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Abstract

In multicriteria decision making, the study of at-
tribute contributions is crucial to attain correct de-
cisions. Fuzzy measures allow a complete descrip-
tion of the joint behavior of attribute subsets. How-
ever, the determination of fuzzy measures is often
hard. A common way to identify fuzzy measures is
HLMS (Heuristic Least Mean Squares) algorithm.
In this paper, the convergence of the HLMS algo-
rithm is analyzed. First, we show that the learning
rate parameter (α) dominates the convergence of
HLMS. Second, we provide an upper bound for α
that guarantees HLMS convergence. In addition,
a toy example shows the descriptive power of fuzzy
measures versus the poverty of individual measures.
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1. Introduction

In multicriteria decision making [1, 2, 3, 4], values
taken by attributes represent the satisfaction de-
gree or attractiveness felt by the decision maker.
To achieve a final decision, a proper attribute ag-
gregation is required. The aggregation method may
work just on the individual importance of attributes
but also on their collective interaction. An often
used individual criteria aggregation is the classical
weighted arithmetic mean. In some real situations,
however, subsets of attributes work together and the
individual aggregation allowed by weighted arith-
metic mean assumption happens to be rather far
from the reality. For this reason, more general ag-
gregation schemes which consider the collective be-
havior are looked for, the price to pay being that
they are often much more complex to use.
In this paper, we are interested in the collective

criteria aggregation through the fuzzy integral and
in the identification of its fuzzy measures. Notice
that for n attributes, 2n − 2 coefficients are needed
to specify the model. Regarding the alternatives for
fuzzy measure identification [8, 5, 6, 7], we will fo-
cus on the HLMS algorithm [9] and its convergence.
In particular, a study of the HLMS learning rate
parameter and its correct setting for HLMS conver-
gence is presented. The HLMS perform an iterative
approximation of fuzzy measures through a gradi-
ent descent that minimizes the quadratic difference
between the decision value and the Choquet integral
on attribute values of a training dataset. Thus, the

convergence of HLMS depends on the actual setting
of the learning rate parameter.
This paper is organized as follows: Section 2

introduces necessary definition on fuzzy measures
and integrals. Section 3 explains HLMS step by
step. Section 4 contains the proof of convergence of
HLMS. Section 5 gives a toy example where HLMS
is applied and the descriptive power of fuzzy mea-
sures is compared against weighted sums. Finally,
Section 6 brings a conclusion about this work.

2. Basic definitions

We present briefly necessary concepts around fuzzy
measures and the Choquet integrals restricted to
the finite case. Comprehensive treatments of this
topic can be found in [10, 11, 12]. Let us consider
a set X = {x1, . . . , xi, . . . , xn} and P(X) its power
set, |P(X)|=2n.

Definition 1 A fuzzy measure [13] µ defined over
X is a set function µ : P(X)→ [0, 1] that verifies the
following axioms:

1. µ(∅) = 0
2. µ(X) = 1
3. A ⊆ B ⇒ µ(A) ≤ µ(B)

A convenient way to represent graphically the
fuzzy measures is through a lattice. The applica-
tion of the function µ to the P(X) elements defines
the nodes in the lattice. The measures associated
with nodes are ordered depending on the inclusion
of their elements (µ1 ≤ µ12), and the measure in-
clusions are represented by edges. Fig. 1 shows
a graphical representation of a fuzzy measure for
three attributes. The lattice has n + 1 levels num-
bered from 0 (for the level containing µ∅) to n (for
the level containing µX). A path in the lattice is a
sequence of n+1 related nodes, with a node in each
level. Given a node in level s, its lower neighbors
(respectively upper) are the set of related nodes in
level s− 1 (respectively s+ 1).
The training data is organized in a P[m×(n+1)].

matrix, where n is the number of attributes andm is
the number of examples; each column represents an
attribute (denoted by xi) and each row represents
an example formed by attributes values (xz1, . . . , xzn)
and its corresponding target value T z.
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Figure 1: Lattice representation of a fuzzy measure
for three attributes

P =


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x1
1 . . . x1

i . . . x1
n T 1

... . . . ...
xz1 . . . xzi . . . xzn T z

... . . . ...
xm1 . . . xmi . . . xmn Tm




Definition 2 The discrete Choquet integral [14]
of a function f : X → <+ with respect to a fuzzy
measure µ over X is defined by:
Cµ(f(x(1)), .., f(x(n))),

n∑
i=1

(f(x(i))− f(x(i−1)))µ(A(i))

where n is the number of attributes of P , A(i) =
{x(i), x(i+1), . . . , x(n)}, x(·) indicates a reorder of the
attributes, i.e., x(1) < · · · < x(n), and f(x(0)) = 0.
In our case, X represents a set of attributes and
fuzzy measures assess the preference over attribute
subsets towards a final decision. The preference re-
lation over alternatives is denoted by �. For two
alternatives P1 and P2 , P1 � P2 means that alter-
native P1 is preferred to P2. In multicriteria prob-
lems, Cµ(X) integrates the individual and collec-
tive satisfaction degrees associated with attributes
in a unique value which identifies the importance of
each example. For the sake of simplicity µx denotes
µ({x}).

3. HLMS algorithm

The input of HLMS are the rows of P and the
output is a vector S = [µ∅, . . . , µX ] of fuzzy
measure values.

Step 0. Initialize the fuzzy measure to the
equilibrium state: µi − µi−1 = 1

n .

Step 1. Compute the error ez = Cµ(xz) − T z

considering the data sample (xz, T z),. Let denote
u(0), u(1), . . . , u(n) the values of the nodes in
the path involved by xz. For example, in Fig.
1, we have u(1) = µ1, u(2) = µ12. Note that
for fuzzy measure definition u(0) = µ∅ = 0 and

u(n) = µX = 1.

Step 2. Update u(i) as follows :

1unew(i) = uold(i)−α× ez

emax
×(xz(n−i+1)−xz(n−i)) (1)

where α ∈ [0, 1] is called the learning rate and
emax is the maximum value of error. emax = 1 if
T z takes its values in [0,1]. As before, xz(i) indicates
the ith value of X, in ascending order.

Step 3. Check the monotonicity relation. If
ez > 0, the verification is done for lower neighbors
only, if ez < 0 for upper neighbors only. If a
monotonicity relation is violated with µ(K), then
u(i) = µ(K).

Repeat Step 2 and 3 for i = 1 . . . (n − 1) in the
following order:
If ez > 0, start with u(1), u(2), . . . , u(n− 1)
If ez < 0, start with u(n− 1), u(n− 1), . . . , u(1)
Step 1 to Step 3 are repeated for all learning data.
This is called one iteration.

Step 4. Adjust the value of unmodified nodes
in previous steps, considering its upper and lower
neighbors. The update is done considering the min-
imum distance between µ(K) and its upper (lower)
neighbors, denoted by dmin (dmin) as follows:

µ(K) = µ(K) + dmin− dmin
2

4. HLMS convergence analysis

HLMS converges when the difference between the
current node value uk(i) and its real value u(i) de-
creases after each iteration, i.e., in the k+1 iteration
the following holds:

|u(i)− uk+1(i)| < |u(i)− uk(i)| (2)

HLMS convergence demonstration for a fix training
data (X, Cµ(X)) is presented in this section through
the analysis of four possible cases based on Eq.(2).

Case 1: uk(i) < u(i) ∧ uk+1(i) < u(i) (see
Fig.2).

1The original update formula was reformulated since an
error was committed when derivate the gradient descent cri-
terion E = Cµ(x)− y.
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k k+1 iterations

real valueu(i)

*

Figure 2: Case 1, both the current (k+ 1) and pre-
vious (k) values are smaller than the real value.

u(i)− uk+1(i) < u(i)− uk(i)⇔
uk+1(i) > uk(i)⇔

uk+1(i)− uk(i) > 0 (a)⇔
uk(i)− α(Ckµ(X)− Cµ(X))(xn−i+1 − xn−i)

−uk(i) > 0⇔
α(Ckµ(X)− Cµ(X))(xn−i+1 − xn−i) < 0

In (a) the update equation Eq.(1) of Step 2 is
applied with e defined in Step 1. Notice that both
α and (xn−i+1 − xn−i) are positive. In addition,
Choquet integral is a sum of positive quantities
and uk(i) < u(i). Hence, Ckµ(X) − Cµ(X) < 0 and
the above product is negative verifying the Case 1
convergence.

Case 2: uk(i) > u(i) ∧ uk+1(i) < u(i) (see
Fig.3).

k k+1 iterations

real valueu(i)

*

Figure 3: Case 2, the current (k+1) value is smaller
than the real value and previous (k) value is bigger
than the real value.

u(i)− uk+1(i) < uk(i)− u(i)⇔
2u(i)− uk+1(i)− uk(i) < 0 (b)⇔

2u(i) + α(Ckµ(X)− Cµ(X))(xn−i+1 − xn−i)
−2uk(i) < 0⇔

α <
2(uk(i)− u(i))

(Cµ(X)− Ckµ(X))(xn−i+1 − xn−i) (3)

Similar to Case 1, in (b) the Eq.(1) is applied.
We have an upper bound of α that guarantee the
HLMS convergence. If α is chosen to satisfy Eq.(3),

Case 2 converge.

Case 3: uk(i) < u(i) ∧ uk+1(i) > u(i) (see
Fig.4).

k k+1 iterations

real valueu(i) *

Figure 4: Case 3, the current (k + 1) value is big-
ger than the real value and previous (k) values was
smaller than the real value.

uk+1(i)− u(i) < u(i)− uk(i)⇔
uk+1(i)− 2u(i) + uk(i) < 0⇔

2uk(i)− α · (Ckµ(X)− Cµ(X)) · (xn−i+1 − xn−i)
−2u(i) < 0⇔

α <
2(u(i)− uk(i))

(Cµ(X)− Ckµ(X)) · (xn−i+1 − xn−i)

Analogous to the analysis of the previous case,
we have an upper bound of α which guarantee the
HLMS convergence.
Case 4: uk(i) > u(i) ∧ uk+1(i) > u(i) (see
Fig.5).

k k+1 iterations

real valueu(i) *

Figure 5: Case 4, the current (k + 1) and previous
(k) values are bigger than the real value

uk+1(i)− u(i) < uk(i)− u(i)⇔
uk+1(i) < uk(i)⇔

uk+1(i)− uk(i) < 0⇔
uk(i)− α · (Ckµ(X)− Cµ(X)) · (xn−i+1 − xn−i)

−uk(i) < 0⇔
α(Ckµ(X)− Cµ(X))(xn−i+1 − xn−i) > 0

Both α and (xn−i+1−xn−i) are positive. Following
a similar analysis to Case 1, Ckµ(X) − Cµ(X) > 0
and the above product is positive.
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5. Toy example

The university wants to buy a computer for the sci-
ence department. Three factors are considered: mi-
croprocessor speed, ram memory and hard disc ca-
pacity. Conditions about the computer are:
c1) the most important is microprocessor speed. In
this case, a balance between ram memory and hard
disc is desired.
c2) when the microprocessor is not quick enough,
computers with more ram memory are preferred to
improve its performance.
Four alternatives of computers are evaluated and
data is organized in Table 1

Micro(m) Ram(r) H. disc(d)
M1 96 78 42
M2 96 66 54
M3 36 78 42
M4 36 66 54

Table 1: Computer acquisition example.

Notice that M1 �M3 and M2 �M4.

5.1. Solving with weighted sum we have:

In this case the problem consists in finding the
weights, w(), of the three attributes according to
the preference relations.
Due to condition c1) M2 �M1

96 ∗ w(m) + 78 ∗ w(r) + 42 ∗ w(d) <
96 ∗ w(m) + 66 ∗ w(r) + 54 ∗ w(d)

∴ w(r) < w(d)

and due to c2) M3 �M4

36 ∗ w(m) + 78 ∗ w(r) + 42 ∗ w(d) >
36 ∗ w(m) + 66 ∗ w(r) + 54 ∗ w(d)

∴ w(r) > w(d)
As both conditions lead to contradictory relations,
the weighted sum cannot be used to model the pref-
erences.

5.2. Solving with Choquet integral:

In this case, the Choquet integral considers the
individual and collective importance of attributes.
The problems consists in finding the weights, µ ,
which represent the importance of each group of at-
tributes.
Due to condition c1)

42 + (78− 42) ∗ µ(m, r) + (96− 78) ∗ µ(m) <
54 + (66− 54) ∗ µ(m, r) + (96− 66) ∗ µ(m)

∴ 2 ∗ µ(m, r) < 1 + µ(m) (4)

Due to condition c2)

36 + (42− 36) ∗ µ(r, d) + (78− 42) ∗ µ(r) >
36 + (54− 36) ∗ µ(r, d) + (66− 54) ∗ µ(r)

∴ 2 ∗ µ(r) > µ(d, r) (5)

µ0 µm µr µd µm,r µm,d µr,d µX
S1 0 0.6 0.5 0.5 0.7 0.7 0.6 1

Table 2: µ values used to resolve the toy example
with Choquet integral

For instance, values of Table 2 fulfill Eq.(4) and
Eq.(5). Then solving for each sample of Table 1 we
have:

M1 = 42 + 36 ∗ µ(m, r) + 18 ∗ µ(m)⇒ 78
M2 = 54 + 12 ∗ µ(m, r) + 30 ∗ µ(m)⇒ 80.4
M3 = 36 + 6 ∗ µ(r, d) + 36 ∗ µ(r)⇒ 57.6
M4 = 36 + 18 ∗ µ(d, r) + 12 ∗ µ(r)⇒ 52.8 (6)

As all the conditions are fulfilled, the Choquet in-
tegral proves to be able to model these preferences.

5.3. Solving with HLMS:

The HLMS output, µ values, for 300 iterations using
adaptive learning rate with initial α = 0.001 , and
target values of Eq.(6) is shown in Table 3.

µ0 µm µr µd µm,r µm,d µr,d µX
S1 0 0.6 0.5 0.3 0.7 0.8 0.6 1

Table 3: Output of HLMS for the toy example.

This example only uses paths {µ∅ → µm →
µm,r → µX} and {µ∅ → µr → µr,d → µX}. Then,
µd and µm,d are computed just on the step 4. No-
tice that HLMS converges, see Table 3. From the
previous analysis we notice that the learning rate α
determines the convergence of HLMS, i.e., small α
values (Eq.(3)) may help HLMS convergence. How-
ever, to guarantee the HLMS convergence, an adap-
tive learning rate is required.
In Fig.(6) a representation of the convergence be-

havior of HLMS is shown for the toy example. In
the vertical axe the difference between the target
and the output of Choquet integral is shown. In
Fig.(6) (a) an α value of 0.1 was used with no adap-
tive learning rate and consequently the HLMS can-
not converge. In Fig.(6)(b) an α value of 0.1 is
used but, in this case, an adaptive learning rate is
used decreasing every 100 iterations. As previously
showed, there exists a threshold below which HLMS
converge. There is a trade-off between α value, the
number of iterations after which α value is decreased
and the total number of iterations. A large α value
entails fast convergence but unstable. A small α
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Figure 6: Convergence and divergence of HLMS for
the example in section 6

value entails a large numbers of iterations, but due
to computer floating point finite accuracy, the algo-
rithm could not converge.

6. Conclusions

In this work we present a convergence analysis of
HLMS algorithm. We show that a proper α value
allows the HLMS convergence. The bound of α de-
pends on the difference between the real value and
the current value. In a convergent HLMS, this dif-
ference should be smaller after each iteration. Our
results suggest that adaptive learning rates may
be best suited to accomplish HLMS convergence.
Practical examples showing the descriptive power of
fuzzy measures against conventional weighted sum
approaches are also analyzed.
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