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Abstract

This paper aims to establish the relationship be-
tween two apparent disparate problems: (i) the
aggregation of uncertain information modelled by
type-1 fuzzy sets via OWA mechanism, and (ii) the
computation of the centroid of type-2 fuzzy sets. In
order to cut down the computational complexity of
the direct approach to performing type-1 OWA op-
eration, the α-level approach to type-1 OWA opera-
tors was developed. This new approach is based on
the decomposition of a type-1 OWA operator via its
α-levels and the corresponding Representation The-
orem of type-1 OWA operators. A close inspection
of the mathematical representation of the centroid
of type-2 fuzzy sets reveals that this is a special case
of type-1 OWA operator. This relationship will al-
low for the computation of the centroid of a general
type-2 fuzzy sets to be carried out via the applica-
tion of the representation theorem to its equivalent
type-1 OWA representation.

Keywords: Type-1 fuzzy sets, type-2 fuzzy sets,
type-1 OWA operators, α-level, centroid, represen-
tation theorem.

1. Introduction

The aggregation of information via OWA opera-
tors [1] and the defuzzification of a fuzzy set [2]
have up to now being treated as different and un-
connected problems in Fuzzy Set Theory research.
However, a close inspection of their mathematical
representation suggests that the second one could
be seen as a special case of OWA operator.

Although the defuzzification a type-1 fuzzy sets
does not present any challenge from a mathemati-
cal point of view, the same cannot be said in the
case of type-2 fuzzy sets. For type-2 fuzzy sets,
the defuzzification stage consists of two parts [3]:
(i) type-reduction – procedure by which a type-2
fuzzy set is converted to a type-1 fuzzy set, known as
the type-reduced set (TRS); and (ii) defuzzification
proper – the TRS is defuzzified to give a crisp num-
ber, the centroid of the type-2 fuzzy set. Obviously,
the computation of the TRS is a challenging step in
the design of type-2 fuzzy systems. For generalised
type-2 fuzzy sets the defuzzification process is com-
plex and its direct implementation is slow and ineffi-
cient. This has inevitably hindered the development

of type-2 fuzzy inferencing systems for real applica-
tions. The present situation will not be expected to
change, unless an efficient and fast method to def-
fuzzify general type-2 fuzzy sets is developed. In-
deed, most researchers concentrate exclusively on
the development of theoretical results and practical
applications for interval type-2 fuzzy sets [4–11].

The above described scenario for the centroid of
a general type-2 fuzzy set is remarkably similar to
the recent development of the Type-1 OWA oper-
ator [12]. Type-1 OWA operators provide us with
a new technique for directly aggregating uncertain
information modelled by type-1 fuzzy sets via OWA
mechanism in soft decision making and data mining.
It is known that aggregation is a necessary step in ei-
ther multi-expert decision making or multi-criteria
decision making [13–15]. Type-1 OWA operators
can be used to aggregate expert knowledge ex-
pressed by type-1 fuzzy sets in decision making, and
they also have the potential of merging fuzzy sets
in fuzzy modelling to improve model interpretabil-
ity and transparency [16–18]. However, the direct
approach to performing type-1 OWA operation in-
volves high computational load, which inevitably
curtailed further applications of type-1 OWA opera-
tor to real world decision making. To overcome this
issue, a new approach to type-1 OWA operations
has been developed based on the α-levels of fuzzy
sets [19]. This result is based on the so-called Rep-
resentation Theorem of type-1 OWA operators [19],
which provides the decomposition of a type-1 OWA
operator into a series of its α-level type-1 OWA op-
erators. It provides an effective tool for performing
type-1 OWA operations. Indeed, the complexity of
this α-level approach is of linear order, so it can
be used in real time soft decision making, database
integration and information fusion that involve ag-
gregation of uncertain information.

Mathematically, the centroid of a type-1 fuzzy set
can be seen as the output of an OWA operator ap-
plied to a set of crisp values. This means that in
practice, the computation process of the centroid of
a type-2 fuzzy sets could be carried out by apply-
ing its equivalent OWA computation process. The
centroid of a type-2 fuzzy set and the type-1 OWA
operator were both developed via the application of
Zadeh’s Extension Principle [20]. We hypothesise
that a result connecting the mathematical repre-
sentation of the centroid of a type-2 fuzzy set and
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the representation of a type-1 OWA operator can be
proved. Indeed, we will show that the centroid of a
type-2 fuzzy set, as defined in [3], is equivalent to
that of a type-1 OWA operator, as defined in [12].
We extend this equivalent mathematical represen-
tation to the centroid of interval type-2 fuzzy sets
and the α-level type-1 OWA operators.

The main contribution of our research is that
the fast and efficient method for computing type-1
OWA operations, the α-level Approach, developed
in [19] can be applied to compute the centroid of
a general type-2 fuzzy set. This would lead to the
computation of the TRS of a general type-2 fuzzy
sets via the Type-1 OWA Representation Theorem.
As a result, a fast and efficient method of comput-
ing the centroid of general type-2 fuzzy sets can be
realised.

2. Type-1 and Type-2 Fuzzy Sets

Type-1 Fuzzy Set. Let X be a universe of discourse.
A fuzzy set A on X is characterised by a member-
ship function µA : X → [0, 1]. A fuzzy set A on X
can be expressed as follows:

A = {(x, µA(x))|µA(x) ∈ [0, 1] ∀x ∈ X}. (1)

An alternative mathematical representation of fuzzy
set A with continuous universe of discourse is

A =

∫

x∈X

µA(x)/x (2)

When the universe of discourse is discrete the fuzzy
set A is represented as

A =
∑

x∈X

µA(x)/x (3)

Note that the membership grades of A are crisp
numbers. This type of fuzzy set is also referred to
as a type-1 fuzzy set. In the following we will use
the notation U = [0, 1].

The Representation Theorem of (type-1) fuzzy
sets provides an alternative and convenient way to
define type-1 fuzzy sets via their corresponding fam-
ily of crisp α-level sets. The α-level set of a type-1
fuzzy set A is defined as

Aα = {x ∈ X |µA(x) ≥ α} (4)

The set of crisp sets {Aα|0 < α ≤ 1} is said to be
a representation of the type-1 fuzzy set A. Indeed,
the type-1 fuzzy set A can be represented as

A = ∪
0<α≤1

αAα (5)

with membership function

µA(x) = ∨
α:x∈Aα

α (6)

This is the the so-called ‘horizontal’ representation
of a type-1 fuzzy set.

Type-2 Fuzzy Set. A type-2 fuzzy set Ã on X is a
fuzzy set whose membership grades are themselves
fuzzy. This implies that µÃ(x) is a (type-1) fuzzy
set on U for all x, i.e.

Ã = {(x, µÃ(x))|µÃ(x) ∈ P̃ (U) ∀x ∈ X}. (7)

where P̃ (U) is the set of fuzzy sets on U .
This implies that for all x ∈ X there exists a

subset of U, Jx, such that µÃ(x) : Jx → U. Applying
(1), we have:

µA(x) = {(u, µÃ(x)(u))|µÃ(x)(u) ∈ U

∀u ∈ Jx ⊆ U}. (8)

Jx is called the primary membership of x while
µÃ(x) is called the secondary membership of x.

Putting (7) and (8) together we have

Ã = {(x, (u, µÃ(x)(u)))|µÃ(x)(u) ∈ U∀x ∈ X

∧ ∀u ∈ Jx ⊆ U}. (9)

Interval Type-2 Fuzzy Set. An interval type-2
fuzzy set is a type-2 fuzzy set with constant sec-
ondary membership function 1, i.e. µÃ(x)(u) =
1, ∀u ∈ Jx.

3. Type-1 OWA Operators

In 1988, Yager introduced an aggregation technique
based on the ordered weighted averaging (OWA)
scheme [1].

Definition 1 An OWA operator of dimension n is
a mapping φ : Rn → R, which has an associated set
of weights {wi}

n

i=1 to it, so that wi ∈ [0, 1] and
n
∑

i=1

wi = 1,

φ(a) = φ(a1, · · · , an) =

n
∑

i=1

wiaσ(i) (10)

where σ : {1, · · · , n} → {1, · · · , n} is a permutation
function such that aσ(i) is the i-th highest value in
the set {a1, · · · , an}, i.e. aσ(i) ≥ aσ(i+1)∀i.

Generally speaking, the OWA operator based ag-
gregation process consists of three steps: (i) the first
step is the re-ordering the input arguments in in-
creasing order. In this way, a particular element to
aggregate is not associated with a particular weight,
but rather a weight is associated with a particular
ordered position of an aggregated object; (ii) the
second step is to determine the weights for the oper-
ator in a proper way; (iii) finally, the OWA weights
are used to aggregate the re-ordered arguments.

Type-1 OWA Operator. Unlike Yager’s OWA op-
erator that aggregates crisp values, the type-1 OWA
operator is able to aggregate type-1 fuzzy sets with
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uncertain weights, with these uncertain weights be-
ing also modelled as type-1 fuzzy sets. As a gen-
eralisation of Yager’s OWA operator, and based on
Zadeh’s Extension Principle [20], a type-1 OWA op-
erator is defined as follows [12]:

Definition 2 Given n linguistic weights
{

W i
}n

i=1
in the form of type-1 fuzzy sets defined on the do-
main of discourse U , a type-1 OWA operator is a
mapping, Φ,

Φ: P̃ (R) × · · · P̃ (R) −→ P̃ (R)
(A1, · · · , An) 7→ Y

such that

µY (y) =

sup
n

∑

k=1

w̄iaσ(i) = y

wi ∈ U, ai ∈ X

(

µW 1 (w1) ∧ · · · ∧ µW n(wn)
∧µA1 (a1) ∧ · · · ∧ µAn(an)

)

(11)
where

w̄i =
wi

∑n

i=1 wi

,

and

σ : {1, · · · , n} −→ {1, · · · , n}

is a permutation function such that aσ(i) ≥
aσ(i+1), ∀i = 1, · · · , n − 1, i.e., aσ(i) is the ith high-
est element in the set {a1, · · · , an}.

A Direct Approach to performing type-1 OWA
operation was suggested in [12]. However, this
approach is computationally expensive, which in-
evitably curtails further applications of the type-1
OWA operator to real world decision making. So a
fast approach to type-1 OWA operations has been
developed based on the α-level of fuzzy sets [19].

α-Level Type-1 OWA Operator.

Definition 3 Given the n linguistic weights
{

W i
}n

i=1
in the form of type-1 fuzzy sets defined on

the domain of discourse U , then for each α ∈ U ,
an α-level type-1 OWA operator with α-level weight
sets

{

W i
α

}n

i=1
to aggregate the α-level of type-1

fuzzy sets
{

Ai
}n

i=1
is given as

Φα

(

A1
α, · · · , An

α

)

=











n
∑

i=1

wiaσ(i)

n
∑

i=1

wi

∣

∣

∣

∣

∣

wi ∈ W i
α, ai ∈ Ai

α, ∀i











(12)

where W i
α = {w|µWi

(w) ≥ α}, Ai
α = {x|µAi

(x) ≥
α}, and σ : { 1, · · · , n } → { 1, · · · , n } is a per-
mutation function such that aσ(i) ≥ aσ(i+1), ∀ i =
1, · · · , n − 1, i.e., aσ(i) is the ith largest element in
the set {a1, · · · , an}.

According to the Representation Theorem of
type-1 fuzzy sets, the α-level sets Φα

(

A1
α, · · · , An

α

)

obtained via Definition 3 can be used to construct
the following type-1 fuzzy set on R

G = ∪
0<α≤1

αΦα

(

A1
α, · · · , An

α

)

(13)

with membership function

µG(x) = ∨
α:x∈Φα(A1

α
,··· ,An

α
)

α

α (14)

Representation Theorem of Type-1 OWA Operators.
The two apparently different aggregation results in
(11) and (13) obtained according to Zadeh’s Exten-
sion Principle and the α-level of type-1 fuzzy sets,
respectively, are equivalent as proved in [19]:

Theorem 1 Given the n linguistic weights
{

W i
}n

i=1
in the form of type-1 fuzzy sets defined

on the domain of discourse U , and the type-1 fuzzy
sets A1, · · · , An, then we have that

Y = G

where Y is the aggregation result defined in (11) and
G is the result defined in (13).

Theorem 1 is called the Representation Theorem
of Type-1 OWA Operators. Therefore, an effective
and practical way of carrying out type-1 OWA oper-
ations is to decompose the type-1 OWA aggregation
into the α-level type-1 OWA operations and then re-
construct it via the above representation theorem.
This α-level approach has been proved to be much
faster than the direct approach [19], so it can be
used in real time decision making and data mining
applications.

α-Level Type-1 OWA of Fuzzy Numbers. When the
linguistic weights and the aggregated sets are fuzzy
number, the α-level type-1 OWA operator produces
closed intervals [19]:

Theorem 2 Let
{

W i
}n

i=1
be fuzzy numbers on U

and
{

Ai
}n

i=1
be fuzzy numbers on R. Then for each

α ∈ U, Φα

(

A1
α, · · · , An

α

)

is a closed interval.

Based on this result, the computation of the type-
1 OWA output according to (13), G, reduces to com-
pute the left end-points and right end-points of the
intervals Φα

(

A1
α, · · · , An

α

)

:

Φα

(

A1
α, · · · , An

α

)

−
and Φα

(

A1
α, · · · , An

α

)

+
,

where Ai
α = [Ai

α−, Ai
α+], W i

α = [W i
α−, W i

α+].
For the left end-points, we have

Φα

(

A1
α, · · · , An

α

)

−
=

min
W i

α− ≤ wi ≤ W i
α+

Ai
α− ≤ ai ≤ Ai

α+

n
∑

i=1

wiaσ(i)

/ n
∑

i=1

wi
(15)
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while for the right end-points, we have

Φα

(

A1
α, · · · , An

α

)

+
=

max
W i

α− ≤ wi ≤ W i
α+

Ai
α− ≤ ai ≤ Ai

α+

n
∑

i=1

wiaσ(i)

/ n
∑

i=1

wi
(16)

It can be seen that (15) and (16) are program-
ming problems. Solutions to these problems, so that
the type-1 OWA aggregation operation can be per-
formed efficiently, are available from [19].

4. Centroid of Type-2 Fuzzy Sets

The definition of the centroid of a type-1 fuzzy set
A in X , also referred to as the centre of gravity or
centre of mass, requires the universe of discourse to
be a subset of the set of real numbers. Therefore,
from now on we will assume that the domain of the
type-1 fuzzy set is of such type.

The centroid for a continuum universe of dis-
course X is defined as

CA =

∫

x

x · µA(x)dx
∫

x

µA(xi)
(17)

The centroid when the domain X is discretised
into n points is

CA =

n
∑

i=1

xi · µA(xi)

n
∑

i=1

µA(xi)

(18)

Note that in this discrete form of the centroid of a
type-1 fuzzy set it is true that x1 < x2 < . . . < xn.

Centroid of Type-2 Fuzzy Sets. As we mentioned
above, the defuzzification stage for type-2 fuzzy sets
consists of two parts: (i) type-reduction, and (ii) de-
fuzzification proper [3]. The challenging and com-
plex step when deriving the centroid of a type-2
fuzzy sets is obviously the computation of the TRS.
The TRS is defined via the application of Zadeh’s
Extension Principle, and only after the universe of
discourse is being discretised.

Definition 4 The TRS associated to a type-2 fuzzy
sets Ã with domain X discretised into n points is

CÃ =

∫

u1∈Jx1

. . .

∫

un∈Jxn

[µÃ(x1)(u1) ∗ . . . ∗

µÃ(xn)(un)]

/

∑n

i=1 xi · ui
∑n

i=1 ui

(19)

Note that the TRS is a type-1 fuzzy set in U . Again
in this case, we have x1 < x2 < . . . < xn.

The type reduction stage requires the application
of a t-norm (∗) to the secondary membership de-
grees. Because the product t-norm does not pro-
duce meaningful results for type-2 fuzzy sets with
general secondary membership functions, the the
minimum t-norm (∧) is used [3, pp. 251-253].

Centroid of an Interval Type-2 Fuzzy Sets. In the
case of Ã being an interval type-2 fuzzy set, i.e.
µÃ(x)(u) = 1 ∀x, u, we have that the TRS is the
crisp set

CÃ =

∫

u1∈Jx1

. . .

∫

un∈Jxn

1

/

∑n

i=1 xi · ui
∑n

i=1 ui

(20)

5. Relationship between the TRS of a

type-2 fuzzy set and the type-1 OWA

operator

We note that the type-1 fuzzy set derived after the
application of a type-1 OWA operator can be rewrit-
ten as follows:

Y =

∫

w1∈S(W 1)

. . .

∫

wn∈S(W n)

∫

a1∈S(A1)

. . .

∫

an∈S(An)

[µW 1 (w1) ∧ · · · ∧ µW n(wn) ∧ µA1(a1) ∧ · · · ∧

∧µAn(an)]

/

∑n

i=1 wiaσ(i)
∑n

i=1 wi

(21)

where S(W i) and S(A1) are the support sets of W i

and Ai, respectively, for all i = 1, . . . , n, i.e.

S(W i) = {w ∈ U |µW i(w) > 0};

and

S(Ai) = {a ∈ X |µAi(a) > 0}.

Given a type-2 fuzzy set Ã, for a group of discre-
tised points on the domain X : x1 < x2 < . . . < xn,
suppose the type-1 fuzzy sets A1, . . . , An in expres-
sion (21) be chosen as A1 = x1, . . . , An = xn, i.e,
the aggregated objects are specially set to be single-
ton type-1 fuzzy sets, while the uncertain weights
W 1, . . . , W n are set to be W 1 = µÃ(xn), . . . , W n =
µÃ(x1). Then expression (21) reduces to

Y =

∫

w1∈Jxn

. . .

∫

wn∈Jx1

[µW 1 (w1) ∗ . . . ∗

µW n(wn)]

/

∑n

k=1 wixσ(i)
∑n

i=1 wi

(22)

that is to say,

Y =

∫

u1∈Jx1

. . .

∫

un∈Jxn

[µÃ(x1)(u1) ∗ . . . ∗

µÃ(xn)(un)]

/

∑n

i=1 ui · xi
∑n

i=1 ui

(23)
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This expression coincides with the TRS associ-
ated to a type-2 fuzzy sets Ã with domain X discre-
tised into n points as per the expression (19) given
in Definition 4.

In the case of an interval type-2 fuzzy set Ã with
domain X discretised into n points, its TRS can be
expressed as

CÃ =

{

∑n

i=1 xi · ui
∑n

i=1 ui

∣

∣

∣

∣

∣

ui ∈ Jxi

}

(24)

In this case, the primary membership of xi, Jxi
, is

a closed interval and therefore CÃ is also closed.
What we are showing here is that this formulation
of the TRS of an interval type-2 fuzzy set Ã with
domain X discretised into n points is equivalent to
the one we obtained for the α-level type-1 OWA op-
erator as per Definition 3. Indeed, when the input
of an α-level type-1 OWA operator,

(

A1
α, · · · , An

α

)

,
reduces to a singleton point in the space R

n, ex-
pression (12) reduces to (24), and therefore both
mathematical representations are equivalent. So the
centroid of an interval type-2 fuzzy set is a special
case of α-level type-1 OWA operator.

6. Conclusions

We have shown that the apparent disparate prob-
lems consisting in the computation of the TRS of a
type-2 fuzzy set and the type-1 OWA aggregation
of type-1 fuzzy sets are closely related. In essence,
both problems are aggregation problems, and both
are defined via the application of Zadeh’s Extension
Principle. However, we have shown that the Type-
1 OWA Representation Theorem, by which type-1
OWA operators can be decomposed into a series of
α-level type-1 OWA operators, is the key result that
allows us to prove that the TRS of a type-2 fuzzy
sets is a particular case of a type-1 OWA operator.
In particular, we have also proved that the centroid
of an interval type-2 fuzzy sets is a particular case
of an α-level type-1 OWA operator.

The main consequence of the above result is that
a fast and efficient method to compute the centroid
of a general type-2 fuzzy set could become possible,
what in future could imply an increase use of general
type-2 fuzzy sets for real applications.
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