 

 Firstly, most of the works focus on behavior verification schedulability timing and dependability, 

and fewer efforts have been devoted to security modeling and analysis. Moreover, we have not found 

any work addressing specifically how to extend AADL with integrity NFP. 

Secondly, the surveyed works provide support mainly in the early phases of the life cycle (i.e., 

architecture and design), while there is a lack of support for former or later phases, as, for example, for 

testing NFPs guided by selected use cases. 

Thirdly, the contributions using model transformations mainly focus on obtaining formal modeling 

languages or analysis models which can be used for NFPs verification and analysis. Only a few go one 

step further to provide feedback from the analysis results to the original AADL model specification, in 

order to pinpoint the causes for requirement inconsistencies or design flaws. 

Fourthly, it is also worth noticing that tool support and method validation are crucial factors to 

make an approach effective. Although the majority of the surveyed approaches are characterized by a 

high automation degree, most of them are not fully supported by software tools. Moreover, in many 

cases method validation consists only in applying the proposed method to a case study. Considering 

the approaches that provide support for quantitative NFPs analysis, the validation of the correctness of 

the proposed methods is in fact missing. More efforts should be devoted to the validation of the 

methods themselves. 

Last but not least, more research work should be invested in providing a standard common AADL 

framework for the modeling and verification/analysis of several NFPs, in order to support the 

consistent specification of different NFPs and their relationships, as well as the trade-off analysis 

between different NFPs (such as performance and timing, security and dependability). 
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Advanced Open Issues 

Experience in conducting model NFP verification and analysis based on model transformation shows 

that the domain is still facing a number of challenges. 

Human qualifications. Software developers are generally trained in only a few of formal 

languages/models used for the analysis of different non-functional properties (NFPs),when some kind 

of formal languages/models are not known by developers, it leads to the idea that we need to hide some 

of the analysis details from developers. However, the AADL models have to be annotated with extra 

information for each NFP and the analysis results have to be interpreted in order to improve the 

designs. A better trade-off needs to be made between what needs to be hidden and what to be exposed 

to the software developer. 

Round-trip NFP analysis. The concept of round-trip engineering means consistently refining a 

high-level model of a system into a lower-level model (forward engineering) and abstracting a 

low-level model into a higher-level one (reverse engineering). The round-trip concept can be applied 

also to the AADL-based NFP analysis, where the forward trip transforms an AADL model into a 

formal language/model, and the reverse trip produces feedback from the analysis results to the original 

AADL model. This raises the need for automated diagnosis tools specific to different formal 

languages/models. It also raises the need for better traceability links between corresponding system 

and analysis model elements. It also brings us to the next step: the need allow the designer to ask 

specific NFP questions in AADL terms (for instance, what is the total down time for a given 

component due to a certain use case) which should be translated automatically into a specific query in 

terms of the formal language/model used for analysis. Assuming that the formal model is Petri Nets, 

the query translation needs to map the dependability values related to the given AADL model elements 

to Petri Nets measures related to the corresponding places and transitions. Such queries should be 

supported by special model transformations. 

Abstraction level. The analysis of different NFPs may require different views of the AADL models 

at different levels of abstraction/detail. The challenge is to keep all these views consistent not only at 

the beginning, but also throughout the development process, when changes are applied to the model in 

order to add new features or to improve different properties. 

Semantic extension. Dependability analysis of AADL model is mainly dependent on the Error 

Model Annex (EMA), but analysis merely relying on EMA is not adaptive enough for a wide range of 

demand of dependability verification/analysis. So AADL needs to be expanded and studied for more 

abundant modeling and analysis methods. In the aspect of schedulability analysis, AADL supports 

some classical scheduling scenarios, but the influencing factors of schedulability also includes 

resource sharing, conversion, and some other scenarios in multiprocessor environment. Adding this 

content to Behaviors Annex also helps to improve the existing analysis methods. 

Test activities based on AADL. Integrating software testing technique with model-driven 

development process and generating test cases based on AADL model still remain to be study. 

Moreover, test cases need corresponding test processes, methods and tools, which should be also 

studied. 

Software verification and analysis based on AADL in deployment phase. With the application 

of distributed embedded real-time system, the system deployment and configuration are getting more 

attention. Deployment means integrating a distributed application component with the corresponding 

hardware and making it ready to run, and using middleware is beneficial to system deployment. 

Configuration means the selection of components and parameters in deployment phase. Deployment 

based on architecture is beneficial to the following several aspects: (1) provides high-level architecture 

view describing the hardware and software model in deployment phase;(2)analyzes quality attributes 

of the deployment scheme based on the architecture model, and choose reasonable deployment 

scheme;(3)records system deployment experience through architecture, in order to reuse for the next 

time. AADL describes the configuration and deployment of information and literature in detail 

through property. [Combining model processing and middleware configuration for building 
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distributed high - integrity systems] uses Ocarina tool to automatically generate configurable 

middleware according to the properties of AADL definition, and deploys distribute applications on 

middleware. According to the configuration and deployment information in AADL architecture model, 

analyst can analyze and evaluate the deployment plan. 

Research of architecture evolution Based on AADL model. Studies show that the internal and 

external environment will cause runtime changes of the system architecture. So the problem we face is 

how to get the dynamic information of architecture in early phase of the software life cycle, and select 

the most optimal solution to guide the change of the runtime system, so as to realize the evolution of 

the system. AADL supports mode conversion, supports component changing description such as 

component replacement or adding, but the existing supports will not be enough to meet demands with 

the expansion of the system. Therefore we need to extend AADL semantic to make it support dynamic 

architecture, and formalize the related semantic. 

Software process. Integrating the analysis of multiple NFPs raises software process issues. For 

each NFP, it is necessary to explore the state space for different design alternatives, configurations, 

and workload parameters in order to diagnose problems and decide on improvement solutions. The 

challenge is how to compare and rank different solution alternatives that may improve some NFPs and 

deteriorate others, and how to decide on the trade-offs. 

Analysis of multiple NFPs. Another advanced open issue is the fact that by integrating the analysis 

of multiple NFPs, we need to handle (i.e., generate, analyze, and diagnose) different formal modeling 

languages/analysis models. How do we iterate between different languages/models? Are the 

languages/ models obtained from exactly the same AADL model, or from different views and/or 

abstractions of the AADL model? If this is the case, how do we keep these views consistent? When we 

change one to improve one NFP, how do the other change? 

Design space exploration. Another issue is using optimization techniques over multiple NFPs to 

obtain the best system design and configuration. How do we explore the state space? Some kind of 

parameterizations would be necessary, which would allow an automatic experiment manager to 

modify all the formal languages/models included in the optimization procedure. 

Incremental propagation of changes through the model chain. Currently, every time the 

software design is changed to improve some properties, a new analysis model is derived from scratch 

in order to redo the analysis. The challenge is to develop incremental transformation methods for 

propagating a certain change from the software model to the analysis model, thus keeping different 

model consistent, instead of starting from scratch after every model improvement. 

Multi-paradigm modeling. A research direction that gets attention these days in the field of 

model-driven development, called multi-paradigm modeling, is looking at how to use multiple 

modeling languages and formalisms to solve a larger problem. The questions are as follows: how to 

interface and bridge different modeling languages that are used in a large problem, how to query not 

only one model but different related models, how to trace-link related model element in different 

models (e.g., a software and a corresponding analysis model), how to carry results from one model to 

another, how to control complex experiments, how to integrate the tool support, etc. The idea is to 

accept that we have to handle different related models expressed in different modeling languages that 

cannot be joined together in a single super modeling language. Instead, we need to learn how to 

navigate between different models and to do overall reasoning. In other words, we could approach the 

idea of analyzing multiple NFPs as a multi-paradigm modeling problem. 

Tool inter-operability. There are many kinds of tools that need to work together: editors for the 

software model, model transformations, solver for the analysis models, optimization, experiment 

controllers, etc. Some of the extended abilities we propose (e.g., incremental propagation of change, 

translation of queries from a domain to another, synchronization of different software model versions) 

require new tools. Software engineering will need more engineering methods and better tool support to 

take advantage of the verification of NFPs as proposed in the book. Experience shows that it is difficult 
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to interface and integrate seamlessly different tools, which may have been created at different times 

with different purposes and maybe running on different platforms. 
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