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Abstract

This paper deals with some dependencies between
fuzzy conjunctions and fuzzy implications. More
precisely, a fuzzy implication generated from a fuzzy
conjunction and a fuzzy conjunction induced by a
fuzzy implication is considered. In the case of a
fuzzy conjunction only border conditions and mono-
tonicity are assumed. The results are illustrated by
examples of weak fuzzy connectives.

Keywords: Fuzzy conjunction, fuzzy implication,
R-implication

1. Introduction

Multivalued logic with truth values in [0,1] was de-
veloped after the paper of J. Łukasiewicz [9]. Fuzzy
set theory introduced by L.A. Zadeh [11] brought
new applications of multivalued logic and new di-
rections in examination of logical connectives. After
the contribution of B. Schweizer and A. Sklar [10]
the notions of the triangular norm and conorm have
played the role of a fuzzy conjunction and disjunc-
tion. J. Fodor and M. Roubens [8], M. Baczyński
and B. Jayaram [1] examined families of multi-
valued connectives based on triangular norms and
conorms. However, some authors (e.g. I. Batyrshin
and O. Kaynak [3], F. Durante et al. [6]) under-
line that the assumptions made on these multival-
ued connectives are sometimes too strong and dif-
ficult to obtain. Thus, some of the conditions are
omitted.
In this contribution a way of generating of fuzzy

implication from a fuzzy conjunction by the use of
residuation is considered. Implications created in
such a way have been considered in the literature in
the case when the conjunction is a triangular norm
by J. Fodor and M. Roubens [8], M. Baczyński and
B. Jayaram [1] and are called R-implications. Also,
the case when a conjunction is replaced by an ap-
propriate uninorm was examined by B. De Baets
and J. Fodor [4] or M. Baczyński and B. Jayaram
[2] (RU-implications). In these considerations only
border conditions and monotonicity are required for
a fuzzy conjunction.

In the following section the definitions and ex-
amples of fuzzy connectives used in the sequel are
presented. Next, in Section 3, fuzzy implications
generated from fuzzy conjunctions are considered.
Finally, Section 4, presents the results concerning

fuzzy conjunctions generated from fuzzy implica-
tions.

2. Basic definitions

First, we present the notion and examples of a fuzzy
conjunction.

Definition 1 ([5]). An operation C : [0, 1]2 → [0, 1]
is called a fuzzy conjunction if it is increasing with
respect to each variable and

C(1, 1) = 1, C(0, 0) = C(0, 1) = C(1, 0) = 0.

Corollary 1. A fuzzy conjunction has an absorbing
element 0.

Example 1. The operations C0 and C1 are the
least and the greatest fuzzy conjunction, respec-
tively, where

C0(x, y) =
{

1, if x = y = 1
0, else

,

C1(x, y) =
{

0, if x = 0 or y = 0
1, else

.

The following are the other examples of fuzzy
conjunctions. The triangular norms are denoted in
the traditional way.

C2(x, y) =
{
y, if x = 1
0, if x < 1

,

C3(x, y) =
{
x, if y = 1
0, if y < 1

,

C4(x, y) =
{

0, if x+ y 6 1
y, if x+ y > 1

,

C5(x, y) =
{

0, if x+ y 6 1
x, if x+ y > 1

,

TM (x, y) = min(x, y),
TP (x, y) = xy,
TLK(x, y) = max(x+ y − 1, 0),

TD(x, y) =


x, if y = 1
y, if x = 1
0, else

,

TnM (x, y) =
{

0, if x+ y 6 1
min(x, y), else

.
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Next, we recall the notion of a fuzzy implication.

Definition 2 ([1], pp. 2,9). A binary operation
I : [0, 1]2 → [0, 1] is called a fuzzy implication if it
is decreasing with respect to the first variable and
increasing with respect to the second variable and

I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0.

We say that a fuzzy implication I fulfils:
• the neutral property (NP) if

I(1, y) = y, y ∈ [0, 1], (NP)

• the exchange principle (EP) if

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1], (EP)

• the identity principle (IP)

I(x, x) = 1, x ∈ [0, 1], (IP)

• the ordering property (OP) if

I(x, y) = 1⇔ x 6 y, x, y ∈ [0, 1]. (OP)

Example 2 ([1], pp. 4,5). The operations I0 and
I1 are the least and the greatest fuzzy implication,
respectively, where

I0(x, y) =
{

1, if x = 0 or y = 1
0, else

,

I1(x, y) =
{

0, if x = 1, y = 0
1, else

.

The following are the other examples of fuzzy
implications.

IŁK(x, y) = min(1− x+ y, 1),

IGD(x, y) =
{

1, if x ≤ y
y, if x > y

,

IRC(x, y) = 1− x+ xy,
IDN(x, y) = max(1− x, y),

IGG(x, y) =
{

1, if x ≤ y
y
x , if x > y

,

IRS(x, y) =
{

1, if x ≤ y
0, if x > y

,

IYG(x, y) =
{

1, if x, y = 0
yx, else

,

IFD(x, y) =
{

1, if x ≤ y
max(1− x, y), if x > y

,

IWB(x, y) =
{

1, if x ≤ 1
y, if x = 1

.

Corollary 2. A fuzzy implication has the right ab-
sorbing element 1 and fulfils the condition

I(0, y) = 1, x, y ∈ [0, 1]. (1)

3. Implications induced from conjunctions

A fuzzy implication can be generated from a fuzzy
conjunction by means of residuation as in the for-
mula (2) below.
Lemma 1. For an arbitrary C : [0, 1]2 → [0, 1]
with the right absorbing element 0, the function
IC : [0, 1]2 → [0, 1] given by the formula

IC(x, y) = sup{t ∈ [0, 1] : C(x, t) ≤ y}, x, y ∈ [0, 1]
(2)

is increasing with respect to the second variable. If
additionally C is increasing with respect to the first
variable then IC is decreasing with respect to the
first variable.
Proof. Firstly, let us observe that the function IC is
defined correctly. Let us fix x, y ∈ [0, 1] and denote

R(x, y) := {t ∈ [0, 1] : C(x, t) ≤ y}. (3)

From the existence of the right absorbing element 0
it follows that 0 6 C(x, 0) = 0, so 0 ∈ R(x, y). This
means that R(x, y) 6= ∅ and supR(x, y) ∈ [0, 1].
Let x, y, v ∈ [0, 1], y 6 v. We have

{t ∈ [0, 1] : C(x, t) 6 y} ⊂ {t ∈ [0, 1] : C(x, t) 6 v},

sup{t ∈ [0, 1] : C(x, t) 6 y} 6
6 sup{t ∈ [0, 1] : C(x, t) 6 v},

IC(x, y) 6 IC(x, v).

This means, that the function IC is increasing with
respect to the second variable.
Now, let x, u, y ∈ [0, 1], x 6 u. From the mono-
tonicity of the operation C with respect to the first
variable we have C(x, t) 6 C(u, t) for all t ∈ [0, 1].
Thus, we obtain as follows

{t ∈ [0, 1] : C(u, t) 6 y} ⊂ {t ∈ [0, 1] : C(x, t) 6 y},

sup{t ∈ [0, 1] : C(u, t) 6 y} 6
6 sup{t ∈ [0, 1] : C(x, t) 6 y},

IC(u, y) 6 IC(x, y).

Hence, the function IC is decreasing with respect to
the first variable.

Lemma 2. If C is a fuzzy conjunction then
IC(0, 0) = IC(0, 1) = IC(1, 1) = 1, where IC is
defined by (2).
Proof. From (2) and Corollary 1 we obtain

IC(0, 0) = sup{t ∈ [0, 1] : C(0, t) ≤ 0} =

= sup{t ∈ [0, 1] : 0 ≤ 0} = 1,

IC(0, 1) = sup{t ∈ [0, 1] : C(0, t) ≤ 1} = 1,

IC(1, 1) = sup{t ∈ [0, 1] : C(1, t) ≤ 1} = 1.

231



Lemma 3. Let C be a fuzzy conjunction. Then
IC(1, 0) = 0 if and only if C fulfils the condition

C(1, y) > 0, y ∈ (0, 1], (4)

Proof. From (2) we have

IC(1, 0) = sup{t ∈ [0, 1] : C(1, t) = 0}.

It is enough to observe that IC(1, 0) = 0 if and only
if the condition (4) is fulfilled.

From Lemmas 1–3 it follows the next statement.

Theorem 1. Let C be a fuzzy conjunction. The
function IC : [0, 1]2 → [0, 1] given by (2) is a fuzzy
implication if and only if C fulfils the condition (4).

Definition 3. Let C be a fuzzy conjunction fulfill-
ing the condition (4). The function IC given by (2)
is called the induced implication.

Example 3. The following table shows fuzzy im-
plications with their generators (cf. Examples 1, 2).
The symbol – means that, the function IC is not a
fuzzy implication.

Conjunction C Implication IC
C0 –
C1 I0
C2 IWB
C3 –
C4 IDN

C5 I2(x, y) =
{

1, if x ≤ y
1− x, if x > y

TM IGD
TP IGG
TLK ILK
TD IWB
TnM IFD

For example, let us check, that the conjunction C2
induces the implication IWB . We can observe that

IC2(1, y) = sup{t ∈ [0, 1] : C2(1, t) ≤ y} =
= sup{t ∈ [0, 1] : t ≤ y} = y = IWB(1, y).

Moreover, for x 6= 1 we obtain

IC2(x, y) = sup{t ∈ [0, 1] : C2(x, t) ≤ y} =
= sup{t ∈ [0, 1] : 0 ≤ y} = 1 = IWB(x, y).

In the similar way one can prove that the implica-
tion IWB is generated by the triangular norm TD
as well.

The condition (4) put on a conjunction guaran-
tees, that the function IC given by the formula (2)
is a fuzzy implication. However, this assumption is
not sufficient for the functions C and IC to fulfil an
additional, important condition called residuation
principle.

Definition 4. We say, that the functions C and IC
fulfil the residuation principle if

C(x, z) 6 y ⇔ IC(x, y) > z, x, y, z ∈ [0, 1].
(RP)

Theorem 2. Let C be a fuzzy conjunction fulfilling
(4). The following conditions are equivalent:
(i) C is a left-continuous function with respect to
the second variable;
(ii) C and IC fulfil the residuation principle (RP);
(iii) IC(x, y) = max{t ∈ [0, 1] : C(x, t) ≤ y},
x, y ∈ [0, 1].

Proof. The proof is based on similar considerations
for triangular norms (cf. [1], Proposition 2.5.2).

(i)⇒ (ii) Let us assume that C is left-continuous
with respect to the second variable. We can ob-
serve that if for some x, y, z ∈ [0, 1] the inequality
C(x, z) 6 y holds then z ∈ R(x, y) (cf. (3)), so
z 6 IC(x, y).
Now, let us assume that z 6 IC(x, y) for some
x, y, z ∈ [0, 1]. If z < IC(x, y) then there ex-
ists t0 > z such that C(x, t0) 6 y. From the
monotonicity of the fuzzy conjunction C we obtain
C(x, z) 6 y. If z = IC(x, y) then either z ∈ R(x, y)
and also C(x, z) 6 y or z /∈ R(x, y). In the last
case, from the property of supremum, there exists
such increasing sequence {tn}n∈N that for all n ∈ N
the inequalities tn < z and C(x, tn) 6 y hold and
lim
n→∞
tn = z. From the left-continuity with respect

to the second variable of C it follows

C(x, z) = C(x, lim
n→∞
tn) = lim

n→∞
C(x, tn) 6 y,

which proves that C(x, z) 6 y.
(ii) ⇒ (iii) Let us assume that C and IC fulfil the
residuation principle (RP). Because for arbitrary
x, y ∈ [0, 1] the trivial inequality IC(x, y) > IC(x, y)
holds, we have C(x, IC(x, y)) 6 y. This means that
IC(x, y) ∈ R(x, y) and supR(x, y) = maxR(x, y).
(iii)⇒ (i) Firstly, we will prove that C is infinitely
right-sup-distributive, i.e.

C(x, sup
s∈S
ys) = sup

s∈S
C(x, ys), x, ys ∈ [0, 1], s ∈ S.

Let us observe that from the monotonicity of C we
have the inequality

C(x, sup
s∈S
ys) > sup

s∈S
C(x, ys).

Let y = sup
s∈S
C(x, ys). For an arbitrary s ∈ S we

have C(x, ys) 6 y. This is why ys ∈ R(x, y) for ev-
ery s ∈ S, and ys 6 IC(x, y) for every s ∈ S. Hence,
sup
s∈S
ys 6 IC(x, y). Again, by the monotonicity of C

and from (iii) we obtain

C(x, sup
s∈S
ys) 6 C(x, IC(x, y)) 6 y = sup

s∈S
C(x, ys).
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From the above inequalities it follows that the fuzzy
conjunction C is infinitely right-sup-distributive.
Let x, yn ∈ [0, 1], yn 6 yn+1, n ∈ N. We have

C(x, lim
n→∞
yn) = C(x, sup

n∈N
yn) =

= sup
n∈N
C(x, yn) = lim

n→∞
C(x, yn).

This means that the function C is a left-continuous
function with respect to the second variable.

Now, we are presenting properties of fuzzy impli-
cation IC that together with its generator C fulfil
the residuum principle. To this end let us denote
by C the family of all fuzzy conjunctions which are
left-continuous with respect to the second variable
and fulfilling the condition (4).

Theorem 3. Let C ∈ C. The induced implica-
tion IC is right-continuous with respect to the second
variable.

Proof. The proof is based on similar considera-
tions for triangular norms (por. [1], Theorem 2.5.7).
Let us assume that the function IC is not right-
continuous with respect to the second variable in a
point (x0, y0) ∈ [0, 1] × [0, 1). Because the impli-
cation IC is increasing with respect to the second
variable, so there exist such a, b ∈ [0, 1] that a > b
and

IC(x0, y) > a, y > y0
and also IC(x0, y0) = b. Thus, by the Theorem 2
we have

C(x0, a) 6 y, y > y0
From a property the supremum we obtain
C(x0, a) 6 y0. Again from the residuation prin-
ciple we have b = IC(x0, y0) > a and this is the
contradiction to the assumption that a > b. Hence,
IC is right-continuous with respect to the second
variable.

Theorem 4. Let C ∈ C be additionally left-
continuous with respect to the first variable. The
induced implication IC is left-continuous with re-
spect to the first variable.

Proof. The proof is based on similar considerations
for triangular norms (por. [1], Theorem 2.5.7).

Let us suppose that the function IC is not left-
continuous with respect to the first variable in a
point (x0, y0) ∈ (0, 1] × [0, 1]. Because the implica-
tion IC is decreasing with respect to the first vari-
able, so there exist such a, b ∈ [0, 1] that a > b and

IC(x, y0) > a, x < x0

and also IC(x0, y0) = b. Thus, by the Theorem 2
we have

C(x, a) 6 y0, x > x0

From the property of supremum we obtain
C(x0, a) 6 y0. From the residuation principle we

have b = IC(x0, y0) > a and this is the contra-
diction to the supposition that a > b. Hence, IC is
left-continuous with respect to the first variable.

The following consideration is based on the con-
tribution [7].

Theorem 5. Let C ∈ C. The induced implication
IC
(i) has left neutral element (NP) if and only if C
has left neutral element 1;
(ii) fulfils exchange principle (EP) if and only if C
fulfills (EP);
(iii) fulfils identity principle (IP) if and only if C
fulfils

C(x, 1) 6 x, x ∈ [0, 1]; (5)

(iv) has ordering property (OP) if and only if C has
right neutral element 1.

Proof. (i)(⇒) Let us assume that for all y ∈ [0, 1]

IC(1, y) = max{t ∈ [0, 1] : C(1, t) ≤ y} = y. (6)

For an arbitrary y ∈ [0, 1] we obtain C(1, y) 6 y.
Let us presume that for a y0 ∈ [0, 1] we have
C(1, y0) < y0. Thus, there exists z < y0 such that
C(1, y0) 6 z. From the residuation principle one
receives IC(1, z) > y0 > z and this is the contradic-
tion to the assumption (6). Hence,

C(1, y) = y, y ∈ [0, 1]. (7)

(⇐) Let us assume that C(1, y) = y, y ∈ [0, 1]. We
obtain

IC(1, y) = max{t ∈ [0, 1] : C(1, t) ≤ y} =
= max{t ∈ [0, 1] : t ≤ y} = y

for y ∈ [0, 1], so IC fulfils (NP).
(ii) (⇒) Let us assume that the implication ful-

fils the exchange principle (EP). For the proof of
contradiction let us suppose that there exist such
x, y, z ∈ [0, 1] that C(x,C(y, z)) 6= C(y, C(x, z)).
Without loss of generality we can assume that
C(x,C(y, z)) < C(y, C(x, z)). Applying twice the
residuation principle (RP) we obtain as follows

IC(y, C(x,C(y, z))) < C(x, z),
IC(x, IC(y, C(x,C(y, z))) < z.

Due to (EP) we have IC(y, IC(x,C(x,C(y, z))) < z.
Again, applying twice (RP) we obtain

IC(x,C(x,C(y, z))) < C(y, z),
C(x,C(y, z)) < C(x,C(y, z)),

that is a trivial contradiction. Thus, C fulfils (EP).
(⇐) Now, let us assume that C fulfils (EP). From
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residuation principle we obtain

IC(x, IC(y, z)) =
= max{t ∈ [0, 1] : C(x, t) ≤ IC(y, z)} =
= max{t ∈ [0, 1] : C(y, C(x, t)) ≤ z} =
= max{t ∈ [0, 1] : C(x,C(y, t)) ≤ z} =
= max{t ∈ [0, 1] : C(y, t) ≤ IC(x, z)} =

= IC(y, IC(x, z)),

which proves (EP).
(iii) It is enough to observe, that for an arbitrary
x ∈ [0, 1]

IC(x, x) = max{t ∈ [0, 1] : C(x, t) 6 x} = 1⇔
⇔ C(x, 1) 6 x.

(iv) (⇒) Let us assume that the implication IC ful-
fils the ordering property, i.e.

IC(x, y) = 1⇔ x 6 y, x, y ∈ [0, 1]

and let x ∈ [0, 1]. Then

IC(x, x) = max{t ∈ [0, 1] : C(x, t) 6 x} = 1.

This means that C(x, 1) 6 x. Moreover, let us ob-
serve that by the monotonicity of the conjunction
C we obtain

IC(x,C(x, 1)) = max{t ∈ [0, 1] : C(x, t) 6
6 C(x, 1)} = 1.

Thus we obtain x 6 C(x, 1). and for an arbitrary
x ∈ [0, 1] we have C(x, 1) = x. This means that C
has the right neutral element 1.
(⇐) Now, let us assume that C has the right neutral
element 1. If for some x, y ∈ [0, 1] there is

IC(x, y) = max{t ∈ [0, 1] : C(x, t) 6 y} = 1. (8)

then we have x = C(x, 1) 6 y. If, on the other
hand for some x, y ∈ [0, 1] we have x 6 y, then
from neutral element C we obtain C(x, 1) = x 6 y.
Thus from the residuation principle it follows that
1 6 IC(x, y) 6 1 that is IC(x, y) = 1. Hence IC
fulfils (OP).

From the Theorem 5 it follows the next result.

Corollary 3 (por. [1]). Every implication induced
by a triangular norm that is left continuous with
respect to the second variable fulfils the conditions
(NP), (EP), (IP), (OP).

In general a fuzzy conjunction is not commuta-
tive, the induced implication can be generated in a
different way. This method is presented in Theo-
rem 6, which can be proved in the similar way as
Theorem 1.

Theorem 6. Let C be a fuzzy conjunction. The
function I∗C : [0, 1]2 → [0, 1] given by the formula

I∗C(x, y) = sup{t ∈ [0, 1] : C(t, x) ≤ y}, x, y ∈ [0, 1]
(9)

is a fuzzy implication if and only if C fulfils the
condition

C(y, 1) > 0, y ∈ (0, 1], (10)

Similar to the case of the implication IC there is
an important dependency between functions C i I∗C .

Definition 5. We say, that the functions C and I∗C
fulfil the residuation principle of the second type if

C(z, x) 6 y ⇔ I∗C(x, y) > z x, y, z ∈ [0, 1].
(RP*)

The next Theorem can be proved similarly to
Theorem 2.

Theorem 7. Let C be a fuzzy conjunction fulfilling
(10). The following conditions are equivalent:
(i) C is a left continuous function with respect to
the first variable;
(ii) C and I∗C fulfil the residuation principle (RP*);
(iii) I∗C(x, y) = max{t ∈ [0, 1] : C(t, x) ≤ y},
x, y ∈ [0, 1].

Theorem 8. Let C be a fuzzy conjunction that is a
left continuous with respect to each of the variables.
Then IC = I∗C if and only if C is commutative.

Proof. (⇒) If C is a commutative operation then
for all x, y ∈ [0, 1] we have the equality of the sets

{t ∈ [0, 1] : C(t, x) ≤ y} =
= {t ∈ [0, 1] : C(x, t) ≤ y},

so IC = I∗C .
(⇐) Let us assume that IC = I∗C . From the as-
sumption on C and from Theorems 2 and 7 we
have the condition (RP) and (RP*) fulfilled. Let
us suppose that C is not a commutative operation.
Without loss of generality we can assume that for
some x, y ∈ [0, 1] we have C(x, y) < C(y, x). Then
from (RP*) we obtain I∗C(x,C(x, y)) < y. From the
equality of implication we have IC(x,C(x, y)) < y.
As a result, from (RP), we obtain C(x, y) < C(x, y)
and this is an obvious contradiction. Thus C is
commutative.

4. Conjunctions induced from implications

In this section we consider fuzzy conjunctions gen-
erated from fuzzy implications. Moreover, we indi-
cate the assumption under which it is possible to
regain implications from such conjunctions and also
conjunctions from the induced implications.
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Lemma 4. For an arbitrary I : [0, 1]2 → [0, 1]
with the right absorbing element 1, the function
CI : [0, 1]2 → [0, 1] given by the formula

CI(x, y) = inf{t ∈ [0, 1] : I(x, t) > y}, x, y ∈ [0, 1]
(11)

is increasing with respect to the second variable. If
additionally I is increasing with respect to the first
variable then CI is increasing with respect to the
first variable.

Proof. Firstly, let us observe, that the function CI
is defined correctly. Let x, y ∈ [0, 1]. Let us denote

P (x, y) := {t ∈ [0, 1] : I(x, t) > y}. (12)

From the existence of the right absorbing element 1
it follows that 1 > I(x, 1) = 1 > y, so 1 ∈ P (x, y).
It means that P (x, y) 6= ∅, thus inf P (x, y) ∈ [0, 1].
Let x, y, v ∈ [0, 1], y 6 v. We have as follows

{t ∈ [0, 1] : I(x, t) > y} ⊃ {t ∈ [0, 1] : I(x, t) > v},

inf{t ∈ [0, 1] : I(x, t) > y} 6
6 inf{t ∈ [0, 1] : I(x, t) > v},

CI(x, y) 6 CI(x, v),

which proves that CI is increasing with respect to
the second variable. Now, let x, u, y ∈ [0, 1], x 6 u.
From monotonicity of the function I with respect
to the first variable we have I(x, t) > I(u, t) for all
t ∈ [0, 1]. Hence, we obtain as follows

{t ∈ [0, 1] : I(u, t) > y} ⊂ {t ∈ [0, 1] : I(x, t) > y},

inf{t ∈ [0, 1] : I(u, t) > y} >
> inf{t ∈ [0, 1] : I(x, t) > y},

CI(u, y) > CI(x, y).

Thus, the function CI is increasing with respect to
the first variable.

Lemma 5. If I is a fuzzy implication then
CI(0, 0) = CI(0, 1) = CI(1, 0) = 0.

Proof. From the Corollary 2 we obtain

CI(0, 0) = inf{t ∈ [0, 1] : I(0, t) > 0} = 0,

CI(1, 0) = inf{t ∈ [0, 1] : I(1, t) > 0} = 0,

CI(0, 1) = inf{t ∈ [0, 1] : I(0, t) > 1} =
= inf{t ∈ [0, 1] : 1 > 1} = 0.

Lemma 6. Let I be a fuzzy implication. Then
CI(1, 1) = 1 if and only if

I(1, y) < 1 y ∈ [0, 1). (13)

Proof. From (18) we have CI(1, 1) = inf{t ∈ [0, 1] :
I(1, t) = 1}. It is enough to observe that CI(1, 1) =
1 if and only if the C fulfils the condition (13).

From Lemmas 4–6 it follows the next statement.

Theorem 9. Let I be a fuzzy implication. The
function CI : [0, 1]2 → [0, 1] given by the formula

CI(x, y) = inf{t ∈ [0, 1] : I(x, t) > y}, x, y ∈ [0, 1]
(14)

is a fuzzy conjunction if and only if the C fulfils the
condition (13).

Definition 6. Let I be a fuzzy implication fulfilling
the condition (13). The function CI given by (18)
is called the induced conjunction.

Example 4. The following table shows fuzzy con-
junctions with their generators (cf. Examples 1, 2).
The symbol – means that, the function CI is not a
fuzzy conjunction.

Implication I Conjunction CI
I0 C1
I1 –
ILK TLK
IGD TM

IRC C6(x, y) =
{

0, if x+ y ≤ 1
x+y−1
x , if x+ y > 1

IDN C4
IGG TP

IRS C7(x, y) =
{

0, if y = 0
x, if y > 0

IY G C8(x, y) =
{

0, if x = 0
y

1
x , if x > 0

IFD TnM
IWB C2

For example, we will show that the implication IRS
induces the conjunction C7. Let us observe that

CIRS (x, 0) = inf{t ∈ [0, 1] : IRS(x, t) > 0} = 0

and for y > 0 we have

CIRS (x, y) = inf{t ∈ [0, 1] : IRS(x, t) = 1} =
= inf{t ∈ [0, 1] : x 6 t} = x.

Thus we can see that

CIRS (x, y) =
{

1, if y = 0
x, if y > 0

= C7(x, y).

The condition (13) put on an implication guaran-
tees, that the function CI given by (18) is a fuzzy
conjunction. However it is not sufficient for the
functions I and CI to fulfil the residuation principle
that in this case has a form

CI(x, z) 6 y ⇔ I(x, y) > z, x, y, z ∈ [0, 1].
(RP**)
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Theorem 10. Let I be a fuzzy implication fulfilling
(13). The following conditions are equivalent:
(i) I is a right-continuous function with respect to
the second variable;
(ii) I and CI fulfil the residuation principle (RP**);
(iii) CI(x, y) = min{t ∈ [0, 1] : I(x, t) > y},
x, y ∈ [0, 1].

Proof. The proof is based on similar considerations
for triangular norms (cf. [1], Proposition 2.5.13)

(i) ⇒ (ii) Let us assume, that I is right-
continuous with respect to the second variable. We
can observe, that if for some x, y, z ∈ [0, 1] the in-
equality I(x, z) > y holds then z ∈ P (x, y) (cf.
(12)), so z > CI(x, y).
Let us assume that z > CI(x, y) for some x, y, z ∈
[0, 1]. If z > CI(x, y) then there exists t0 < z such
that I(x, t0) > y. From monotonicity of the fuzzy
implication I with respect to the second variable
we obtain I(x, z) > y. If z = CI(x, y) then either
z ∈ P (x, y) and also I(x, z) > y or z /∈ P (x, y).
In the last case, from the property of the infimum,
there exists such decreasing sequence {tn}n∈N that
for all n ∈ N the inequalities tn > z and I(x, tn) > y
hold and lim

n→∞
tn = z. From the right-continuity

with respect to the second variable of I it follows

I(x, z) = I(x, lim
n→∞
tn) = lim

n→∞
I(x, tn) > y,

which proves that I(x, z) > y.
(ii) ⇒ (iii) Let us assume that I and CI fulfil the
residuation principle (RP**). Because for arbitrary
x, y ∈ [0, 1] the trivial inequality CI(x, y) 6 CI(x, y)
holds, we have I(x,CI(x, y)) > y. This means that
CI(x, y) ∈ P (x, y) and inf P (x, y) = minP (x, y).
(iii)⇒ (i) Firstly, we will prove that I is infinitely
right-inf-distributive, i.e.

I(x, inf
s∈S
ys) = inf

s∈S
I(x, ys), x, ys ∈ [0, 1], s ∈ S.

Let us see, that from the monotonicity with respect
to the second variable of I we have inequality

I(x, inf
s∈S
ys) 6 inf

s∈S
I(x, ys).

Let y = inf
s∈S
I(x, ys), then for an arbitrary s ∈ S we

have I(x, ys) > y. This is why ys ∈ P (x, y) for every
s ∈ S, and ys > CI(x, y) for every s ∈ S. Hence,
inf
s∈S
ys > CI(x, y). Again, by the monotonicity with

respect to the second variable of I and from (iii) we
obtain

I(x, inf
s∈S
ys) > I(x,CI(x, y)) > y = inf

s∈S
I(x, ys).

From the above inequalities it follows that the fuzzy
implication I is infinitely right-inf-distributive. Let
x, yn ∈ [0, 1], yn > yn+1, n ∈ N, then we have

I(x, lim
n→∞
yn) = I(x, inf

n∈N
yn) =

inf
n∈N
I(x, yn) = lim

n→∞
I(x, yn).

This means that the function I is right-continuous
function with respect to the second variable.

Now, we are presenting properties of fuzzy con-
junction CI that together with its generator I ful-
fil the residuum principle (RP**). To this end let
us denote by I the family of all fuzzy implications
which are right-continuous with respect to the sec-
ond variable and fulfilling the condition (13).

Theorem 11. Let I ∈ I. The induced implica-
tion CI is left-continuous with respect to the second
variable.

Proof. The proof is based on similar considera-
tions for triangular norms (por. [1], Theorem 2.5.7).
Let us assume that the function IC is not left-
continuous with respect to the second variable in
a point (x0, y0) ∈ [0, 1] × (0, 1]. Because the con-
junction CI is increasing with respect to the second
variable, so there exist such a, b ∈ [0, 1] that a < b
and

CI(x0, y) 6 a, y < y0
and also CI(x0, y0) = b. Thus, from the Theorem 2
we have

I(x0, a) > y, y < y0
From a property of supremum we obtain I(x0, a) >
sup[a, y0) = y0. Again from the residuation prin-
ciple (RP**) we have b = CI(x0, y0) 6 a and this
is the contradiction to the assumption that a < b.
Hence, CI is left-continuous with respect to the sec-
ond variable.

Theorem 12. Let I ∈ I. Then I = ICI , that is

I(x, y) = max{t ∈ [0, 1] : CI(x, t) 6 y}, x, y ∈ [0, 1].
(15)

Proof. Let x, y ∈ [0, 1]. From definition of CI and
from monotonicity with respect to the second vari-
able of implication I we obtain

CI(x, I(x, y)) =
= min{t ∈ [0, 1] : I(x, t) > I(x, y)} 6 y.

Thus we have I(x, y) ∈ {t ∈ [0, 1] : CI(x, t) 6 y}
and

I(x, y) 6 ICI (x, y). (16)

From CI(x, ICI (x, y)) 6 CI(x, ICI (x, y)) by (RP**)
we obtain

I(x,CI(x, ICI (x, y))) > ICI (x, y). (17)

Because CI is a conjunction which is left-continuous
with respect to the second variable (from Theorem
11), CI and ICI fulfil the residuation principle (from
the Theorem 10). Thus, by the trivial inequality
ICI (x, y) > ICI (x, y) we obtain CI(x, ICI (x, y)) 6
y. Additionally from (17) and the monotonicity
with respect to the second variable of the impli-
cation it follows I(x, y) > ICI (x, y). Hence and by
(16) we obtain the equality I = ICI .
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Theorem 13. Let C ∈ C. Then C = CIC , that is

C(x, y) = min{t ∈ [0, 1] : IC(x, t) > y}, x, y ∈ [0, 1].
(18)

Proof. Let x, y ∈ [0, 1]. From definition of IC and
from monotonicity of the conjunction C we obtain

IC(x,C(x, y)) =
= max{t ∈ [0, 1] : C(x, t) 6 C(x, y)} > y.

Thus we have C(x, y) ∈ {t ∈ [0, 1] : IC(x, t) > y}
and

C(x, y) > CIC (x, y). (19)
From IC(x,CIC (x, y)) > IC(x,CIC (x, y)) by (RP)
we obtain

C(x, IC(x,CIC (x, y))) 6 CIC (x, y). (20)

Because CI is an implication which is right-
continuous with respect to the second variable
(from Theorem 10), IC and CIC fulfil the residu-
ation principle (from the Theorem 2). Thus, by
the trivial inequality ICI (x, y) > ICI (x, y) we ob-
tain IC(x,CIC (x, y)) > y. Additionally from (20)
and the monotonicity of the conjunction it follows
C(x, y) 6 CIC (x, y). Hence and by (19) we obtain
the equality C = CIC .

5. Conclusion

In this contribution the residuation concept that
connects the fuzzy implication together with the
fuzzy conjunction is examined. The method of re-
gaining the connectives that play the roles of gen-
erators are shown in Theorems 12 and 13. Further
examination can concern the characterizations of in-
duced implications fulfilling other properties.
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