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Abstract

Accurate time series forecasting are important for
displaying the manner in which the past contin-
ues to affect the future and for planning our day
to day activities. In recent years, a large litera-
ture has evolved on the use of computational in-
telligence in many forecasting applications. In this
paper, several computational intelligence techniques
(genetic algorithms, neural networks, support vec-
tor machine, fuzzy rules) are combined in a distinct
way to forecast a set of referenced time series. Fore-
casting performance is compared to the a standard
and method frequently used in practice.

Keywords: Time series, Computational intelli-
gence, Neural networks, Support vector machine,
Fuzzy rules, Genetic algorithm

1. Introduction

Time Series Forecasting (TSF) predicts the behav-
ior of a given phenomenon based solely on the past
patterns of the same event. Several TSF (mainly
statistical) methods were developed, e.g., Holt-
Winters or Box-Jenkin’s ARIMA. More recently,
several Computational Intelligence (CI) techniques
have been proposed for TSF [1]. Let us recall, that
CI denotes an Artificial Intelligence branch that re-
lies on heuristic algorithms that were inspired in
biological and natural intelligence. Examples of CI
applied to TSF include: Artificial Neural Networks
(ANN) [2], evolutionary computation [3], Support
Vector Machines (SVM) [4], immune systems [5],
fuzzy techniques [6], or their combinations [7, 8].
In this paper, we present three recent ∗) CI ap-

proaches for seasonal TSF: Automatic Design of Ar-
tificial Neural Networks (ADANN), SVM with time
lag selection based on a sensitivity analysis proce-
dure; and Fuzzy Linguistic Approach to the trend-
cycle analysis and forecasts. Further, we propose
novel hybrid combinations of the CI methods, such
that the fuzzy approach for the trend-cycle forecasts

∗)Separately proposed in the 2010 IEEE World Congress
on Computational Intelligence (WCCI), under the special
session “Computational Intelligence in Forecasting”.

is complemented by the earlier two approaches that
forecast seasonal components of the decomposition.
All these CI variants are compared to the ARIMA
methodology [9].

2. Related work and motivation

2.1. Automatic design of neural networks

ANNs provide a methodology for solving many
types of nonlinear problems that are difficult to
solve by traditional techniques. Often, time series
processes exhibit temporal and spatial variability,
and are suffered by issues of nonlinearity of physi-
cal processes, conflicting spatial and temporal scale
and uncertainty in parameter estimates. ANNs are
flexible models that have the capability to learn
the underlying relationships between the inputs and
outputs of a process, without needing the explicit
knowledge of how these variables are related.
Generally, problem related to the use of ANN is

its design appropriately chosen for a particular time
series. Besides the decision concerning particular
type of ANN that will solve the TSF task and the
learning algorithm, one has to make further choices
concerning the neural network architecture, initial-
izing weights vector and the learning rate. Several
works employ distinct methods to obtain an ANN
design in an automatic way. We follow those that
directly involve evolutionary techniques [10, 11, 12].

2.2. Support vector machines

SVM is a powerful learning tool that is based on a
statistical learning theory developed in the 1990s by
Vapnik et al. [13]. SVM is based on two key con-
cepts: it transforms the input variables into a high
dimensional feature space (using a kernel function)
and then the algorithm finds the best hyperplane
that models the data in this feature space.
The motivation of using SVM for forecasting is

the same as in ANN: both are flexible models. By
this we mean, that no a priori restriction is imposed
in comparison to classical TSF methods, and pre-
senting nonlinear learning capabilities.
Similarly to ANN, the variable (e.g. a time lag)

selection is useful to discard irrelevant time lags
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which leads to simpler models that are easier to in-
terpret and that usually give better performances
[14, 15] and hence, it is a critical issue. Also,
SVM has further hyperparameters (kernel parame-
ter) that need to be adjusted [16]. In this work, we
address this crucial issue.

2.3. Linguistic approach

So far, a notable number of works aiming at fuzzy
approach to TSF has been published [6, 7, 17]. Most
of them either use Takagi-Sugeno rules or various
neuro-fuzzy approaches that lie on the border be-
tween neural networks, Takagi-Sugeno models and
evolving fuzzy systems.
However, the Takagi-Sugeno rules use functional

consequents without any linguistic meanings and do
not employ any kind of logical implication; evolving
system usually well tune (Gaussian) fuzzy sets to
have a center, say, at node 5.6989 and the width
parameter equal to 2.8893 (see [17]). Hence, most
of such fuzzy approaches, although very powerful,
disregarded the importance of interpretability. Mo-
tivated by this lack, we deal with the linguistic ap-
proach introduced in [18, 19].

3. Time series data and evaluation

3.1. Time series datasets

Let {yt | t = 1, . . . , T} ⊂ R be the past values
(usually called as in-samples) of a given time series.
Our TSF task is to built a model that analyzes the
in-samples in order to forecast the so-called out-of-
samples:

{Ft = yt − et | t = T + 1, . . . , T + h} ⊂ R, h ≥ 1

where et denotes the forecasting error that should
be minimized according to an accuracy measure
and h denotes the forecasting horizon. We assume
that only in-sample data is used to build such TSF
model. In case of h > 1, either the model directly
outputs multi-step ahead forecasts or the out-of-
samples are forecasted iteratively by using 1-ahead
forecasts (and the remaining up to the h − 1 pre-
dicted values) as inputs of the model [20].
In this work, we address seasonal data, since we

believe multi-step forecasts are particularly useful
for these type of series. To compare the proposed
TSF methods, we selected 6 benchmark time se-
ries (Table 1). Five of them: passengers (numbers
or airlines passengers in thousands); pigs (num-
bers of pigs slaughtered in Victoria); cars (car sales
in Quebec); abraham12 (gasoline demand at On-
tario) and abraham14 (U.S. houses sales data of
in thousands); are monthly series from the well-
known Hyndman’s Time Series Data Library [21].
All these five datasets contain real-world data from
different areas, which makes them interesting to
forecast. The last series, called mackey-glass, is a
chaotic series based on the Mackey-Glass differential

equation and it is widely regarded as a benchmark
for comparing the generalization ability of different
methods. It has been chosen in order to extend
the experimental datasets by a different kind (not
monthly; not real-world; no trend, nor noise) of a
benchmark.

3.2. Evaluation

The global performance of a forecasting model is
evaluated by an accuracy measure, such as Mean
Absolute Error (MAE), (Root) Mean Squared Er-
ror ((R)MSE), Symmetric Mean Absolute Percent-
age Error (SMAPE) or Mean Absolute Scaled Error
(MASE).
Historically very popular (R)MSE is quite sensi-

tive to outliers [22] and furthermore, both MSE and
MAE are scale-dependent measures and cannot be
used for a comparison across more time series.
Both SMAPE and MASE:

SMAPE =
1
h

T+h∑

t=T+1

|et|
(|yt|+ |Ft|)/2

× 100%, (1)

MASE =
1
h

T+h∑

t=T+1

et

1
T−1

∑T
j=2 |yj − yj−1|

, (2)

where et = yt−Ft, have the advantage of being scale
independent. Thus can be used to compare meth-
ods across different time series. However, there are
still two SMAPE drawbacks [23]: the denomina-
tor may be close to zero, and a heavier penalty is
given to under-forecasting when compared to over-
forecasting. More recently proposed [23] MASE
does not hold the SMAPE disadvantages. When
MASE > 1, the forecasts are worse (on average)
when compared with the in-sample one-step fore-
casts of the naïve random-walk method. In other
words MASE compares the average out-of-sample
et with the average in-sample first difference and
hence, it realitivizes the prediction error with re-
spect to time series fluctuations from the past.

Table 1: Time series seasonal period and in-
sample/out-of-sample sizes. Symbols denote: K =
Seasonal period; T = #in-samples; h2 = #out-of-
samples.

Series K T h2

passengers 12 120 24
pigs 12 164 24
cars 12 84 24
abraham12 12 168 24
abraham14 12 108 24
mackey-glass 30 731 60

For the comparison, we opted to compute
SMAPE and MASE metrics for two distinct fore-
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casting horizons: h1 = K and h2 = 2K, where K is
the seasonal period, see Table 1.

4. Forecasting methods

4.1. ARIMA by ForecastPror

As a baseline comparison, we choose the popular
ARIMA methodology [9] because: a) ARIMA is a
common method widely used in practice; b) similary
to ARIMA, all the CI approaches discussed below
are of an autoregressive nature.
Note, that in order to avoid any bias from a

naive implementation of ARIMA, we adopted the
ForecastPror (FP) professional forecasting soft-
ware In particular, we fed the tool with the in-
samples and executed the full automatic parameter
selection of ARIMA to obtain the forecasts.

4.2. Automatic Design of Artificial Neural
Networks (ADANN)

In order to obtain a single ANN with logistic acti-
vation functions (values within the range [0,1]), a
given time series has to be normalized. After fitting
the ANN, the inverse process is carried out. The
time series in-samples are transformed into a pat-
tern set with I inputs. Only one neuron was cho-
sen at the output layer and multi-step forecasts are
performed using an iterative feedback of the previ-
ous forecasts [15]. Therefore, the time series will be
transformed into a patterns set, where each pattern
will consists of:

(Nt−I , . . . , Nt−2, Nt−1) → Nt

where all Nt values correspond to the normalized
yt ones. This pattern set is used to train and vali-
date each ANN generated during the GA execution.
Thus, the data is split into training (with the first
X% data) and validation sets (with the remaining
patterns from the in-samples).
The search for the best ANN design can be per-

formed by a GA [24] using exploitation and explo-
ration.
In this work, we use a Multilayer Perceptron

(MLP) neural network with one hidden layer and
Backpropagation (BP) as the learning algorithm. A
direct encoding schema for full connected MLP is
considered. For this encoding scheme the informa-
tion placed into the chromosome is: two genes (dec-
imal digits) to codify the number of inputs nodes
(I); two genes for the number of hidden nodes (H);
two genes for the learning factor (α); and the last
ten genes for the initialization seed (s, “long int”
type) value of the connection weights. This way,
the values of I, H, α and s are obtained from the

chromosome as follows:

chromosome = gI1gI2gh1gh2gα1gα2gs1 . . . gs10 ,

s = gs1gs2 . . . gs10 ,

I = 10gI1 + gI2 ,

H = min(2 ∗ I, 10gH1 + gH2),

α = (10gα1 + gα2)/100.

The search process (GA) will consist of the fol-
lowing steps :

1. A population (a set of chromosomes) is ran-
domly generated.

2. The phenotypes (ANN architectures) and fit-
ness value of each individual of the actual gen-
eration is obtained. To obtain the pheno-
type associated to a chromosome and its fitness
value:

(a) The phenotype of an individual of the ac-
tual generation is first obtained using the
SNNS tool [25].

(b) Then for each NN i, training and vali-
dation pattern subsets are obtained from
time series data depending on the number
of inputs nodes of network i.

(c) The net is trained with BP (using SNNS).
The architecture (topology and connec-
tions weights set) of the net is saved (i.e.
early stopping) when the validation error
is minimum during the training process.
Thus, this architecture is the final pheno-
type of the individual.

3. Once the fitness value for whole population is
available, the GA operators (Elitism, Selection,
Crossover and Mutation) are applied in order
to generate the population of the next genera-
tion.

4. The steps 2 and 3 are iteratively executed till
a maximum number of generations is reached.

The GA parameters were set to: population size,
50; maximum number of generations, 100; percent-
age of the best individual that stay unchangeable
to the next generation (percentage of elitism), 10%;
crossover: parents are split in one point randomly
selected, offspring are the mixed of each part from
parents; mutation probability will be one divided
between the length of the chromosome (1/length-
chrom = 1/16 = 0.07), and it will be carried out for
each gene of the chromosome.

4.3. SVM - Support Vector Machine

Any regression algorithm, e.g., ANN or SVM,
can be applied to TSF by adopting a sliding
time window, defined by the set of time lags
{k1, k2, . . . , kI}, that is used to build a forecast.
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For a given time period t, the model inputs are
y = (yt−kI

, . . . , yt−k2 , yt−k1) and the desired out-
put is yt. For example, let us consider the series
61, 102, 143, 184, 235 (yt values). If the {1, 3} win-
dow is adopted, then two training examples can be
created: (6, 14) → 18 and (10, 18) → 23.
In SVM regression [26], the input (y with do-

main Y ) is transformed into a high m-dimensional
feature space (=), by using a nonlinear mapping
φ : Y → = that does not need to be explic-
itly known but that depends on a kernel function
K(x, x′) =< φ(x), φ(x′) >, where < u, v > denotes
the inner product of vectors u and v. Then, the
SVM algorithm finds the best linear separating hy-
perplane tolerating a small error ε when fitting the
data in the feature space:

ŷt,t−1 = w0 +
m∑

i=1

wiφ(y) (3)

where wi ∈ < are weights. The ε-insensitive loss
function sets an insensitive tube around the residu-
als and the tiny errors within the tube are discarded.
We adopt the popular gaussian kernel: K(x, x′) =

exp(−λ||x − x′||2), λ > 0, which presents less pa-
rameters than other, e.g., polynomial, kernels [27].
The SVM performance is affected by three parame-
ters: λ, ε and C (a trade-off between fitting the er-
rors and the flatness of the mapping). To reduce the
search space, the first two values are set using the
heuristics [28]: C = 3 (for a standardized output)
and ε = σ̂/

√
N , where σ̂ = 1.5/N ×∑N

i=1(yi − ŷi)2

and ŷi is the value predicted by a 3-nearest neighbor
algorithm.
Further, the forecasting performance is affected

by time lag and model selections while a better gen-
eralization is achieved if only relevant time lags are
fed into the model [14]. The kernel parameter λ pro-
duces the highest impact in the SVM performance,
in comparison to C or ε.
Sensitivity analysis [29] is a procedure that is

applied after the training phase and analyzes the
model responses when the inputs are changed. Let
ŷt−k(j) denote the output obtained by holding all
input variables at their average values except yt−k,
which varies through its entire range with j ∈
{1, . . . , L} levels. If a given input variable yt−k is
relevant then it should produce a high variance Vk.
Thus, its relative importance Rk can be given by:

Vk =
∑L

j=1 (ŷt−k(j)− ŷt−k(j))2/(L− 1),

Rk = Vk/
∑I

i=1 Vi × 100 (%).

This is a simple procedure that only measures single
input variance and not interactions of inputs. Yet,
even with this limitation, this fast procedure has
outperformed other more sophisticated algorithms
for the input variable selection [29].
We propose a simultaneous variable and model se-

lection procedure for multi-step ahead forecasting.

The method starts with a maximum of Imax time
lags and iteratively deletes one input until there are
no time lags. The sensitivity analysis is used to se-
lect the least relevant lag to be deleted in each iter-
ation, allowing a reduction of the computational ef-
fort by a factor of Imax when compared to the stan-
dard backward selection procedure. Before feeding
the SVM, all variables are standardized to a zero
mean and one standard deviation. After the train-
ing, the SVM outputs are post-processed with the
corresponding inverse scaling function. During a
given iteration, a grid search is used to find the best
model hyperparameter γ ∈ {2−15, 2−13, . . . , 21}.
The training data is divided into training (2/3 of
in-samples) and validation sets (1/3 of in-samples).
After the variable and model selection phase, the
final model is retrained using all in-samples. Multi-
step forecasts are built iteratively by using 1-ahead
predictions as inputs [20].
The SVM experiments were conducted using the

rminer library[30] of the R tool, which adopts the
Sequential Minimal Optimization algorithm to fit
the model. In this work, we set L = 6 [29] and
Imax = K + 1. The intention is to include all up to
the seasonal lag plus an additional one that may be
relevant for trended series.

4.4. Linguistic approach

The main idea is as follows. First, a time series is
decomposed into the so called trend-cycle and the
seasonal component using the fuzzy transform[31].
Second, the trend-cycle is described by the linguistic
description [32] (fuzzy rule base) comprised from
fuzzy rules. The fuzzy rules, as special sentences
of a natural language, describe the data generating
process autoregressively in an interpretable form.
Finally, a model of the seasonal components is

determined and used to forecast these components.
Both forecasted components are composed together
to obtain the time series forecasts.
The fuzzy transform (abb. F-transform) [31, 33,

34] is a specific fuzzy approximation technique that
transforms a given function defined on a real inter-
val (universe) into a simpler space of n-dimensional
vectors Rn, and then transforms it back.
First, fuzzy partition (consisting of basic func-

tions) of the universe is constructed. The basic
functions are fuzzy sets Ai such that Ai(x) > 0
for x ∈ (ci−1, ci+1) and Ai = 0 elsewhere, where ci

are usually equidistantly distributed nodes on the
universe.
Given a fuzzy partition, the (direct) F-transform

of function f is defined as a vector of the compo-
nents of the F-transform where each component is
determined as a center of gravity of function values
above (weighted by) the corresponding basic func-
tion. If the function is given only by a set of samples
the integrals in the gravity formula are replaced by
finite sums. This is also the case of a time series
which is viewed as a discrete function y(t) given at
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t = 1, . . . , T . Then an appropriate fuzzy partition
of the interval [1, T ] is constructed and the fuzzy
transform components determined:

Yi =
∑T

t=1 y(t)Ai(t)∑T
t=1 Ai(t)

, i = 1, . . . , n. (4)

The inverse transform, converts the direct F-
transform vector into another continuous function
that approximates the original one, that is in case
of a time series:

yF,n(t) =
n∑

i=1

YiAi(t).

A given time series is decomposed into a trend-cycle
and seasonal components. The inverse F-transform
serves as a model of its trend-cycle and the seasonal
component St that determines the de-trended time
series, is given by St = yt − yF,n(t).
To forecast the trend-cycle, it is sufficient to fore-

cast future F-transform components and to com-
pute the inverse F-transform for t+1, . . . , t+h. The
F-transform component evolvement may be ana-
lyzed and described using autoregressive fuzzy rules
(linguistic description) and as their first- and/or
second-order differences. This leads to a linguistic
description comprised of (automatically generated
[35] implemented in LFLC2000 software [36]) fuzzy
rules such as:

IF ∆Yi−1 is B∆i−1 AND Yi is Bi

THEN ∆Yi+1 is C∆i+1

(5)

describing the autoregressive nature of the trend-
cycle. Expressions B, C are evaluative linguistic
expressions, such as very big, extremely small or
roughly medium.
These expressions are built on the basic tri-

chotomy small, medium, big using specific adverbs
called linguistic hedges (extremely, significantly,
very, more or less, roughly, quite roughly, very
roughly) that either widen or narrow their mean-
ing. For further details we refer to [37, 19].
Using an inference mechanism and a defuzzifica-

tion method, the linguistic rules such as (5) may
be successfully used to forecast future F-transform
components. In case of the use of the evaluative lin-
guistic expressions, perception-based logical deduc-
tion (PbLD)[38] and defuzzification of evaluative ex-
pressions (DEE) are the appropriate ones, see [18].
Given an input, perception selects the most fired

rule(s) according to the degree up to which the an-
tecedents are fulfilled. If there are more than one
such antecedents (rules fired to the same degree),
the most specific antecedent(s) (linguistic hedges
play a crucial role in the determinancy of the speci-
ficity) is/are chosen and the respective fuzzy rule(s)
is/are fired.
After the perception procedure, the Łukasiewicz

fuzzy implication is applied to deduce a conclusion

that is a fuzzy sets. Note, that the Łukasiewicz
fuzzy implication is adopted from the original PbLD
but it may be replaced by other appropriate fuzzy
implications. If more rules than one are fired, their
consequences are aggregated by the minimum oper-
ation. In order to forecast the future F-transform
component that is a crisp number, the DEE defuzzi-
fication [37] is employed.

4.5. Combination of CI techniques

While ADANN and SVM approaches introduced
above aim at modeling and forecasting entire time
series, the linguistic fuzzy approach focuses only
on modeling and forecasting the trend-cycle of a
given time series. This means that seasonal com-
ponents have to be forecasted separately and com-
posed together with the trend-cycle forecast. Sea-
sonal components may be predicted by arbitrary
approriate TSF technique. Given the scope of this
paper, we found natural to propose the use of CI
approaches, i.e. the use of ADANN and SVM, lead-
ing to two novel fuzzy hybrids, termed here Fuzzy
ANN (FANN) and Fuzzy SVM (FSVM).

5. Results

5.1. Accuracy

Further, we follow the idea of the combination of
the linguistic approach and both CI approaches –
ADANN and SVM. Let us recall that the linguis-
tic approach is used to model and forecast trend-
cycles of the given time series while the latter two
approaches model the de-trended time series. Fi-
nally, both components are composed together and
the forecast accuracy is compared to ARIMA im-
plemented in ForecastPror (FP) software serves as
a comparison benchmark.

Series h1 h2

FP FANN FSVM FP FANN FSVM
pass. 1.24 1.73 1.99 1.60 0.79 0.83
pigs 0.64 0.68 0.73 0.76 1.04 1.15
cars 0.54 0.82 0.87 0.66 0.83 0.90
ab.12 1.12 0.71 0.59 1.27 1.17 1.19
ab.14 1.39 3.41 2.71 1.19 2.25 3.23
m.g. 1.30 0.17 0.14 1.48 0.48 0.44
Avg. 1.04 1.25 1.17 1.16 1.09 1.29

Table 2: Comparison of FANN, FSVM and FP per-
formance measured by MASE. Best values in bold,
“Avg.” denotes the average.

Observing Tables 2 and 3, one can again see
that there is a slight difference between compar-
isons based on MASE and SMAPE. Although the
differences are not fundamental and that we may
observe tendencies and potential of success in per-
forming the TSF task for particular methods, no
direct conclusion in the sense of the order of the
above introduced methods can be stated.
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Series h1 h2

FP FANN FSVM FP FANN FSVM
pass. 6.5 9.7 11.7 8.0 4.0 4.0
pigs 6.1 6.5 7.0 7.1 10.0 11.0
cars 7.4 12.8 13.3 9.1 12.2 13.1
ab.12 5.5 3.5 2.9 6.2 5.7 5.8
ab.14 15.0 29.9 26.4 12.7 19.1 28.6
m.g. 22.7 3.1 2.6 26.2 9.6 8.7
Avg. 10.5 10.9 10.7 11.6 10.1 11.9

Table 3: Comparison of FANN, FSVM and FP per-
formance measured by %SMAPE’. Best values in
bold, “Avg.” denotes the average.

In other words, one cannot say that one of the
methods clearly outperforms the others or is sig-
nificantly worse that the others. As we may see,
ARIMA seems to be performing the best in most
of the cases. This hypothetical conclusion could
be supported even on average, taking into account
the shorter horizon h1. However, the performance
of FANN on h2 is better on average than the one
provided by FP. Finally, one cannot even conclude
that FSVM is the worst one since it performs better
than FANN on the shorter horizon h1. Furthermore,
the differences between the average performances of
particular methods are negligible.
It may be noted that abraham14 series is most

responsible for the higher errors in case of FANNN
and FSVM while mackey-glass does such an “un-
wanted job” for FP which supports the well-known
no free lunch theorem. So, we may conclude that
both combinations are at least comparable to the
standard ARIMA and seasonal ARIMA methods
that are widely used in practice and that all method
may be complementary and appropriate for a joint
use in ensemble techniques.

5.2. Interpretability

Interpretability is generally assumed to be a key fea-
ture and advantage of fuzzy models. However, this
aspect of fuzzy models is sometimes overused and
has thus become a kind of cliche. Hence, this feature
deserves a bit deeper discussion.
Undoubtedly, there is a significant difference be-

tween rather numerically oriented fuzzy models such
as the T-S rules and fuzzy rules with fuzzy sets that
interpret antecedents as well as consequents. But
even in the latter models, there are fundamental dif-
ferences, e.g., a misleading interpretation of fuzzy
rules, such as claiming Mamdani-Assilian rules as
fuzzy IF-THEN rules, although their meaning is
rather different [40, 41]. Even if the interpretation
is correct, some treatments with distinct parame-
ters and labels may lead to something that is very
far from anything that may be called “linguistic”.
By this we mean well-tuned fuzzy models con-

structed with help of various tuning strategies lead-
ing to black-box functions that disregard the im-
portance of interpretability, as stated in. Let us

recall the crucial idea from [42]: “one may argue
that proper input-output behavior is the central goal
of automatic tuning. To some extent, this is true;
however, this is not the primary mission of fuzzy
systems.”
There is no doubt that the precision of forecasts

is the key issue. Nevertheless, we have to keep in
mind the motivation behind using a fuzzy models.
The goal is an interpretable model that does not
necessarily “leads to a painful loss of accuracy” [42].
To underline interpretability and the linguistic

nature of evaluative expressions and the used fuzzy
IF/THEN rules, we present two rules from one of
the generated models. Let us consider the cars time
series:

IF Yi is ML Sm AND ∆Yi is -ML Me
THEN ∆Yi+1 is −Me,

(6)

IF Yi is Si Bi AND ∆Yi is Me
THEN ∆Yi+1-VR Bi.

(7)

As we may see, the rules are purely linguistically
built and they do not contain artificial fuzzy sets
related to anonymous expression denoted as Aij .
Thus, every fuzzy rule can indeed be taken as a
sentence in natural language. For instance, fuzzy
rule (6) may be read as follows:

If the number of cars sold in the current year is
more or less small and the biannual sales

increment is negative with more or less medium
strength, then the upcoming biannual increment

will be negative and have medium strength.

It may be understood as: given more or less small
sales and a decreasing trend of a more or less
medium strength from the last biannual observa-
tion, the decrease will not finish but will continue
at a medium strength. Similarly, fuzzy rule (7) may
be read as follows:

If the number of cars sold in the current year is
significantly large and the biannual increment
shows medium strength, then the next biannual

increment will be negative and very roughly large.

This may be understood as: given significantly large
sales with an increasing, medium-strength trend,
signalizes a sort of saturation that will be followed
by a very roughly large decrease in sales.
We claim, that such readable information is an

additional value that might be very helpful for fur-
ther decision-making and management processes.

6. Conclusions

We have introduced two hybrid CI methodologies
where both of them use the linguistic approach to
forecasting the trend-cycle. The de-trended time se-
ries are then forecasted either by Automatic Design
of Neural Networks (with the use of genetic algo-
rithms) or by Support Vector Machines with the
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sensitivity analysis. So, the discussed approaches
combine distinct computational intelligence sub-
fields. The goal was to provide readers with a kind
of tasting of distinct methods that may serve as an
alternative to standard statistical methods. As a
comparison baseline, we have chosen the standard
(seasonal) ARIMA implemented in the professional
software package ForecastPror. Forecast accuracy
was measured by two well-established and strongly
motivated accuracy measures on two distinct hori-
zons.
The results approved that CI subfields may com-

pete with standard methods and in case of their
combination, one may benefit from different advan-
tages inherited from the original methods: flexibil-
ity, adaptability, generality or interpretability.
This study is supposed to be an introduction to

the above given field. For example, using the lin-
guistic approach to model the trend-cycle if a given
time series have no trend is obviously rather unsup-
ported, and information that no trend is present in
the time series would be fully sufficient. Similarly
using FANN or FSVM for abraham 14 rather than
ARIMA or vice-versa, using ARIMA for mackey-
glass rather than FANN or FSVM would lead to
worse results. This is a direct corollary of the well-
known “no-free lunch” theorem on distinct time se-
ries methods.
This is usually solved by constructing (combin-

ing) ensembles of methods [44, 45]. This means that
a set of methods is used to forecast a given time se-
ries and the particular forecasts (or some of them)
are combined in a distinct way to eliminate the pos-
sibility of choosing only one – the wrong one, see
[46]. The fact that the introduced approached were
not generally worse than perhaps the most-widely
used standard method opens the gate for their wide
use in ensemble techniques. This is in our opinion
the next necessarily upcoming step for the future
investigation.

Acknowledgment

We gratefully acknowledge support of the project
DAR 1M0572 of the MŠMT ČR.

References

[1] Ajoy K. Palit and Dobrivoje Popovic. Compu-
tational Intelligence in Time Series Forecast-
ing: Theory and Engineering Applications (Ad-
vances in Industrial Control). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005.

[2] G. Zhang, B. Eddy Patuwo, et al. Forecasting
with artificial neural networks::: The state of
the art. International journal of forecasting,
14(1):35–62, 1998.

[3] P. Cortez, M. Rocha, and J. Neves. Evolving
Time Series Forecasting ARMA Models. Jour-
nal of Heuristics, 10(4):415–429, 2004.

[4] K. Miiller, A. Smola, G. Ratsch, B. Scholkopf,
J. Kohlmorgen, and V. Vapnik. Predicting time
series with support vector machines. In Pro-
ceedings of the 7th International Conference
on Artificial Neural Networks, pages 999–1004.
Springer, 1997.

[5] Ian Nunn and Tony White. The application of
antigenic search techniques to time series fore-
casting. In GECCO, pages 353–360, 2005.

[6] J. Aznarte, J. Benítez, and J. Castro. Smooth
transition autoregressive models and fuzzy
rule-based systems: Functional equivalence
and consequences. Fuzzy Sets and Systems,
158:2734–2745, 2007.

[7] N. Kasabov and Q. Song. Denfis: Dynamic
evolving neural-fuzzy inference system and its
application for time-series prediction. IEEE
Transactions on Fuzzy Systems, 10:144–154,
2002.

[8] German Gutierrez Juan Peralta, Xiaodong Li
and Araceli Sanchis. Time series forecasting
by evolving artificial neural networks using ge-
netic algorithms and differential evolution. In
ĲCNN, 2010.

[9] G. Box and G. Jenkins. Time Series Analy-
sis: Forecasting and Control. Holden-Day, San
Francisco, 1976.

[10] Xin Yao, S. M. Ieee, and Yong Liu. A new evo-
lutionary system for evolving artificial neural
networks. IEEE Transactions on Neural Net-
works, 8:694–713, 1996.

[11] Hiroaki Kitano. Designing neural networks us-
ing genetic algorithms with graph generation
system. Complex Systems Journal, 4:461–476,
1990.

[12] Xin Yao. A review of evolutionary artificial
neural networks. International Journal of In-
telligent Systems, 4:539–567, 1993.

[13] C. Cortes and V. Vapnik. Support Vector Net-
works. Machine Learning, 20(3):273–297, 1995.

[14] W. He, Z. Wang, and H. Jiang. Model opti-
mizing and feature selecting for support vector
regression in time series forecasting. Neurocom-
puting, 72(1-3):600–611, 2008.

[15] P. Cortez, M. Rocha, and J. Neves. Time Se-
ries Forecasting by Evolutionary Neural Net-
works, chapter III, pages 47–70. Idea Group
Publishing, USA, 2006.

[16] T. Hastie, R. Tibshirani, and J. Friedman.
The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer-
Verlag, NY, USA, 2nd edition, 2008.

[17] G. Leng, T. McGinnity, and G. Prasad. An
approach for on-line extraction of fuzzy rules
using a self-organising fuzzy neural network.
Fuzzy Sets and Systems, 150:211–243, 2005.

[18] V. Novák, M. Štěpnička, A. Dvořák, I. Perfil-
ieva, V. Pavliska, and L. Vavříčková. Analy-
sis of seasonal time series using fuzzy ap-
proach. International Journal of General Sys-

470



tems, 39:305–328, 2010.
[19] M. Štěpnička, A. Dvořák, V. Pavliska, and

L. Vavříčková. Linguistic approach to time
series modeling with the help of F-transform.
Fuzzy Sets and Systems, to appear.

[20] P. Cortez, M. Rio, M. Rocha, and P. Sousa.
Internet Traffic Forecasting using Neural Net-
works. In Proceedings of the 2006 International
Joint Conference on Neural Networks (ĲCNN
2006), pages 4942–4949, Vancouver, Canada,
July 2006. IEEE.

[21] R. J. Hyndman. Time series data library.
http://robjhyndman.com/TSDL/.

[22] J.S. Armstrong and F. Collopy. Error mea-
sures for generalizing about forecasting meth-
ods: Empirical comparisons. International
Journal of Forecasting, 8:69–80, 1992.

[23] R.J. Hyndman and A.B. Koehler. Another look
at measures of forecast accuracy. International
Journal of Forecasting, 22(4):679–688, 2006.

[24] D. B. Fogel. Evolutionary Computation: To-
ward a New Philosophy of Machine Intelli-
gence. IEEE Press Series on Computational
Intelligence. Wiley-IEEE Press, third edition,
December 2005.

[25] Andreas Zell, Günter Mamier, R. Hübner,
N. Schmalzl, Tilman Sommer, and Michael
Vogt. Snns: An efficient simulator for neural
nets. In MASCOTS ’93: Proceedings of the In-
ternational Workshop on Modeling, Analysis,
and Simulation On Computer and Telecommu-
nication Systems, pages 343–346, San Diego,
CA, USA, 1993. Society for Computer Simula-
tion International.

[26] A. Smola and B. Schölkopf. A tutorial on sup-
port vector regression. Statistics and Comput-
ing, 14:199–222, 2004.

[27] W. Wang, Z. Xu, W. Lu, and X. Zhang. De-
termination of the spread parameter in the
Gaussian kernel for classification and regres-
sion. Neurocomputing, 55(3):643–663, 2003.

[28] V. Cherkassy and Y. Ma. Practical Selection
of SVM Parameters and Noise Estimation for
SVM Regression. Neural Networks, 17(1):113–
126, 2004.

[29] R. Kewley, M. Embrechts, and C. Breneman.
Data Strip Mining for the Virtual Design of
Pharmaceuticals with Neural Networks. IEEE
Trans Neural Networks, 11(3):668–679, May
2000.

[30] P. Cortez. Data Mining with Neural Net-
works and Support Vector Machines using the
R/rminer Tool. In P. Perner, editor, Advances
in Data Mining – Applications and Theoretical
Aspects, 10th Industrial Conference on Data
Mining, pages 572–583, Berlin, Germany, July
2010. LNAI 6171, Springer.

[31] I. Perfilieva. Fuzzy transforms: theory and ap-
plications. Fuzzy Sets and Systems, 157:993–
1023, 2006.

[32] V. Novák. Linguistically oriented fuzzy logic
controller and its design. Internat. J. Approx.
Reason., 12(3–4):263–277, 1995.

[33] I. Perfilieva and R. Valášek. Fuzzy transforms
in removing noise. In B. Reusch, editor, Com-
putational Intelligence, Theory and Applica-
tions, Advances in Soft Computing, pages 221–
230, Berlin, 2005. Springer.

[34] M. Štěpnička and O. Polakovič. A neural net-
work approach to the fuzzy transform. Fuzzy
sets and Systems, 160:1037–1047, 2009.

[35] R. Bělohlávek and V. Novák. Learning rule
base of the linguistic expert systems. Soft Com-
puting, 7:79–88, 2002.

[36] A. Dvořák, H. Habiballa, V. Novák, and
V. Pavliska. The software package LFLC 2000
- its specificity, recent and perspective appli-
cations. Computers in Industry, 51:269–280,
2003.

[37] V. Novák. A comprehensive theory of trichoto-
mous evaluative linguistic expressions. Fuzzy
Sets and Systems, 159(22):2939ï¿ 1

2–2969, 2008.
[38] V. Novák. Perception-based logical deduction.

In B. Reusch, editor, Computational Intelli-
gence, Theory and Applications, Advances in
Soft Computing, pages 237–250, Berlin, 2005.
Springer.

[39] J. Casillas, O. Cordón, F. Herrera Triguero,
and L. Magdalena, editors. Interpretability Is-
sues in Fuzzy Modeling (Studies in Fuzziness
and Soft Computing Vol. 128). Springer, Hei-
delberg, 2003.

[40] D. Dubois and H. Prade. What are fuzzy rules
and how to use them. Fuzzy Sets and Systems,
84:169–185, 1996.

[41] V. Novák and S. Lehmke. Logical structure of
fuzzy IF-THEN rules. Fuzzy Sets and Systems,
157(15):2003–2029, 2006.

[42] U. Bodenhofer and P. Bauer. Interpretability
of linguistic variables: a formal account. Ky-
bernetika, 2:227–248, 2005.

[43] F. M. Pouzols, A. Lendasse, and A. Barriga
Barros. Autoregressive time series prediction
by means of fuzzy inference systems using non-
parametric residual variance estimation. Fuzzy
Sets and Systems, 161:471–497, 2010.

[44] C. Lemke and B. Gabrys. Meta-learning for
time series forecasting in the nn gc1 competi-
tion. In Proc. 16th IEEE Int. Conf. on Fuzzy
Systems, page in press, Barcelona, 2010.

[45] M. Constantini and C. Pappalardo. A hierar-
chical procedure for the combination of fore-
casts. International Journal of Forecasting,
26:725–743, 2010.

[46] D. K. Barrow, S. Crone, and N. Kourentzes.
An evaluation of neural network ensembles and
model selection for time series prediction. In
Proc. 16th IEEE Int. Conf. on Neural Net-
works, page in press, Barcelona, 2010.

471




