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Abstract

A large number of accuracy measures for crisp su-
pervised classification have been developed in su-
pervised image classification literature. Overall ac-
curacy, Kappa index, Kappa location, Kappa histo
and user accuracy are some well-known examples.
In this work, we will extend and analyze some of
these measures in a fuzzy framework to be able to
measure the goodness of a given classifier in a su-
pervised fuzzy classification system with fuzzy ref-
erence data. In addition with this, the measures
here defined also take into account the preferences
of the decision maker in order to differentiate some
errors that must not be considered equal in the clas-
sification process.

Keywords: Fuzzy image classification, Accuracy
measures; Kappa Index.

1. Introduction

Any supervised classification does not complete un-
til an assessment of its accuracy has been per-
formed. In supervised crisp image classification
models it is supposed that there exist a priori knowl-
edge (almost for a subset of items) about the belong-
ingness to the different classes under study. In this
paper, we will refer to this a priori information as
the expert information. In this situations, the com-
mon way to measure the accuracy of a crisp classifier
is done by selecting a sample of the data (reference
data) and comparing the information (output) given
by the classifier and by the expert. This informa-
tion is compared generally using an error matrix.
From this error matrix, it can be found in litera-
ture too many accuracy measures as overall, kappa
[11], weighted kappa [12] among others that can be
used (see [14] for a general review of different accu-
racy measures use in remote sensing image classifi-
cation).

We can conclude that even there is still an open
problem how to asses correctly the accuracy in su-
pervised crisp image classification models, the prob-
lem has been studied for many researches and for
real situations it can be done corrects approxima-
tions. Unfortunately, there exist other situations in
which a crisp classification is not successful to rep-
resent the reality.

"Soft" classification models are desirable in many
situations (specially in image processing see [23]).
For example, in a probabilistic framework, the clas-
sifier could be interpreted as the likelihood that the
patters lie in any of a set of possible classes. An-
other interesting situation of soft classification is
founded in the fuzzy classification problems. Fuzzy
sets theory appears in a natural way as an interest-
ing and necessary tool to model the uncertainty due
to the ambiguity and/or vagueness ([31]). In this
framework, the fuzzy classifier could be understood
as the partial belongingness to several categories at
the same time.

Although the capacity, successful and utility of
"soft" classification models have been clearly proved
for many researches during the last four decades,
few efforts have been dedicated to define adequate
methods for the evaluation of the accuracy of their
outputs. Some recent works have sought to develop
approaches founded on fuzzy sets, still based on
the confusion matrix. Although various suggestions
have been made for the evaluation of soft classifi-
cations in general, (see [8, 10, 13, 16, 19, 22, 25]
among others), the fuzzy error matrix defined in [8]
is one of most used approaches, as it represents a
generalization (grounded on the fuzzy set theory)
of the traditional confusion matrix. In this work a
generalization of the error matrix was presented in
a fuzzy framework as follow:

First at all and for each object p and each cell
(i, j), they determined (based on the min operator)
the degree to which p has been classified in class j
by the expert and in class i by the classifier. After
that, this information is aggregated for each object
p to obtain the fuzzy error matrix (see [8] for more
details).

Although this fuzzy error matrix presents some
clear advantages compared with the classical ap-
proaches, some misbehavior appears when the fuzzy
classification that is evaluated is not a Ruspini par-
tition [26]. Some authors (see for example [28, 17])
have partially analyzed and studied this problem-
atic. With the main aim to fix some of these prob-
lems, in [17] it was defined a new family of disagree-
ment weighted measures that permits to extend the
most popular accuracy measures in image super-
vised classification: overall and the Kappa statistic
for classical hard (crisp) classifications considering
not only the main diagonal of the fuzzy error matrix
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as is done in [8].
Nevertheless, the use of the Kappa index to vali-

date the results in image classification has been re-
cently critiqued (see [24] for more details) due to the
confusion between similarity in quantity and simi-
larity of location. In [24] it is introduced two statis-
tics to separately consider similarity of location and
similarity of quantity.

In this work, and based on the fuzzy error de-
fined in [17], it is extended these two concepts for
soft classifications. The present paper is organized
as follows: in section 2, we review the main clas-
sical accuracy measures for the crisp case (overall,
kappa index, Kappa location, Kappa histo and the
Kno accuracy index). In section 3 the family of
disagreement measures for fuzzy classification pro-
posed in [17] is presented. In section 4, we extend
and analyze the classical accuracy measures defined
only for the crisp case. Finally, in section 5 some
remarks and comments are drawn.

2. Accuracy assessment in crisp images
classification models

As pointed out in [29], the accuracy assessment of
a supervised image classification problem involves
three different steps: the sampling design, the re-
sponse or measurement design to obtain the true
classes for each sampling (usually requiring an ex-
pert) and the analysis of the obtained data. In this
work we will focus on the third step in which it
is compared the results obtained by the classifier
with the reference data set. The methodologies for
this comparison can be divided (see [10] for more
details), between non-site specific assessments [25]
and site specific assessments [11]. In a non-site spe-
cific assessment, only total areas for each category
are computed and compared. This approach is less
expensive, but has been criticized because it does
not take into account the correct localization of the
classifier. Given the limitations of non-site specific
assessment the site specific assessment is usually
preferred. To this reason, in this work we will focus
on the site specific assessment.

The common way to measure the accuracy in the
site specific assessment, is by using the error ma-
trix. The error matrix is a table that displays statis-
tics for assessing supervised classification accuracy
by showing the degree of misclassification among
classes. The error matrix is also known as a con-
fusion matrix, a contingency table or a classified
error matrix. From now on, we will denote by nij

the number of items that have been classified by the
expert into the class j and by classifier in the class
i. One one hand, we will denote by ni. =

∑
j

nij ,

the number of items that have been classified into
the class i and by n.j =

∑
i

nij the number of items

that have been classified by the expert into the class
j. We will denote by n the number of items that

have to be classified.
Once the error matrix has been built, results can

be compared by existing statistical techniques (non-
site specific assessment techniques). One of the
most popular measures obtained from the error ma-
trix is the overall accuracy. Overall accuracy eval-
uates the percentage of cases correctly classified, so
its interpretation is direct. Although the overall ac-
curacy measure is really easy to interpret, we can
find too many references in which this measure has
been criticized. Among other things, there are some
cases in which the correct classification is made by
chance. In order to solve this problem, Cohen [11]
defined the most widely used statistic for the esti-
mation of the effect of change agreement, called the
Kappa statistic.

Let us consider a fixed an image, divided into a
set of pixels P , with T ⊂ P the family of pixels to
be tested. Let A1, . . . Ak be the set of crisp classes
under consideration. The error matrix N is then
defined as a frequency matrix, where each element
nij represents the number of pixels that the expert
classified a pixel in Ai but the classifier did in Aj .

Definition 2.1 Given the error matrix N = (nij),
the overall accuracy is defined as

Oc =

k∑
i=1

nii

|T |

being |T | the number of pixels we are testing.

Definition 2.2 Given the error matrix N = (nij)
the Kappa statistic is defined as:

K = Oc − pe

1 − pe

where pe represent the percentage of items that
has been classified correctly by change, that is: pe =∑

i ni.n.i

n
.

Again, although the Kappa statistic is the most
popular technique for comparing different classi-
fiers, it has been also extensively criticized. Some
authors, see for example [15, 24], point out that the
Kappa coefficient is not the only way to compensate
for chance agreement or to test the significance of
differences in accuracy among classifiers.

Recent studies about the Kappa index [24] per-
mit to dissected the Kappa index into two further
statistics in the framework of image classification:
Kappa location [24] and the Kappa histo [20]. These
two statistics are sensitive to respective differences
in location and in the histogram shape of all the
categories. By Klocation and Khisto, we will de-
note these two statistics. In this framework is also
defined the Kno agreement index [24], as the stan-
dard kappa index in which the probability of change
pe is now calculated as 1

k , where k is the number of
classes.
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Definition 2.3 Given the error matrix N = (nij)
the Kappa Location is defined as:

Klocation = Oc − pe

MQPL − pe

where MQPL represents the accuracy assessment
situations in which the ability to specify the quantity
is medium and the ability to specify the location,

that is: MQPL =
∑

i min{ni., n.i}
n

instead of 1 as
in the original Kappa index.

The Klocation gives the similarity or agreement
scaled to the maximum similarity that can be
reached with the given quantities. An alternative
expression for the agreement of the quantitative
model results is the maximal similarity that can be
found based upon the total number of cells taken in
by each category. This is called MQPL. MQPL
can be put in the context of Kappa and Klocation
by scaling it to Oc. The resulting statistic is newly
introduced here and is called Khisto, because it is
a statistic that can be calculated directly from the
histograms of two maps.

Definition 2.4 Given the error matrix N = (nij)
the Khisto is defined as:

Khisto = MQPL − pe

1 − pe

The definition of Khisto has the powerful prop-
erty that Kappa is now defined as the product of
two factors (i.e. K = Klocation x Khisto). The
first factor is Klocation, which is a measure for the
similarity of spatial allocation of categories of the
two compared maps. The second factor is Khisto,
which is a measure for the quantitative similarity of
the two compared maps.

Finally, considering that the probability of change
pe can be estimated as 1

k , where k is the number of
classes. The Kno is defined as follows:

Definition 2.5 Given the error matrix N = (nij)
the Kno agreement index is defined as:

Kno =
Oc − 1

k

1 − 1
k

Example 1 Let us consider the example given in
[10],where three crisp classes A1, A2 and A3 were
considered: Forest, Wetland and the Urban Areas,
respectively. If the error matrix is

M =

 23 9 6
3 18 5
4 3 29


is easy to obtain the overall accuracy Oc = 0.7, the
Kappa Index K = 0.7−0.336

1−0.336 = 0.548, the Kappa lo-
cation Klocation = 0.7−0.336

0.92−0.336 = 0.623, the Kappa
histo Khisto = 0.92−0.336

1−0.336 = 0.879 and the Kno in-
dex Kno = 0.7−0.333

1−0.333 = 0.55.

Another important topic in accuracy assessment
is the importance-equivalence of the errors. In the
previous approaches, all errors have been assumed
of equivalent importance. This is, of course, an un-
realistic hypothesis. But weights can be introduced
in order to account for differences among the errors.

In this sense, the weighted Kappa defined by Co-
hen [11] incorporates unequal error weights. But,
as discussed in [10], the weighted Kappa has not re-
ceived too much attention. One of the reasons for
this is the difficulty for the expert of correctly deter-
mining the weights (see [18] for a possible solution).

Definition 2.6 Given the error matrix N = (nij),
the weighted Kappa statistic is defined as:

K =

k∑
i=1

k∑
j=1

uij
nij

n
−

k∑
i=1

k∑
j=1

uij
ni+

n

n+i

n

1 −
k∑

i=1

k∑
j=1

uij
ni.

n

n.i

n

.

We shall obviously assume that uii = 1 for all i).

3. Measuring the errors in "soft
classification models

Traditional image accuracy assessment assumes
crisp classes, in such a way that agreement between
the classifier (C) and the expert (E) is modelled ac-
cording to a two-valued model: perfect agreement
(0) or total disagreement (1). This restriction im-
plies a strong oversimplification of reality, since the
continuum of variation in many landscapes will be
difficult to be properly represented. In order to ad-
dress this issue, we will propose a continuous error
measure that summarizes the differences between a
crisp reference data set (most expert are still crisp)
and a fuzzy classifier.

From a mathematical point of view, a pixel be-
ing classified by the expert (E) or by the classifier
(C) as the crisp class Ai, can be modelled as a k
dimensional vector, k being the number of different
classes under consideration, in such a way that all
coordinates take value 0 except the i-th coordinate,
which takes value 1. A crisp classifier or a crisp ref-
erence data set can be then considered as a function
assigning to each pixel p a vector in{

x ∈ {0, 1}k/
∑

i

xi = 1

}

Hence, in case our k classes are fuzzy and we as-
sume that assignments is made in terms of a Rus-
pini’s partition [26] (see also [6]), both classifier C
and expert E will be defined as mappings

E : P −→
{

x ∈ [0, 1]k/
∑

i

xi = 1

}
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and

C : P −→

{
x ∈ [0, 1]k/

∑
i

xi = 1

}

Following this notation, disagreement between
classifier and expert can be measured by means of
a distance in such a k dimensional space, assigning
to each pixel a real value

D : T −→ ℜ

where T is the subset of pixels (or polygons) selected
for the accuracy assessment (an alternative valua-
tion set can be given in terms of linguistic terms,
see [16]). A standard measure for disagreement be-
tween classifier and expert is given below.

Definition 3.1 Given an image P and a family of
classes A1 . . . Ak under consideration, E an expert
function and C a classifier function, then the error
of the pixel p given by the classifier C with reference
data set E is defined as:

Df (E(p), C(p), p) =
k∑

i=1
|E(p)i − C(p)i|

where E(p)i is the i-th coordinate of E(p) and C(p)i

is the i-th coordinate of the C(p).

Notice that this definition does not assume a crisp
expert neither a crisp classifier. If classes are fuzzy
in nature, mathematical models should acknowledge
such a situation, and the expert should give infor-
mation in terms of fuzzy classes. But in practice we
find that most expert classifiers are crisp, perhaps
because of the complexity in defining all parame-
ters of a fuzzy classification. In this case, the above
distance is unrealistic, giving excessive distance val-
ues to transition zones. To the aim to represent the
disagreement in a more realistic way, in [17], it was
proposed the following definition.

Definition 3.2 Given a an image P and a family
of classes A1 . . . Ak under consideration, E a crisp
expert function and C a fuzzy classifier function,
then the error of the pixel p given by the classifier
C with reference data set E is defined as:

Dc(E(p), C(p), p) =
k∑

i=1
wij |E(p)i − C(p)i|

where E(p)i is the i-th coordinate of E(p), C(p)i

is the i-th coordinate of the C(p), j is represents
the class to which p is assigned (E(p)j = 1) and
each wij ∈ ℜ+ represents the importance of the er-
ror when a unit sampling that belongs to class j is
classified as class i.

Notice that whenever both classifier and refer-
ence data are crisp, the above error function can
be viewed as a weighted error function that takes

value wij if the expert E(p) has classified the pixel
as Aj and the classifier has classified the same pixel
as Ai. Moreover, if we take wij = 1, ∀j, then the
disagreement measure is just the classical one. In
a more general approach, these weights can depend
on the maximum value E takes, or any other dis-
persion measure for E.

Notice also that our approach does not impose
any particular structure on the classification system
(as pointed out in [5, 6], fuzzy partitions in the sense
of Ruspini as quite often unrealistic).

4. Accuracy measures in soft image
classification

Once the error (agreement) function is obtained and
the weights are determined, it is possible to define
the overall accuracy, the kappa index, Klocation,
Khisto and Kno can be obtained aggregating in an
adequate way the error for each object.

Definition 4.1 Given P the object set, A1 . . . Ak

the family of classes under consideration, E the ex-
pert function and C the classifier function, we de-
fine the overall accuracy (OC) as:

OC =
∑
p∈T

1 − D(E, C, p)
|T |

=
∑
p∈T

A(E, C, p)
|T |

Remark 4.1 Let us note that if the classifier pro-
duces a Ruspini’s partition (i.e.,

∑k
i=1 Ci(p) =

1, ∀p ∈ T ), and the expert is crisp, then the overall
accuracy measure above defined coincides with the
overall accuracy defined in [8].

For a more general case, in case Ruspini’s assump-
tion is not fulfilled, Binaghi’s approach may produce
strange results, as shown below.

Example 2 Let us suppose that all errors are con-
sidered equally important, E(p) = (0.2, 0.1, 0.2) and
C(p) = (0.4, 0.3, 0.2) for an object p ∈ T . If we build
the fuzzy error matrix defined in [8], we obtain:

X =

 0.2 0.2 0.2
0.1 0.1 0.1
0.2 0.2 0.2


In this matrix, xij = min {E(p)i, C(p)j}. Fol-

lowing this fuzzy error matrix, the overall accuracy
defined in [8] is

∑
i

xii∑
i

E(p)i
= 0.2+0.1+0.2

0.2+0.1+0.2 = 1. So,
Binaghi’s approach suggests a perfect agreement be-
tween the expert and the classifier. But in our
opinion this is inappropriate. On the contrary, our
agreement measure suggests a more accurate differ-
ence between expert and classifier: A(E, C, p) = 0.8.

Example 3 Let us suppose that all er-
rors are considered equally important,
E1(p) = (0.4, 0.1, 0.2, 0.3), E2(p) = (0.4, 0.3, 0, 0),
E3(p) = (0.4, 0, 0.1, 0.3), E4(p) = (0.4, 0, 0.2, 0) and
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C(p) = (1, 0, 0, 0) for a given object p ∈ T . In the
Binaghi case, the overall accuracy can be assigned
an overall accuracy of 1 in all four cases. But again
this result is not appropriate, and in fact our agree-
ment measure establishes differences between expert
and classifier: A(E1, C, p) = 0.4, A(E2, C, p) = 0.7,
A(E3, C, p) = 0.6 and A(E4, C, p) = 0.8.

Now an Extended Kappa statistic (that we will
denote as KE) is proposed, based on the previous
Kappa statistic but allowing comparisons between
arbitrary classifiers (a crisp classifier with a crisp
data reference set and equal weights, a crisp clas-
sifier with a crisp data reference set and non-equal
weights, a fuzzy classifier with a crisp data reference
set and equal weights, and a fuzzy classifier with a
crisp data reference set and non-equal weights).

Definition 4.2 Given P the object set, T ⊂ P the
accuracy data set with cardinality t, A1 . . . Ak the
family of classes under consideration, E the expert
function and C the classifier function, we define the
Extended Kappa statistic KE as:

KE = p̂o − p̂c

1 − p̂c

where p̂o = OC is the overall accuracy

p̂c =
∑
p∈T

∑
q∈T

1 − D (C(p), E(q))
t2

where

D (C(p), E(q)) = Min

1,
k∑

j=1
wij | (C(p))j − (E(q))j |


with Max {(E(q))1≤r≤k} = (E(q))i.

It is important to note that this new definition is
an extension of the standard Kappa measure for two
raters. As happen in the classical case with the stan-
dard Kappa accuracy index, is possible to decom-
pose in a multiplicative way the extended Kappa
index by means of the extended Kappa location in-
dex and the extended histo index as we show below.

Definition 4.3 Given P the object set, T ⊂ P the
accuracy data set with cardinality t, A1 . . . Ak the
family of classes under consideration, E the expert
function and C the classifier function, we define the
Extended Kappa location statistic KlocationE as:

KlocationE = p̂o − p̂c

MQPL − p̂c

where MQPL =
∑

i

1
|T |

Min

∑
p∈T

Ci(p),
∑
p∈T

Ei(p)

.

Let us observe that the definition of MQPL is
the natural definition of the MPQL given in [24] in
a fuzzy framework.

Definition 4.4 Given P the object set, T ⊂ P the
accuracy data set with cardinality t, A1 . . . Ak the
family of classes under consideration, E the expert
function and C the classifier function, we define the
Extended Kappa histo statistic KhistoE as:

KhistoE = MQPL − p̂c

1 − p̂c
.

Let us observe from previous two definitions that
as happen in the classical measures the following
equation holds.

KE = KlocationE x KlocationE .

Finally, to conclude the extensions defined in this
paper, an Extended Kno agreement index is pro-
posed, based on the previous Kno accuracy index
but allowing comparisons between arbitrary classi-
fiers.

Definition 4.5 Given P the object set, T ⊂ P the
accuracy data set with cardinality t, A1 . . . Ak the
family of classes under consideration, E the expert
function and C the classifier function, we define the
Extended KnoE accuracy index as:

KnoE =
p̂o − 1

k

1 − 1
k

.

Remark 4.2 Let us observe that three previous ac-
curacy measures are extensions of different accuracy
measures that have been studied in literature fixing
some of the problems that present classical accuracy
measures in more general cases. In particular:

• For the case in which the classifier and the ex-
pert are both crisp and all the errors are equally
important, it can be easily proved that previ-
ous accuracy index coincide with the classical
Kappa index, Kappa location, Kappa histo, and
the Kno accuracy index.

• For the case in which the classifier and the ex-
pert are crisp and all errors are not equally
important, the extended Kappa coincides with
the weighted kappa and the new Kappa loca-
tion, Kappa histo and Kno accuracy index
could be addressed as a weighted Kappa loca-
tion, weighted Kappa histo and a weighted Kno
accuracy index respectively permitting to repre-
sent real classification situations in which the
errors must not consider equals.

• For the case in which the classifier is fuzzy, the
expert is crisp and all errors are equally impor-
tant, the extended Kappa coincides with the one
defined in [8]. In [17], it can be seen some ex-
amples of a bad performance of the Kappa index
defined in [8] for more general situations (es-
pecially when the expert is not a Ruspini parti-
tion).
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Pixel Binaghi Agreement A(p, C, E) Crisp
p1 0.8 0.8 1
p2 0.6 0.6 1
p3 0.9 0.7 0.5
p4 1 0.8 0.5

Table 1: Agreement between expert and classifier
in [8], A(p, C, E) and after a crisp transformation.

• For the case in which the classifier is fuzzy, the
expert is crisp and all errors are equally impor-
tant, the new extended Kappa location, Kappa
histo and Kno accuracy index are the natu-
ral extension of the classical Kappa location,
Kappa histo and Kno accuracy index using the
matrix error defined in [8].

• For the case in which the classifier is fuzzy, the
expert is crisp and all errors are not equally im-
portant, the extended Kappa could be addressed
as a weighted fuzzy kappa index defined in [8]
considering now different importance for the
errors.

In the following example we calculate the new ex-
tended accuracy measures comparing with the one
defined in [8] and the classical crisp measures for a
very simple example.

Example 4 Let us consider an image T with three
classes A1, A2 and A3. Let us suppose that the
image only contain four different pixels p1, p2,
p3 and p4 with frequency 10, 20, 20 and 50 re-
spectively. The outputs of the fuzzy classifier for
these four class of pixels are C(p1) = (0.8, 0.1, 0, 1),
C(p2) = (0.6, 0.4, 0), C(p3) = (0.4, 0.5, 0, 1) and
C(p4) = (0.4, 0.4, 0.3). The expert opinion for these
four pixels are E(p1) = (1, 0, 0), E(p2) = (1, 0, 0),
E(p3) = (0.5, 0.3, 0.2) and E(p4) = (0.4, 0.4, 0.1).
The confusion matrix calculated by means of [8] is
the following

X =

 48 26 11
37 26 9
11 19 9


and n = 95. The different agreement measures and
accuracy measures can be viewed in tables 1 and 2.

First at all, we would like to remark that for
the calculations of the crisp assessment in tables
1 and 2 we have transformed (as is done usually)
the fuzzy information by means of the Maximum
operator (i.e. The vector (0.6, 0.4, 0) is transformed
into (1, 0, 0)). For the situations in which the max-
imum is reached in more that one class we have
adopted a probabilistic interpretation (i.e. the vec-
tor (0.4, 0.4, 0.2) is transformed with probability 1/2
into the vector (1, 0, 0) and with probability 1/2 into
(0, 1, 0).) Also, let us note that for the calculations
of the agreement function defined in [17] we have
considered all errors equally important.

Classical Overall 65
100 = 0.65

Binaghi Overall 83
95 = 0.873

Oc 74
100 = 0.74

Classical Kappa 0.65−0.575
1−0.575 = 0.176

KE
0.74−0.7065

1−0.7065 = 0.1141
Classical Kappa location 0.74−0.575

0.8−0.575 = 0.733
KlocationE

0.74−0.7064
0.83−0.7065 = 0.271

Classical Kappa histo 0.8−0.575
1−0.575 = 0.529

KhistoE
0.83−0.7065

1−0.7065 = 0.4207
Classical Kno 0.65−0.333

1−0.333 = 0.475
KnoE

0.74−0.333
1−0.333 = 0.61

Table 2: Comparison between different Accuracy
measures.

As can be observe from the previous example,
the crisp assessment is unrealistic and fails due to
the fact of the big information that is lost when
fuzzy information is transformed to crisp informa-
tion. This fact can be easily view in pixels p1 and
p2 (perfect agreement but the opinions between ex-
pert and classifier are different) and pixels p3 and
p4 (low agreement considering both opinions). The
assessment proposed in [8] clearly improve the crisp
assessment but fails in some aspects as the overesti-
mation. This fact can be clearly viewed in the pixel
p4 (perfect agreement but the opinions between ex-
pert and classifier are different). In addition with
this, the agreement between expert and classifier for
the pixel p3 is greater than the agreement for the
pixel p1 but as can be seen this situations should be
inverse.

The agreement defined in [17] fix these previous
situations giving a more realistic index of Overall
(between Binaghi approach and crisp approach).
This situations also is observed in the Kappa in-
dex, Kappa location, Kappa Histo or Kno accuracy
index.

5. Final remarks

In this work, we have focused on the problem of
developing accuracy measures that permit us to es-
tablish the goodness of image classification when
there exist a reference data. In the crisp case, it is
very common the use of statistical index as Overall.
Nevertheless, the use (in the crisp case) of the over-
all accuracy measure to represent the quality of a
classification performance has serious problem since
not represent clearly the real agreement between the
reference data and the classifier. To this reason the
use of mainly Kappa Statistic and recently Kappa
location, Kappa histo was having a great impact (es-
pecially in remote sensing) in image accuracy assess-
ment. We would like to stress that although Kappa
index can be used for any classification problem as
a measure of agreement between expert and classi-
fier, its decomposition into Kappa histo and Kappa
location only has sense in the framework of image

347



classification (specially in remote sensing classifica-
tion problem). This is the reason way the topic of
this research has been focus on image classification.

Our proposal pursues an evaluation of accuracy
of fuzzy classifications, extending previous accu-
racy measures into a fuzzy framework, following the
works that were developed in [17, 18] or [8] among
others. Although in this paper the accuracy assess-
ment can be carry out in any situation (expert fuzzy,
classifier fuzzy, and error not equal) we will like to
emphasize that all reference data you can find in
image classification literature are crisp. But as is
pointed in [21] more efforts are needed in order to
built fuzzy reference data sets that gather the fuzzy
expert’s opinions. For this case, is important to note
that the disagreement measure here proposed can be
easily generalized in order to be able to assess the
accuracy when the classifier and the reference data
be fuzzy.
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