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Abstract

Two classes of aggregation functions: L-statistics
and S-statistics and their generalizations called
quasi-L-statistics and quasi-S-statistics are consid-
ered. Some interesting characterizations of these
families of operators are given. The aforementioned
functions are useful for various applications. In par-
ticular, they are very helpful for modeling the so-
called Producer Assessment Problem.
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1. Introduction

Aggregation operators, i.e. functions combining
many numerical values into a single one, play an im-
portant role in many areas of everyday life includ-
ing decision making, computer science, data sum-
marization, statistics, economy, social sciences or
operational research. Apart from particular appli-
cations, the theory of aggregation operators is a fas-
cinating and rapidly developing mathematical do-
main where many problems are still open, there are
plenty of facts to be discovered and there is a need
for new ideas to be elaborated (we refer the reader
to [10] for the recent state of the art monograph).

Operators projecting multidimensional state
space into a single dimension are often called ag-
gregation functions [10]. Typical examples widely
used in the decision making are: the sample max-
imum and other quantiles, arithmetic mean, OWA
[20] and OWMax [4] operators, etc.

In this paper we consider two useful classes of
aggregation operators: L-statistics and S-statistics
and their natural generalizations, called quasi-L-
statistics and quasi-S-statistics, respectively. We
discuss some of their properties, especially the char-
acterization theorems.

It is worth mentioning that so well-known and
popular classes of aggregation operators like OWA,
OWMax or OMA operators appear as particular
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cases of the families of the functions discussed in
this paper.

This contribution extends our results given in
[6] and recent results obtained by Mesiar and
Mesiárova-Zemánková [15]. In particular, we ana-
lyze the aforementioned functions with respect to
the so-called Producer Assessment Problem (which
involves situations where given alternatives are
rated not only with respect to the quality of deliv-
ered items but also to their productivity) discussed,
e.g., in [6, 8]. The issue of fair assessment of sci-
entists based on the number of citations gained by
their papers is its the most representative instance.
The h-index proposed by J.E. Hirsch [11], one of the
most widely known tools used in this domain, is a
special case of the discussed quasi-S-statistics.

The paper is organized as follows. In Sec. 2 we
present the conventional notation used throughout
the paper and recall the concept of impact func-
tions which form a model for the Producer Assess-
ment Problem. In Sec. 3 we describe the class
of L-statistics and S-statistics, their natural gen-
eralizations and basic properties. Then in Sec. 4
we present a few characterization theorems for the
aforementioned classes of functions. Finally, in Sec.
5 we discuss the problem of vector concatenation
with respect to its influence on the impact function
value.

2. Preliminaries

2.1. Basic notation

Let I = [a, b] denote any nonempty closed inter-
val of extended real numbers R̄ = [−∞,∞]. Un-
less stated otherwise, n,m ∈ N. We assume that
N0 = {0, 1, 2, . . .} denotes the set of all nonnegative
integers while [n] = {1, 2, . . . , n}.

Given any x = (x1, . . . , xn), y = (y1, . . . , yn)
∈ I

n, we write x ≤ y if and only if (∀i ∈ [n])
xi ≤ yi. Similarly, we say that x < y when
x ≤ y and x 6= y. Additionally, x ∼= y if and
only if there exists a permutation σ of [n] such that
(x1, . . . , xn) = (yσ(1), . . . , yσ(n)).

Let x(i) denote the ith-smallest value of x =
(x1, . . . , xn) while (n ∗ x) stands for the n-tuple
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Table 1: The Producer Assessment Problem — typical examples.
Producer Products Rating method Discipline

A Scientist Scientific articles Number of citations Scientometrics

B Scientific institute Scientists The h-index Scientometrics

C Web server Web pages Number of in-links Webometrics

D Artist Paintings Auction price Auctions

E Billboard company Advertisements Sale results Marketing

(x, x, . . . , x) ∈ I
n.

For any x ∈ I
n, y ∈ I

m and any function g de-
fined on I

n+m the notation g(x,y) is applied for
g(x1, . . . , xn, y1, . . . , ym). The vector operators +,∨
are understood component-wise.

Moreover, let I
1,2,... =

⋃∞

n=1 I
n denote the set of

all vectors of arbitrary length with elements in I.
By E(I) = {F : I

1,2,... → I} we mean the set of all
aggregation operators on I.

Finally, 1 denotes the indicator function.

2.2. The Producer Assessment Problem

Consider a producer (e.g. a writer, scientist, artist,
craftsman) and a nonempty set of his products
(e.g. books, papers, works, goods). Suppose that
each product is given a rating (of quality, popular-
ity, etc.) which is a single number in I = [a, b],
where a denotes the lowest admissible valuation.
Some typical instances of such situation are listed
in Table 1.

It is clear that each possible producer’s state can
be described by a point in I

1,2,.... The Producer
Assessment Problem involves constructing and
analyzing aggregation operators which can be used
for rating producers (see [6, 8]). A family of such
functions should take into account the two following
aspects of producer’s quality:

• the ability to output highly-rated products,
• overall productivity.

Clearly, the first component for fixed productiv-
ity can be properly described by a broad class of
(extended) aggregation functions [10]. However, in
practice we are also interested in distinguishing be-
tween entities of different productivity. Thus con-
sider the following definition (its slightly modified
version was given in [6]).

Definition 1. An impact function in I
1,2,... is

a function J ∈ E(I) such that

(I1) J is nondecreasing in each variable, i.e.
(∀n)(∀x,y ∈ I

n) x ≤ y⇒ J(x) ≤ J(y);
(I2) J is arity-monotonic, i.e.

(∀n,m)(∀x ∈ I
n)(∀y ∈ I

m) J(x) ≤ J(x,y);
(I3) J is symmetric, i.e.

(∀n)(∀x,y ∈ I
n) x ∼= y⇒ J(x) = J(y);

(I4) J fulfills the weak lower boundary condition,
i.e. inf

x∈I1,2,... J(x) = a.

Conditions (I1) and (I2) correspond to the prin-
ciple called “the more the better”, which is justified

in many practical instances of the Producer Assess-
ment Problem. According to (I3) each product is
of equal importance and the overall rating is not
affected by the presentation order of the products.

The family of all impact functions will be denoted
by EI(I).

Such formal model given for the Producer As-
sessment Problem allows us to abstract from its
context-dependent interpretation (to avoid any
bias) and focus solely on the analysis of its mathe-
matical properties.

It is worth noting that the set of requirements
given in Def. 1 is similar to the axiomatization pro-
posed by Woeginger [18, 19] for the so-called bib-
liometric impact indices (for other axiomatizations
see [12, 13, 16, 17]).

Henceforth, let P(I1) stand for the family of non-
decreasing functions, P(I2) denote the functions ful-
filling (I2), and so on. Thus the family of all
impact functions satisfies the following condition:
EI(I) = P(I1) ∩ P(I2) ∩ P(I3) ∩ P(I4).

For the clarity of presentation, we also consider a
subclass of impact functions that additionally sat-
isfies the condition defined below (see e.g. [10, Def.
2.7]).

Definition 2. F ∈ EI(I) fulfills the (strong) lower
boundary condition (denoted F ∈ P(lb)) if, for all
n, infx∈In F(x) = a.

One can easily see that P(lb) ⊂ P(I4). Moreover,
it can be shown that for any F ∈ P(I1) we have
F ∈ P(lb) if and only if (∀n) F(n ∗ a) = a. From now
on, let E ′

I
(I) = P(I1) ∩ P(I2) ∩ P(I3) ∩ P(lb).

3. (Quasi-)L- and S-statistics

3.1. Problem

In this section we consider two particular fami-
lies of aggregation operators, called L-statistics and
S-statistics and discuss their generalized versions,
called quasi-L-statistics and quasi-S-statistics, re-
spectively. We examine in which cases they also
belong to the class of impact functions satisfying
the lower boundary condition. Some correspond-
ing results for usual L-statistics and S-statistics are
given in [6].

Further on we assume that I = [0,∞]. The fol-
lowing two concepts will be also useful.

Definition 3. A triangle of coefficients (com-
pare [14, 2]) is a sequence △ = (ci,n ∈ I : i ∈
[n], n ∈ N).
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Note that such triangle of coefficients can be rep-
resented graphically by

c1,1
c1,2 c2,2
c1,3 c2,3 c3,3

...
...

...
. . .

In a similar way one can define a triangle of func-
tions.

Definition 4. A triangle of functions is a se-
quence △ = (fi,n ∈ I

I : i ∈ [n], n ∈ N).

3.2. L-statistics and quasi-L-statistics

Let us start from recalling the definition of L-
statistic.

Definition 5. Given any triangle of coefficients
△ = (ci,n)i∈[n],n∈N, the L-statistic associated with
△ is a function L△ ∈ E(I) such that

L△(x) =

n
∑

i=1

ci,n x(n−i+1), (1)

for any x = (x1, . . . , xn) ∈ I
n.

Please note that the well-known OWA functions
(ordered weighted averaging functions), introduced
in [20], are just special cases of L-statistics. Actu-
ally, the triangle of coefficients for an OWA func-
tion △ = (wi,n)i∈[n],n∈N satisfies the following con-
ditions (for a = 0):

(a) (∀n)
∑n

j=1 wj,n = 1,
(b) wi,n ∈ [0, 1] for i ∈ [n].

So defined triangle of coefficients is sometimes called
a weighting triangle (see e.g. [2, 3] for an extension
of OWA for input vectors of arbitrary length).

Now let us consider the following generalization
of the usual L-statistic.

Definition 6. Given any triangle of functions
△ = (fi,n)i∈[n],n∈N, the quasi-L-statistic associ-
ated with △ is a function qL△ ∈ E(I) such that

qL△(x) =

n
∑

i=1

fi,n(x(n−i+1)) (2)

for any x = (x1, . . . , xn) ∈ I
n.

It is easily seen that quasi-L-statistics general-
ize L-statistics. We obtain an L-statistic by taking
fi,n(x) = ci,n x. Moreover, it is worth noting that
the OMA functions for a = 0 (ordered modular av-

erages) are special cases of the suggested class of
quasi-L-statistics for

∑n
i=1 fi,n = id, nondecreasing

fi,n and 0 � fi,n � b (see [15]).
One may be interested in which cases the

(quasi-)L-statistics are impact functions satisfying
the lower boundary condition. The proposition
given below extends the result shown in [6].

Proposition 7. Let I = [0,∞] and let △ =
(fi,n)n∈N,i∈[n] denote any triangle of functions.

Then qL△ ∈ E
′
I
(I) if and only if (∀n)(∀i ∈ [n]) func-

tions fi,n satisfy the following conditions

• fi,n is nondecreasing,

• fi,n(0) = 0,

•
∑i

j=1 fj,n+1 �
∑i

j=1 fj,n.

Proof. It is clear that qL△ ∈ P(I1) ∩ P(I3) ∩ P(lb) if
and only if each fi,n is nondecreasing and fi,n(0) = 0.

Such qL△ is arity-monotonic if and only if (∀x ∈
I
n)
∑n

j=1 fj,n+1(x(n−i+1)) ≥
∑n

j=1 fj,n(x(n−i+1)).
Fix any x ∈ I

n. We have qL△(x(n), n ∗
0) ≥ qL△(x(n), (n − 1) ∗ 0) iff f1,n+1 �
f1,n. Then qL△(x(n), x(n−1), (n − 1) ∗ 0) ≥
qL△(x(n), x(n−1), (n−2)∗0) iff additionally f1,n+1 +
f2,n+1 � f1,n + f2,n and so on, QED.

3.3. S- and quasi-S-statistics

Now let us consider S-statistics and their extensions.

Definition 8. The S-statistic associated with a
triangle of coefficients △ = (ci,n)i∈[n],n∈N is a func-
tion S△ ∈ E(I) such that

S△(x) =

n
∨

i=1

ci,n ∧ x(n−i+1) (3)

for x = (x1, . . . , xn) ∈ I
n, where ∨ and ∧ denote

the supremum (and hence the name) and infimum
operators, respectively.

S-statistics generalize the OWMax operators (or-
dered weighted maximum operator) for arbitrary
number of arguments [4].

Basic statistical properties of S-statistics were ex-
amined in [7]. In particular, it turns out that for
a random input data set (continuous i.i.d. random
variables) the distribution of an S-statistic is asymp-
totically normal with the mean equal to the value of
a well-defined characteristic of the underlying prob-
ability distribution. Moreover, there exists an S-
statistic SN that ⌊SN⌋ = H, where H is the Hirsch
h-index [11], a popular tool used in scientometrics.

Now, similarly as in the previous section, we pro-
pose a generalization of the S-statistic.

Definition 9. The quasi-S-statistic associated
with a triangle of functions △ = (fi,n)i∈[n],n∈N is
a function qS△ ∈ E(I) such that

qS△(x) =

n
∨

i=1

fi,n(x(n−i+1)). (4)

Equation (4) is actually a generalization of S-
statistic since by setting fi,n(x) = x∧ ci,n we obtain
a usual S-statistic. Note that for x, ci,n ∈ I

x ∧ ci,n =

{

x if x < ci,n,
ci,n if x ≥ ci,n.
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Moreover, its right-sided derivative d+

dx
(x ∧ ci,n) =

1(x ≤ ci,n).
Without loss of generality we assume further on

that (∀n) c1,n ≤ c2,n ≤ · · · ≤ cn,n and f1,n � f2,n �
· · · � fn,n.

We are going to show which triangles of coeffi-
cients generate a quasi-S-statistic that is an impact
function fulfilling P(lb). Again, we generalize the
result given in [6].

Proposition 10. For I = [0,∞] and any triangle

of functions △ = (fi,n)n∈N,i∈[n] it holds qS△ ∈ E
′
I
(I)

if and only if (∀n)(∀i ∈ [n])

• fi,n is nondecreasing,

• fn,n(0) = 0, and

• fi,n+1 � fi,n.

Proof. It is obvious that qS△ ∈ P(I1)∩P(I3)∩P(lb) if
and only if each fi,n is nondecreasing and f1,n(0) =
· · · = fn,n(0) = 0.

Let x ∈ I
n. It suffices to show that qS△(x, 0) ≥

qS△(x) if and only if fi,n+1 � fi,n for all i ∈ [n]. We
have qS△(x(n), n ∗ 0) ≥ qS△(x(n), (n− 1) ∗ 0) if and
only if f1,n+1 � f1,n. Then qS△(x(n), x(n−1), (n −
1) ∗ 0) ≥ qS△(x(n), x(n−1), (n− 2) ∗ 0) if and only if
additionally f2,n+1 � f2,n and so on. This completes
the proof.

Let △ = (ci,n)i∈[n],n∈N. Mesiar and Mesiárova-
Zemánková in [15] recently shown that S△ =
qL

▽
with ▽ = (fi,n)i∈[n],n∈N such that fi,n(x) =

0 ∨ ((x − ci−1,n) ∧ (ci,n − ci−1,n)), with convention
that c0,n = 0.

One may be also interested in the relationship be-
tween quasi-S-statistics and quasi-L-statistics. Next
theorem defines the intersection of these two classes
in the case of nondecreasing functions fulfilling the
(strong) lower boundary condition.

Theorem 11. Let I = [0,∞] and △ =
(fi,n)i∈[n],n∈N such that qS△ ∈ P(I1) ∩ P(lb). Then

there exists ▽ = (gi,n)i∈[n],n∈N such that qS△ = qL
▽

if and only if there exist nondecreasing functions

w1,w2 · · · ∈ I
I, wn(0) = 0 for all n, and a tri-

angle of coefficients N = (ci,n)i∈[n],n∈N such that

fi,n(x) = wn(x) ∧ ci,n.

Proof. Fix n. We have (∀i ∈ [n]) fi,n(0) = gi,n(0).
We check for which △ and ▽

∨n

i=1 fi,n(x(n−i+1)) =
∑n
i=1 gi,n(x(n−i+1)) holds for all x ∈ I

n. We
have f1,n = g1,n, because qS△(x(n), (n − 1) ∗ 0) =
qL

▽
(x(n), (n−1)∗ 0). Then, by considering the vec-

tor (x(n), x(n−1), (n− 2) ∗ 0) we obtain

g2,n(x(n−1)) =

{

0 if f1,n(x(n))− f2,n(x(n−1)) ≥ 0,
f2,n(x(n−1))− f1,n(x(n)) otherwise.

We have f1,n � f2,n. However, the function
g2,n(x(n−1)) should not depend on x(n). Therefore
f1,n should be of the form

f1,n(x) =

{

f2,n(x) for x ≤ y,
c1,n for x > y,

for some y, c1,n ∈ I. This implies f1,n(x) = f2,n(x)∧
c1,n. By applying a similar reasoning for successive
elements of x, we obtain wn = fn,n, and the theorem
holds.

4. Characterizations of the operators

In this section we characterize the subclasses of the
mentioned functions, that is we discuss a certain
set of properties that are fulfilled if and only if

an aggregation operator is either a (quasi)-L- or S-
statistic.

4.1. A characterization of L-statistics and
quasi-L-statistics

A characterization of nondecreasing L- and quasi-
L-statistics follows from [10] and [15], respectively.
Here we recall these results for the sake of complete-
ness.

Definition 12. Let F ∈ E(I). Then F is symmet-
ric additive (denoted F ∈ P(sadd)), whenever (∀n)
(∀x,y ∈ I

n)

F(x
S
+ y) = F(x) + F(y),

where x
S
+ y = (x(1) + y(1), . . . , x(n) + y(n)).

We see that P(sadd) ⊆ P(I3).

Theorem 13. Let F ∈ P(I1). Then F ∈ P(sadd) if

and only if F is a nondecreasing L-statistic.

The proof follows from [10, Prop. 2.116].

Definition 14. Let F ∈ E(I). Then F is symmet-
ric modular (denoted F ∈ P(smod)), whenever (∀n)
(∀x,y ∈ I

n)

F(x
S
∨ y) + F(x

S
∧ y) = F(x) + F(y),

where x
S
∨ y = (x(1) ∨ y(1), . . . , x(n) ∨ y(n)) and

x
S
∧ y = (x(1) ∧ y(1), . . . , x(n) ∧ y(n)).

We have P(smod) ⊆ P(I1) ∩ P(I3).

Theorem 15. F ∈ P(smod) if and only if F is a

nondecreasing quasi-L-statistic.

The proof is omitted.

4.2. A characterization of S-statistics and
quasi-S-statistics

Definition 16. We say that F ∈ E(I) has regular
linear increments (denoted F ∈ P(rli)) iff, for any
n, x ∈ I

n and i, it holds

∂+

∂xi
F(x) =

{

1 if xi ∈ [F(x); F(x′i)) ,
0 otherwise,

where x′i = (x1, . . . , xi−1,∞, xi+1, . . . , xn) and ∂+

∂x

is the right-sided derivative.
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Each F ∈ P(rli) is also continuous and nondecreas-
ing in each variable. Moreover, the above defini-
tion implies that (∀s ∈ ran F = [F(n ∗ a); F(n ∗ b)])
F(n ∗ s) = s, i.e. it is a range-idempotent function,
see def. 2.38 in [10].

We propose the following axiomatization of the
class of S-statistics.

Theorem 17. We have F ∈ P(rli) ∩ P(I3) ∩ P(lb) if

and only if F is an S-statistic.

Proof. (⇐) Trivial.
(⇒) Let F ∈ P(rli) ∩ P(I3), n ∈ N and x ∈ I

n. Let
dn = F(n ∗ 0) and ci,n = F(i ∗ ∞, (n − i) ∗ 0) ≥ dn.
We have F(x(n), (n− 1) ∗ 0) = (x(n) ∧ c1,n) ∨ dn. If
x(n−1) ≤ (x(n) ∧ c1,n)∨ dn then F(x) = F(x(n), (n−
1) ∗ 0). Otherwise, F(x(n), x(n−1), (n − 2) ∗ 0) =
(x(n−1) ∧ c2,n). That is, more generally,

F(x(n), x(n−1), (n− 2) ∗ 0) =

dn ∨ (x(n) ∧ c1,n) ∨ (x(n−1) ∧ c2,n).

By considering successive values x(n−2), . . . , x(1) in
a similar manner we come to the equality

F(x) = dn ∨

n
∨

i=1

(x(n−i+1) ∧ ci,n).

Now, as F also fulfills the (strong) lower boundary
condition, dn = 0 and hence F is an S-statistic.

To characterize the quasi-S-statistics we use the
symmetrized maxitivity property, see [10, def.
2.119].

Definition 18. Let F ∈ E(I). Then F is symmet-
ric maxitive (denoted F ∈ P(smax)), whenever (∀n)
(∀x,y ∈ I

n)

F(x
S
∨ y) = F(x) ∨ F(y).

It is worth pointing out that P(smax) ⊂ P(I3). We
are now ready to give the following axiomatization
of the last class of functions.

Theorem 19. F ∈ P(smax) if and only if F is a

nondecreasing quasi-S-statistic.

We omit the simple proof.

5. Vector concatenation and impact
function values

Consider the following problem. We are given an
impact function F ∈ EI(I) and two input vectors
x,y ∈ I

1,2,.... Knowing both values of F(x) and F(y)
we would like to estimate the value of F(x,y), where
(x,y) denotes vector concatenation (merging).

The problem is not only of theoretical manner. A
real-life example of such situation was considered in
the field of scientometrics where the Hirsch h-index
and Egghe g-index was explored [5, 9]. It has some

significant practical applications, e.g., when calcu-
lating the impact functions for a producer given
his/her products’ quality valuations obtained from
disjoint data sources. Such a case is often encoun-
tered in bibliometrics, where citation data are gath-
ered from diverse databases like the Web of Science

and Elsevier SciVerse Scopus (see e.g. [5]).
Generally, properties P(I1), P(I2) and P(I3) imply

F(x,y) ≥ F(x) ∨ F(y).

On the other hand, the only universal upper bound
is given by F(x,y) ≤ ∞ = sup I.

It is easily seen that for (x,y) ∈ I
n we have

S△(x,y) ≤ cn,n.
Below we consider two basic properties that may

lead to exact value of the impact function. Further-
more, corresponding operators that satisfy these
properties are characterized.

First we show when the above-mentioned lower
bound is also an upper bound.

Definition 20. We say that F ∈ E(I) is merge-
maxitive (denoted F ∈ P(mmax)), if (∀x,y ∈ I

1,2,...)

F(x,y) = F(x) ∨ F(y).

Proposition 21. Let F ∈ EI(I). Then F ∈ P(mmax)

if and only if there exists a nondecreasing function

g : I→ I, g(0) = 0, such that (∀n)(∀x ∈ I
n) F(x) =

∨n

i=1 g(xi) = g(x(n)).

Proof. (⇒) Let F be as assumed and x ∈ I
n. We

have F(x) = F(x(1)) ∨ · · · ∨ F(x(n)) =
∨n

i=1 g(x(i)).
For F be nondecreasing in any variable, g must also
be nondecreasing. P(I4) is satisfied by assuming
g(0) = 0. From that it follows F(x) = g(x(n)).

As (⇐) is trivial, the proof is complete.

Definition 22. We say that F ∈ E(I) is merge-
additive (denoted F ∈ P(madd)), if (∀x,y ∈ I

1,2,...)

F(x,y) = F(x) + F(y).

Proposition 23. Let F ∈ EI(I). It holds F ∈
P(madd) if and only if there exists a nondecreasing

function g : I→ I, g(0) = 0 such that (∀n)(∀x ∈ I
n)

F(x) =
∑n

i=1 g(xi).

Proof. (⇒) By the symmetry property and merge-
additivity we have F(x) = F(xσ(1))+· · ·+F(xσ(n)) =
∑n

i=1 g(xi) for some g. g must be nondecreasing and
g(0) = 0 to satisfy P(I1) and P(I4).

(⇐) Trivial.

We see that the both properties are quite strong.
The merge-maxitive impact function is a quasi-S-
statistics for a triangle of functions △ such that
fi,n = g for all n, i ∈ [n] (equivalent to quasi-L-
statistics with △ such that f1,n = g and fi,n = 0 for
all n, i ∈ {2, 3, . . . , n}). Merge-additive functions
are equivalent to quasi-L-statistics with△ such that
fi,n = g.
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6. Conclusions

In this paper we have discussed some families of
aggregation operators which may be regarded use-
ful for modeling the Producer Assessment Problem.
Especially, we have considered a particular subfam-
ily of impact functions, called S-statistics (which
generalize the well-known h-index and OWMax op-
erators), their natural extensions called quasi-S-
statistics and two other families of operators: L-
statistics and quasi-L-statistics.

All tools proposed and discussed in this paper
have interesting properties and hence may support
the decision process and be useful in many areas,
e.g. in scientometrics, marketing, management, etc.
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