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Abstract

This paper is concerned with the defuzzification of
the discretised generalised type-2 fuzzy set.

In 2008 Liu proposed the α-Plane Representation
— a decomposition of the generalised type-2 set into
horizontal slices termed ‘α-planes’. An α-plane is
akin to an interval type-2 fuzzy set. The α-Plane
Representation must be used in conjunction with an
interval defuzzification method: The three main op-
tions are 1. the Karnik-Mendel Iterative Procedure,
2. the Greenfield-Chiclana Collapsing Defuzzifier, or
3. the Nie-Tan Method. The experiments recorded
in this paper address the question, “Which is the
best interval defuzzification method for the α-Plane
Representation to be combined with?”

Keywords: type-reduction, α-Plane Repre-
sentation, Karnik-Mendel Iterative Procedure,
Greenfield-Chiclana Collapsing Defuzzifier, Nie-
Tan Method

1. Introduction

The main strength of type-2 fuzzy logic1 is its abil-
ity to deal with second-order uncertainties. Most
researchers concentrate exclusively on the compar-
atively simple interval secondary membership func-
tions [2], for which an increasing number of applica-
tions are being developed [3], [4], [5], [6], [7], [8], [9].
The capability of the generalised type-2 paradigm
to handle uncertainty is explored in [10]. Since they
lack the variability of the third dimension [2], inter-
val type-2 fuzzy sets are not able to model uncer-
tainty as subtly as their generalised counterparts.
We therefore see developing generalised type-2 sys-
tems as an important goal. A triangular type-2 sys-
tem with a defuzzification algorithm based on the
Karnik-Mendel Iterative Procedure [11] has been
developed by Starczewski [12]; this goes some way
towards achieving our aim. Coupland and John [13],
[14], have exploited geometry to improve the speed
of inferencing in generalised type-2 fuzzy sets.

There are five stages to any FIS: fuzzification, an-
tecedent computation, implication, aggregation and
defuzzification (figure 1). For a type-2 FIS defuzzi-
fication consists of two parts — type-reduction and
defuzzification proper. Type-reduction is the pro-
cedure by which a type-2 fuzzy set is converted to a

1For further details on the history and background of
type-2 fuzzy logic, see [1].

type-1 fuzzy set. This set is then defuzzified to give
a crisp number.
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Figure 1: Type-2 FIS (from Mendel [15]).

The research reported in this paper concerns
type-reduction, which in generalised type-2 fuzzy
inferencing has been regarded as a computational
bottleneck because of the high cardinality of the to-
tality of embedded sets. A faithful implementation
of the generalised type-reduction algorithm, known
as exhaustive defuzzification (subsection 3), requires
that every embedded set be processed. The finer
the discretisation, the better the representation of
a given fuzzy set, but the greater the number of em-
bedded sets generated. Literally trillions upon tril-
lions of embedded sets can be produced from unre-
markable starting conditions. With such vast num-
bers of embedded sets, a defuzzification algorithm
that works through each one is impractical.

Overcoming this bottleneck requires the develop-
ment of efficient generalised type-2 defuzzification
techniques with high accuracy. In the last five years
two such strategies have been devised: 1. In 2005
Greenfield devised the Sampling Method [16] which
is a direct, stochastic approach, in which a random
sample of the many embedded sets is selected and
processed. 2. In 2008 Liu published his strategy
based on the α-Plane Representation (APR) [17],
which is the topic of this paper. The APR oper-
ates in conjunction with an interval defuzzification
method, and thus extends interval defuzzification
to generalised type-2 sets. Liu envisaged that the
APR be employed in association with the Karnik-
Mendel Iterative Procedure [17, page 2225]. How-
ever two other candidates for the interval defuzzi-
fier deserve consideration as potential partners for
the APR. They are the Greenfield-Chiclana Collaps-
ing Defuzzifier (GCCD) and the Nie-Tan Method
(NTM). The purpose of this piece of research is to
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compare experimentally the accuracy and speed of
the following three strategies:

• APR with KMIP,

• APR with GCCD, and

• APR with NTM.

Overview of the Paper The next section of this pa-
per deals with some terminology, assumptions and
definitions. Section 3 describes the accurate but
slow exhaustive defuzzification strategy. Following
that, section 4 presents the APR, after which sec-
tion 5 introduces the trio of defuzzification tech-
niques applicable to the interval type-2 set. Section
6 describes the experimental comparison between
the interval methods, the results of which are pre-
sented in section 7.1 together with the conclusions
drawn. The figures depicting the test sets and the
tables of results appear at the end of the paper.

2. Preliminaries

2.1. Terminology

Each point on the surface of the type-2 set is refer-
enced by co-ordinates deriving from the x, u, and z-
axes. The x-axis is often referred to as the primary
domain, and the u-axis as the secondary domain.

2.2. Assumptions

Scaling With no loss of generality we assume that
the type-2 fuzzy set is contained within a unit cube.

Discretisation The work presented here is con-
cerned only with defuzzification of discretised type-
2 fuzzy sets.

Centroid Method of Defuzzification It is assumed
that the centroid method of defuzzification [18, page
336] is used.

2.3. Definitions

Definition 1 (Slice) A slice is a plane which in-
tersects the primary or secondary domain (x or u-
axis) perpendicularly.

Definition 2 (Vertical Slice) A vertical slice is
a plane which intersects the primary domain (x-
axis) perpendicularly.

Definition 3 (Degree of Discretisation) The
degree of discretisation of a discretised fuzzy set is
the separation of the slices.

The primary and secondary domains may have dif-
ferent degrees of discretisation. Furthermore the
secondary domain’s degree of discretisation is not
necessarily constant.

Scalar Cardinality For type-1 fuzzy sets, Klir and
Folger ([19], p17) define scalar cardinality as follows:

Definition 4 (Scalar Cardinality) The scalar
cardinality of a fuzzy set A defined on a finite uni-
versal set X is the summation of the membership
grades of all the elements of X in A. Thus,

| A |=
∑
x∈X

µA(x). [19, page17]

To distinguish scalar cardinality from cardinality in
the classical sense, we adopt the ‘∥ ∥’ symbol for
scalar cardinality.

3. Exhaustive Defuzzification

Algorithm 1, known as exhaustive defuzzification is
adapted from Mendel [15] and is the standard by
which the accuracy of other defuzzification tech-
niques may be assessed. It is termed the exhaustive
method because all the embedded sets are required
to be processed [20]. It is applicable to both gener-
alised and interval type-2 fuzzy sets.

Input: a discretised generalised type-2
fuzzy set

Output: a discrete type-1 fuzzy set
1 forall the embedded sets do
2 find the minimum secondary

membership grade {T-norms other than
minimum may be employed} ;

3 calculate the primary domain (x) value
of the type-1 centroid of the type-2
embedded set ;

4 pair the secondary grade with the
x-value to give set of ordered pairs (x, z)
{some values of x may correspond to
more than 1 value of z} ;

5 end
6 forall the primary domain (x) values do
7 select the maximum secondary grade

{make each x correspond to a unique
secondary domain value} ;

8 end
Algorithm 1: Type-reduction of a discre-
tised type-2 fuzzy set to a type-1 fuzzy set.

Though individually easily processed, embedded
sets in their totality give rise to a processing bottle-
neck simply by virtue of their high cardinality. Con-
sequently, exhaustive defuzzification is to be seen as
a theoretical approach rather than a practical tech-
nique. At coarse discretisations this strategy may
be implemented but is extremely slow (see subsec-
tion 7.1); at finer discretisations the issues of mem-
ory space and representation of very large numbers
make implementation impossible.

We regard the exhaustive defuzzification algo-
rithm as the standard by which other type-2 de-
fuzzification algorithms must be evaluated.
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Figure 2: Defuzzification using the α-Planes Representation (from Liu [17]).

4. The α-Plane Representation

By repeated application of an interval defuzzifica-
tion method, Liu [17] has shown that a generalised
type-2 fuzzy set may be type-reduced. The gen-
eralised set is sliced horizontally into a number of
α-planes. Each α-plane is defuzzified individually
by means of an interval method. The set of ordered
pairs {(defuzzified value, α-plane height)} forms a
type-1 fuzzy set. This is a method of type-reduction
(figure 2). By defuzzifying this type-1 set, the de-
fuzzified value for the generalised type-2 set is ob-
tained.

5. Interval Type-Reduction Strategies

In this section we describe three approaches to in-
terval type-reduction. These may be used to de-
fuzzify interval type-2 sets, or, in conjunction with
the APR, may be used to defuzzify generalised type-
2 fuzzy sets. Two of the options, the KMIP and
the GCCD, are iterative. The other alternative, the
NTM, is non-iterative.

5.1. The Karnik-Mendel Iterative
Procedure

The Karnik-Mendel Iterative Procedure (KMIP)
[11] is the most widely adopted method for type-
reducing an interval type-2 fuzzy set. The result of
type-reduction of an interval type-2 fuzzy set is an
interval type-1 set where the centroid lies between
the two endpoints. The iterative procedure is an ef-
ficient search algorithm for finding these endpoints.
The centroid of the type-1 set (i.e. the defuzzified
value of the type-2 set) is taken to be the centre of
this interval.

As the procedure works by finding the mid-point2

of the TRS interval without taking account of the
distribution of the values along the interval, there
is inevitably an element of approximation inherent
in the method.

2There is no need to calculate the midpoint when the
KMIP is combined with the APR, as the endpoints them-
selves may be inserted into the type-1 set resulting from the
decomposition into α-planes. This saves a little processing
time.

5.2. The Greenfield-Chiclana Collapsing
Defuzzifier

Another computationally simple alternative to the
exhaustive method is the Greenfield-Chiclana Col-
lapsing Defuzzifier [21]. This technique converts a
discretised interval type-2 fuzzy set into a type-1
fuzzy set known as the representative embedded set
approximation (RESA), depicted in figure 33. As
a type-1 set, the RESA may then be defuzzified
straightforwardly. The principle of the collapsing
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Figure 3: The Representative Embedded Set Ap-
proximation. Domain degree of discretisation = 0.1.
The RESA is indicated by the line of crosses.

algorithm is that one by one each vertical slice is
collapsed onto a point (located between the lower
and upper membership functions). This produces a
type-1 set.

We formally state the Simple4 Representative
Embedded Set Approximation:

3The RESA approximates to the the representative em-
bedded set (RES), whose defuzzified value is equal to that of
the original type-2 set.

4In [21], we used the term ‘simple’ to describe an interval
set in which each vertical slice consists of only two points,
corresponding to L and U . The term is redundant in the
context of this paper.
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Theorem 1 (Simple Rep. Embedded Set Approx.)
The membership function of the embedded set R
derived by dynamically collapsing slices of a dis-
cretised type-2 interval fuzzy set F̃ , having lower
membership function L, and upper membership
function U , is:

µR(xi) = µL(xi) + ri (1)

with

ri =

(
∥L∥+

i−1∑
j=1

rj

)
bi

2
(

∥L∥+

i−1∑
j=1

rj

)
+ bi

,

and bi = µU (xi) − µL(xi), r0 = 0.

The proof of the collapsing algorithm may be found
at [21].

5.2.1. Collapsing Variants

Equation (1), the formula for collapsing, is in fact
only a version of collapsing — the most intuitive
variant, whereby the slices are collapsed in the or-
der of increasing domain value (x = 0 to x = 1). We
term this collapsing forward. However slice collapse
may be performed in any slice order giving slightly
different RESAs. These in turn give slightly differ-
ent defuzzified values.

In [22] we concluded that collapsing outward gave
the most accurate results. This comes in two forms,
outward right and outward left. In outward right
the middle slice is collapsed first, then the one to
its right, then the one to the left of the middle, and
so on until all the slices have been collapsed. Out-
ward left is the opposite of outward right, i.e. the
second slice collapsed is to the left of the middle.
There is nothing to choose between these two forms
of collapsing outward. We therefore employ a two
pass strategy, collapsing outward right-left, in which
collapsing outward right and collapsing outward left
are performed sequentially, and their results aver-
aged.

5.3. The Nie-Tan Method

Nie and Tan [23] describe an efficient type-reduction
method for interval sets, which involves taking the
mean of the lower and upper membership functions
of the interval set, so creating a type-1 fuzzy set.
Symbolically, µN (xi) = 1

2 (µL(xi) + µU (xi)), where
N is the resultant type-1 set.

6. Experimental Comparison of the
Methods

6.1. Experimental Methodology

The above three interval type-reduction strategies
in conjunction with the APR were evaluated for
both accuracy and speed. Three test sets were cre-
ated:

Heater Setting Test Set This is a Mamdani FIS
generated test set, produced by the aggrega-
tion stage of a prototype FIS whose purpose is
to determine the setting for a heater. It has
5 rules and 2 inputs which are summarized in
Table 1. The primary and secondary degrees of
discretisation are 0.125. This is not a normal5
type-2 fuzzy set; its highest secondary grade is
0.6806.

Washing Powder FIS Test Set This is a Mam-
dani FIS generated test set, produced by the
aggregation stage of a prototype FIS whose
purpose is to determine the amount of wash-
ing powder required by a washing machine for
a given wash load. It has 4 rules and 3 inputs
which are summarized in Table 2. The primary
and secondary degrees of discretisation are 0.1.
This test set is not normal; the highest sec-
ondary grade is 0.9167.

Shopping FIS Test Set This is a Mamdani FIS
generated test set, produced by the aggrega-
tion stage of a prototype FIS designed to an-
swer the dilemma of whether to go shopping by
car, or walk, depending on weather conditions,
amount of shopping, etc.. The defuzzified value
is therefore rounded to one of two possible an-
swers representing either ‘by car’ or ‘on foot’.
The FIS has 4 rules and 3 inputs as tabulated in
Table 3. The primary and secondary degrees of
discretisation are 0.1. This type-2 set is normal
as it contains secondary membership grades of
1.

Tables 1 to 3 show the rules sets used by the
MatlabT M FIS6 in producing the test sets. In fig-
ures 4 to 6, the 3-D representation and FOU of each
test set is depicted. As the degrees of discretisation
are coarse, the images look rather rough, but still
give an indication of the shape of the test sets.

INPUTS OUTPUTS
Temperature Date Heating

cold — high
— winter high
hot not winter low
— spring medium
— autumn medium

Table 1: Heater FIS rules

Each test set was defuzzified using MatlabT M im-
plementations of five type-2 defuzzification strate-
gies:

1. Generalised exhaustive,
5A normal type-2 fuzzy set is one in which at least one

secondary membership grade is 1.
6The FIS was run up to the end of the inference stage,

producing aggregated sets to be defuzzified.
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INPUTS OUTPUTS
Washing Water Pre-Soak Powder

very dirty — — a lot
— hard — a lot

slightly dirty soft — a bit
— — lengthy a bit

Table 2: Washing Powder FIS rules

INPUTS OUTPUTS
Distance Shopping Weather Travel Method

short light — walk (< 0.5)
long — — use car (> 0.5)
— heavy — use car (> 0.5)
— — raining use car (> 0.5)

Table 3: Shopping FIS rules

2. APR with KMIP,

3. APR with GCCD,

4. APR with NTM, and

5. APR with interval exhaustive7.

To begin with each test set was exhaustively defuzzi-
fied and the defuzzified values and defuzzification
times recorded. Then each APR/interval method
combination was invoked with differing numbers of
α-planes ranging from 3 to 100001 and the defuzzi-
fied values obtained tabulated (tables 5 to 7). The
total run time for the defuzzification of each test
set using each method combination was recorded in
table 8. The code for the tests may be accessed on
[24].

The tests were run on a PC with an Intel(R)
Core(TM)2 Duo CPU, a clock speed of 2.93 GHz, a
2.96 GB RAM, running the MS Windows XP Pro-
fessional 2002 operating system. MatlabT M was run
as a process with a priority that was higher than
that of the operating system, so as to eliminate any
timing errors caused by other operating system pro-
cesses.

7. Results and Conclusions

7.1. Results

Table 4 shows the defuzzified values and timings
from the exhaustive defuzzification of the test sets.
These defuzzified values are used as a benchmark
for accuracy. Tables 5 to 7 show the defuzzified
values of the three test sets for the four different
APR/interval method combinations. In the case of
a non-normal type-2 set, the number of α-planes
actively used in the processing is not always as high

7The APR with interval exhaustive defuzzification was
included in the experiments for its value in shedding light on
the convergence of the results.

Test Set Defuzzified Defuzzification
Value Time

heater 0.6254971587 0.677822 seconds
powder 0.2896069752 1.391705 seconds
shopping 0.5931875193 11.96 minutes

Table 4: Generalised exhaustive defuzzification re-
sults for the three test sets.

as the the number of α-planes in the APR. This is
the reason for the inclusion of the second column in
the tables, showing the number of α-planes actually
used. Table 8 shows the defuzzification times for
each test set under each APR/interval combination.
The timings were taken for the total sequence of
test runs for each test set under each APR/interval
method combination.

7.2. Conclusions

From the results of our experiments we draw the
following conclusions:

Convergence of APR Combinations For all four
APR/interval method combinations, as the number
of α-planes increases, the defuzzified values tend to
oscillate before converging. In each case the value
they appear to converge to is different from the
(generalised) exhaustive defuzzified value. This is
to be expected in the cases of the APR + KMIP,
the APR + GCCD and the APR + NTM, as these
three interval methods are themselves approximate.
It is somewhat surprising that this happens when
the APR is partnered with interval exhaustive de-
fuzzification.

Accuracy When the number of α-planes is low, the
errors are erratic and no conclusion may be drawn
as to which combination is the most accurate. How-
ever when the number of α-planes is 11 or higher we
observe that the APR + GCCD performed better
than the APR + KMIP and the APR + NTM. In-
deed the APR + GCCD performed marginally bet-
ter than the APR + interval exhaustive.

Defuzzification Times The primary focus of this
investigation was in relation to accuracy; however
timings of the test runs were recorded. The APR +
NTM combination is the fastest, the APR + GCCD
combination takes about 20% longer, and the APR
+ KMIP8 combination takes about 5 times as long.

8The KMIP has been enhanced [25] to give the same re-
sults as the original KMIP used here, but in a computation
time 39% less. However, had the enhanced algorithms been
used in these experiments, the KMIP would still have been
the slowest of the three practical methods.
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Figure 4: Heater test set: aggregated type-2 fuzzy set; degree of discretisation of the primary and secondary
domains is 0.125.
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Figure 5: Washing powder test set: aggregated type-2 fuzzy set; degree of discretisation of the primary and
secondary domains is 0.1.
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Figure 6: Shopping test set: aggregated type-2 fuzzy set; degree of discretisation of the primary and secondary
domains is 0.1.
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No. No. α-Planes Error α-Planes Error α-Planes Error α-Planes Error α-
of α- of α- & KMIP α-Planes & GCCD α-Planes and Nie- α-Planes and Ex- Planes &
Planes Planes & KMIP Outward & GCCD Tan & Nie-Tan haustive Exhaust.

Used Right-Left Method Method Method Method
3 3 0.5935330 -0.0319642 0.5974412 -0.0280560 0.5972222 -0.0282749 0.5974396 -0.0280576
5 4 0.5933797 -0.0321174 0.6014929 -0.0240043 0.6012226 -0.0242746 0.6014844 -0.0240127
9 7 0.6149383 -0.0105588 0.6220020 -0.0034951 0.6218307 -0.0036664 0.6219955 -0.0035017
11 8 0.6119623 -0.0135348 0.6202109 -0.0052863 0.6200068 -0.0054904 0.6202020 -0.0052952
21 15 0.6096300 -0.0158671 0.6176530 -0.0078442 0.6174595 -0.0080377 0.6176442 -0.0078530
51 36 0.6067308 -0.0187663 0.6149639 -0.0105333 0.6147760 -0.0107212 0.6149553 -0.0105419
101 70 0.6063363 -0.0191609 0.6146819 -0.0108153 0.6144948 -0.0110024 0.6146732 -0.0108239
1001 682 0.6065354 -0.0189618 0.6149166 -0.0105805 0.6147268 -0.0107703 0.6149079 -0.0105893
10001 6808 0.6066098 -0.0188873 0.6149818 -0.0105153 0.6147921 -0.0107051 0.6149731 -0.0105240
100001 68061 0.6066101 -0.0188871 0.6149819 -0.0105153 0.6147921 -0.0107051 0.6149732 -0.0105240

Table 5: Defuzzified values obtained for the Heater Test Set. (Exhaustive defuzzified value = 0.6254971587.)

No. No. α-Planes Error α-Planes Error α-Planes Error α-Planes Error α-
of α- of α- & KMIP α-Planes & GCCD α-Planes and Nie- α-Planes and Ex- Planes &
Planes Planes & KMIP Outward & GCCD Tan & Nie-Tan haustive Exhaust.

Used Right-Left Method Method Method Method
3 3 0.2987646 0.0091576 0.3100683 0.0204614 0.3102564 0.0206494 0.3100715 0.0204645
5 5 0.2930690 0.0034621 0.2990423 0.0094353 0.2991462 0.0095392 0.2990447 0.0094377
9 9 0.2905533 0.0009464 0.2949802 0.0053732 0.2950580 0.0054510 0.2949820 0.0053750
11 11 0.2818122 -0.0077947 0.2860659 -0.0035410 0.2861420 -0.0034649 0.2860678 -0.0035392
21 20 0.2861117 -0.0034953 0.2903153 0.0007084 0.2903923 0.0007853 0.2903173 0.0007103
51 47 0.2887201 -0.0008869 0.2928824 0.0032755 0.2929596 0.0033527 0.2928845 0.0032775
101 93 0.2868682 -0.0027388 0.2909067 0.0012997 0.2909814 0.0013744 0.2909086 0.0013017
1001 918 0.2868148 -0.0027922 0.2907821 0.0011752 0.2908556 0.0012486 0.2907841 0.0011771
10001 9168 0.2867620 -0.0028450 0.2907216 0.0011146 0.2907949 0.0011879 0.2907235 0.0011165
100001 91671 0.2867607 -0.0028463 0.2907192 0.0011122 0.2907925 0.0011856 0.2907212 0.0011142

Table 6: Defuzzified values obtained for the Washing Powder Test Set. (Exhaustive defuzzified value =
0.2896069752.)

No. No. α-Planes Error α-Planes Error α-Planes Error α-Planes Error α-
of α- of α- & KMIP α-Planes & GCCD α-Planes and Nie- α-Planes and Ex- Planes &
Planes Planes & KMIP Outward & GCCD Tan & Nie-Tan haustive Exhaust.

Used Right-Left Method Method Method Method
3 3 0.6110598 0.0178723 0.6151870 0.0219995 0.6150809 0.0218934 0.6151852 0.0219977
5 5 0.5979297 0.0047422 0.6018755 0.0086880 0.6017783 0.0085908 0.6018736 0.0086861
9 9 0.5890816 -0.0041059 0.5932603 0.0000727 0.5931403 -0.0000472 0.5932572 0.0000697
11 11 0.5905091 -0.0026784 0.5946488 0.0014612 0.5945378 0.0013502 0.5946460 0.0014585
21 21 0.5882242 -0.0049633 0.5929872 -0.0002003 0.5928530 -0.0003345 0.5929838 -0.0002037
51 51 0.5868927 -0.0062948 0.5920148 -0.0011727 0.5918663 -0.0013212 0.5920111 -0.0011765
101 101 0.5867273 -0.0064602 0.5919492 -0.0012383 0.5917992 -0.0013883 0.5919455 -0.0012420
1001 1001 0.5862202 -0.0069674 0.5914404 -0.0017472 0.5912909 -0.0018966 0.5914366 -0.0017509
10001 10001 0.5861870 -0.0070006 0.5914135 -0.0017741 0.5912639 -0.0019236 0.5914097 -0.0017778
100001 100001 0.5861793 -0.0070082 0.5914059 -0.0017816 0.5912563 -0.0019312 0.5914021 -0.0017854

Table 7: Defuzzified values obtained for the Shopping Test Set. (Exhaustive defuzzified value = 0.5931875193.)

Test Set Degree of Number of α-Planes α-Planes α-Planes & α-Planes and
Discretisation Embedded Sets & KMIP & GCCD NT Method Exhaustive Method

heater 0.125 14580 129.0 secs. 32.3 secs. 25.5 secs. 24.4 minutes
powder 0.1 24300 242.6 secs. 62.6 secs. 52.1 secs. 133.6 minutes
shopping 0.1 312500 290.3 secs. 74.4 secs. 63.7 secs. 145.7 minutes

Table 8: Defuzzification times for the three test sets.
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